首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Understanding potential future influence of environmental, economic, and social drivers on land-use and sustainability is critical for guiding strategic decisions that can help nations adapt to change, anticipate opportunities, and cope with surprises. Using the Land-Use Trade-Offs (LUTO) model, we undertook a comprehensive, detailed, integrated, and quantitative scenario analysis of land-use and sustainability for Australia’s agricultural land from 2013–2050, under interacting global change and domestic policies, and considering key uncertainties. We assessed land use competition between multiple land-uses and assessed the sustainability of economic returns and ecosystem services at high spatial (1.1 km grid cells) and temporal (annual) resolution. We found substantial potential for land-use transition from agriculture to carbon plantings, environmental plantings, and biofuels cropping under certain scenarios, with impacts on the sustainability of economic returns and ecosystem services including food/fibre production, emissions abatement, water resource use, biodiversity services, and energy production. However, the type, magnitude, timing, and location of land-use responses and their impacts were highly dependent on scenario parameter assumptions including global outlook and emissions abatement effort, domestic land-use policy settings, land-use change adoption behaviour, productivity growth, and capacity constraints. With strong global abatement incentives complemented by biodiversity-focussed domestic land-use policy, land-use responses can substantially increase and diversify economic returns to land and produce a much wider range of ecosystem services such as emissions abatement, biodiversity, and energy, without major impacts on agricultural production. However, better governance is needed for managing potentially significant water resource impacts. The results have wide-ranging implications for land-use and sustainability policy and governance at global and domestic scales and can inform strategic thinking and decision-making about land-use and sustainability in Australia. A comprehensive and freely available 26 GB data pack (http://doi.org/10.4225/08/5604A2E8A00CC) provides a unique resource for further research. As similarly nuanced transformational change is also possible elsewhere, our template for comprehensive, integrated, quantitative, and high resolution scenario analysis can support other nations in strategic thinking and decision-making to prepare for an uncertain future.  相似文献   

2.
Global environmental change scenarios have typically provided projections of land use and land cover for a relatively small number of regions or using a relatively coarse resolution spatial grid, and for only a few major sectors. The coarseness of global projections, in both spatial and thematic dimensions, often limits their direct utility at scales useful for environmental management. This paper describes methods to downscale projections of land-use and land-cover change from the Intergovernmental Panel on Climate Change's Special Report on Emission Scenarios to ecological regions of the conterminous United States, using an integrated assessment model, land-use histories, and expert knowledge. Downscaled projections span a wide range of future potential conditions across sixteen land use/land cover sectors and 84 ecological regions, and are logically consistent with both historical measurements and SRES characteristics. Results appear to provide a credible solution for connecting regionalized projections of land use and land cover with existing downscaled climate scenarios, under a common set of scenario-based socioeconomic assumptions.  相似文献   

3.
The causes of land-use and land-cover change: moving beyond the myths   总被引:39,自引:0,他引:39  
Common understanding of the causes of land-use and land-cover change is dominated by simplifications which, in turn, underlie many environment-development policies. This article tracks some of the major myths on driving forces of land-cover change and proposes alternative pathways of change that are better supported by case study evidence. Cases reviewed support the conclusion that neither population nor poverty alone constitute the sole and major underlying causes of land-cover change worldwide. Rather, peoples’ responses to economic opportunities, as mediated by institutional factors, drive land-cover changes. Opportunities and constraints for new land uses are created by local as well as national markets and policies. Global forces become the main determinants of land-use change, as they amplify or attenuate local factors.  相似文献   

4.
Global change and the intensification of agriculture in the tropics   总被引:3,自引:2,他引:3  
Bridging understanding of local environmental change with regional and global patterns of land-use and land-cover change (LUCC) remains a key goal and challenge for our understanding of global environmental change. This meta-analysis attempts to bridge local and regional scales of LUCC by demonstrating the ways in which previously published case studies can be compared and used for a broader regional synthesis in the tropics. In addition to providing results from a meta-analysis, this paper suggests ways to make future case studies more widely comparable.  相似文献   

5.
We explore how smallholder agricultural systems in the Kenyan highlands might intensify and/or diversify in the future under a range of socio-economic scenarios. Data from approximately 3000 households were analyzed and farming systems characterized. Plausible socio-economic scenarios of how Kenya might evolve, and their potential impacts on the agricultural sector, were developed with a range of stakeholders. We study how different types of farming systems might increase or diminish in importance under different scenarios using a land-use model sensitive to prices, opportunity cost of land and labour, and other variables. We then use a household model to determine the types of enterprises in which different types of households might engage under different socio-economic conditions. Trajectories of intensification, diversification, and stagnation for different farming systems are identified. Diversification with cash crops is found to be a key intensification strategy as farm size decreases and labour costs increase. Dairy expansion, while important for some trajectories, is mostly viable when land available is not a constraint, mainly due to the need for planting fodders at the expense of cropland areas. We discuss the results in relation to induced innovation theories of intensification. We outline how the methodology employed could be used for integrating global and regional change assessments with local-level studies on farming options, adaptation to global change, and upscaling of social, environmental and economic impacts of agricultural development investments and interventions.  相似文献   

6.
Brazilian strategic interest in the Madeira River basin, one of the most important of the southern Amazon tributaries, includes the development of hydropower to satisfy the country’s growing energy needs and new waterways to boost regional trade and economic development. Because of evidences that climate change impacts the hydrological regime of rivers, the aim of this study was to assess how global climate change and regional land cover change caused by deforestation could affect the river’s hydrological regime. To achieve this goal, we calibrated a large-scale hydrological model for the period from 1970–1990 and analyzed the ability of the model to simulate the present hydrological regime when climate model simulations were used as input. Climate change projections produced by climate models were used in the hydrological model to generate scenarios with and without regional land-use and land-cover changes induced by forest conversion to pasture for the period from 2011–2099. Although results show variability among models, consensus scenarios indicated a decrease in the low-flow regime. When the simulations included forest conversion to pasture, climate change impacts on low flows were reduced in the upper basin, while, in the lower basin, discharges were affected along the whole year due to the more vigorous land-use conversion in the Brazilian region of the basin.  相似文献   

7.
Climate variability and change affects individuals and societies. Within agricultural systems, seasonal climate forecasting can increase preparedness and lead to better social, economic and environmental outcomes. However, climate forecasting is not the panacea to all our problems in agriculture. Instead, it is one of many risk management tools that sometimes play an important role in decision-making. Understanding when, where and how to use this tool is a complex and multi-dimensional problem. To do this effectively, we suggest a participatory, cross-disciplinary research approach that brings together institutions (partnerships), disciplines (e.g., climate science, agricultural systems science, rural sociology and many other disciplines) and people (scientist, policy makers and direct beneficiaries) as equal partners to reap the benefits from climate knowledge. Climate science can provide insights into climatic processes, agricultural systems science can translate these insights into management options and rural sociology can help determine the options that are most feasible or desirable from a socio-economic perspective. Any scientific breakthroughs in climate forecasting capabilities are much more likely to have an immediate and positive impact if they are conducted and delivered within such a framework. While knowledge and understanding of the socio-economic circumstances is important and must be taken into account, the general approach of integrated systems science is generic and applicable in developed as well as in developing countries. Examples of decisions aided by simulation output ranges from tactical crop management options, commodity marketing to policy decisions about future land use. We also highlight the need to better understand temporal- and spatial-scale variability and argue that only a probabilistic approach to outcome dissemination should be considered. We demonstrated how knowledge of climatic variability (CV), can lead to better decisions in agriculture, regardless of geographical location and socio-economic conditions.  相似文献   

8.
为进一步促进土地利用和土地覆盖变化(Land-Use and Land-Cover Change,LULCC)以及土地管理对气候影响的理解,第六次国际耦合模式比较计划(CMIP6)设立了土地利用模式比较计划(LUMIP)。该计划主要包括两个阶段的试验设计:第一阶段涉及理想的毁林情景耦合试验和陆面模式模拟试验,旨在促进LULCC对气候影响过程的理解,并量化模式对LULCC的敏感性。第二阶段的试验重点关注土地利用变化的历史影响,以及未来土地管理决策在减缓气候变化方面的潜力。本文概述了其科学背景、试验设计和方案、参与模式情况等,并简评了该计划的研究意义和特色,以期读者迅速了解其相关的研究要点和发展方向。  相似文献   

9.
Land-use activities that affect the global balance of greenhouse gases have been a topic of intense discussion during ongoing climate change treaty negotiations. Policy mechanisms that reward countries for implementing climatically beneficial land-use practices have been included in the Bonn and Marrakech agreements on implementation of the Kyoto Protocol. However some still fear that land-use projects focused narrowly on carbon gain will result in socioeconomic and environmental harm, and thus conflict with the explicit sustainable development objectives of the agreement. We propose a policy tool, in the form of a multi-attribute decision matrix, which can be used to evaluate potential and completed land-use projects for their climate, environmental and socioeconomic impacts simultaneously. Project evaluation using this tool makes tradeoffs explicit and allows identification of projects with multiple co-benefits for promotion ahead of others. Combined with appropriate public participation, accounting, and verification policies, a land-use activity decision matrix can help ensure that progressive land management practices are an effective part of the solution to global climate change.  相似文献   

10.
The carbon-dense peatlands of Indonesia are a landscape of global importance undergoing rapid land-use change. Here, peat drained for agricultural expansion increases the risk of large-scale uncontrolled fires. Several solutions to this complex environmental, humanitarian and economic crisis have been proposed, such as forest protection measures and agricultural support. However, numerous programmes have largely failed. Bundles of interventions are proposed as promising strategies in integrated approaches, but what policy interventions to combine and how to align such bundles to local conditions remains unclear. We evaluate the impact of two types of interventions and of their combinations, in reducing fire occurrence through driving behavioural change: incentives (i.e. rewards that are conditional on environmental performance), and deterrents (e.g. sanction, soliciting concerns for health). We look at the impact of these interventions in 10 villages with varying landscape and fire-risk contexts in Sumatra, Indonesia. A private-led implementation of a standardised programme allows us to study outcome variability through a natural experiment design. We conduct a systematic cross-case comparison to identify the most effective combinations of interventions, using two-step qualitative comparative analysis (QCA) and geospatial and socio-economic survey data (n = 303). We analysed the combined influence of proximate conditions (interventions, e.g. fear of sanction) and remote ones (context; e.g. extent of peat soil) on fire outcomes. We show how, depending on the level of risk in the pre-existing context, certain bundles of interventions are needed to succeed. We found that, despite the programme being framed as rewards-based, people were not responding to the reward alone. Rather sanctions and soliciting concern appeared central to fire prevention, raising important equity implications. Our results contribute to the emerging global interest in peat fire mitigation, and the rapidly developing literature on PES performance.  相似文献   

11.
This study examines the impact of historical land-cover change on North American surface climate, focusing on the robustness of the climate signal with respect to representation of sub-grid heterogeneity and land biogeophysics within a climate model. We performed four paired climate simulations with the Community Atmosphere Model using two contrasting land models and two different representations of land-cover change. One representation used a biome classification without subgrid-scale heterogeneity while the other used high-resolution satellite data to prescribe multiple vegetation types within a grid cell. Present-day and natural vegetation datasets were created for both representations. All four sets of climate simulations showed that present-day vegetation has cooled the summer climate in regions of North America compared to natural vegetation. The simulated magnitude and spatial extent of summer cooling due to land-cover change was reduced when the biome-derived land-cover change datasets were replaced by the satellite-derived datasets. The diminished cooling is partly due to reduced intensity of agriculture in the satellite-derived datasets. Comparison of the two land-surface models showed that the use of a comparatively warmer and drier land model in conjunction with satellite-derived datasets further reduced the simulated magnitude of summer cooling. These results suggest that the cooling signal associated with North American land-cover change is robust but the magnitude and therefore detection of the signal depends on the realism of the datasets used to represent land-cover change and the parametrisation of land biogeophysics.  相似文献   

12.
Conservation areas are crucial for the maintenance of local communities’ life-support systems. Such areas also, however, constitute potential carbon sinks in regions undergoing significant and complex land-cover and land-use changes. In Africa, most conservation areas are subject to conflicting land-uses due to complex land–tenure relationships, misdirected and ineffective policies and legislation, and human encroachment. Stakeholder analysis in such areas, taking the form of an environmental conflict management model in which stakeholders engage each other in a negotiation process, building mutual trust around areas of common interest and eventually forging mutually beneficial partnerships, can be used to better understand land-use conflicts. In a case study of a forest reserve in Mozambique, it was concluded that stakeholders define themselves with reference to their geographical location, political mandates and socio-cultural and economic interests with respect to the conservation area. The level of mistrust among stakeholders before the start of the project is directly proportional to the amount of time required to build and nurse mutual trust. Such dynamics are shown to be critical in effective management and use of conservation areas.  相似文献   

13.
Global exposure to river and coastal flooding: Long term trends and changes   总被引:1,自引:0,他引:1  
Flood damage modelling has traditionally been limited to the local, regional or national scale. Recent flood events, population growth and climate change concerns have increased the need for global methods with both spatial and temporal dynamics. This paper presents a first estimation of global economic exposure to both river and coastal flooding for the period 1970–2050, using two different methods for damage assessment. One method is based on population and the second is based on land-use within areas subject to 1/100 year flood events. On the basis of population density and GDP per capita, we estimate a total global exposure to river and coastal flooding of 46 trillion USD in 2010. By 2050, these numbers are projected to increase to 158 trillion USD. Using a land-use based assessment, we estimated a total flood exposure of 27 trillion USD in 2010. For 2050 we simulate a total exposure of 80 trillion USD. The largest absolute exposure changes between 1970 and 2050 are simulated in North America and Asia. In relative terms we project the largest increases in North Africa and Sub-Saharan Africa. The models also show systematically larger growth in the population living within hazard zones compared to total population growth. While the methods unveil similar overall trends in flood exposure, there are significant differences in the estimates and geographical distribution. These differences result from inherent model characteristics and the varying relationship between population density and the total urban area in the regions of analysis. We propose further research on the modelling of inundation characteristics and flood protection standards, which can complement the methodologies presented in this paper to enable the development of a global flood risk framework.  相似文献   

14.
An emission pathway for stabilization at 6?Wm?2 radiative forcing   总被引:1,自引:0,他引:1  
Representative Concentration Pathway 6.0 (RCP6) is a pathway that describes trends in long-term, global emissions of greenhouse gases (GHGs), short-lived species, and land-use/land-cover change leading to a stabilisation of radiative forcing at 6.0 Watts per square meter (Wm?2) in the year 2100 without exceeding that value in prior years. Simulated with the Asia-Pacific Integrated Model (AIM), GHG emissions of RCP6 peak around 2060 and then decline through the rest of the century. The energy intensity improvement rates changes from 0.9% per year to 1.5% per year around 2060. Emissions are assumed to be reduced cost-effectively in any period through a global market for emissions permits. The exchange of CO2 between the atmosphere and terrestrial ecosystem through photosynthesis and respiration are estimated with the ecosystem model. The regional emissions, except CO2 and N2O, are downscaled to facilitate transfer to climate models.  相似文献   

15.
This paper analyses structural change in the economy as a key but largely unexplored aspect of global socio-economic and climate change mitigation scenarios. Structural change can actually drive energy and land use as much as economic growth and influence mitigation opportunities and barriers. Conversely, stringent climate policy is bound to induce specific structural and socio-economic transformations that are still insufficiently understood. We introduce Multi-Sectoral macroeconomic Integrated Assessment Models as tools to capture the key drivers of structural change and we conduct a multi-model study to assess main structural effects – changes of the sectoral composition and intensity of trade of global and regional economies – in a baseline and 2°C policy scenario by 2050. First, the range of baseline projections across models, for which we identify the main drivers, illustrates the uncertainty on future economic pathways – in emerging economies especially – and inform on plausible alternative futures with implications for energy use and emissions. Second, in all models, climate policy in the 2°C scenario imposes only a second-order impact on the economic structure at the macro-sectoral level – agriculture, manufacturing and services - compared to changes modelled in the baseline. However, this hides more radical changes for individual industries – within the energy sector especially. The study, which adopts a top-down framing of global structural change, represents a starting point to kick-start a conversation and propose a new research agenda seeking to improve understanding of the structural change effects in socio-economic and mitigation scenarios, and better inform policy assessments.  相似文献   

16.
Regional climate model simulations with RegCM3 were performed to investigate how future land-cover/land-use (LCLU) change in Montane Mainland Southeast Asia (MMSEA) could affect regional climate. Simulation land-surface parameterizations included present day and plausible 2050 land-covers, as well as two extreme deforestation simulations. In the simulations, the original land cover map of RegCM3, based on AVHRR 1992–93 observations, was replaced with one obtained from MODIS 2001 observations; and the model was set to work at two different spatial resolutions using the sub-grid feature of the land surface model: 27.79 km for the atmosphere and 9.26 km for the land surface. During validation, modeled precipitation closely matched observed precipitation over southern China, but underestimated precipitation in the Indochina Peninsula. The plausible 2050 LCLU simulation predicted little change in regional climate. However, an extreme irrigated crop parameterization caused precipitation to increase slightly in the Indochina Peninsula, decrease substantially in southeastern China, and increase significantly in the South China Sea. The extreme short-grass parameterization caused substantial precipitation decreases in MMSEA, but few changes elsewhere. These simulations indicate in order for significant climatological changes to occur, substantially more LCLU conversion is required than the 16 % change we incorporated into the plausible 2050 land-cover scenario.  相似文献   

17.
In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  相似文献   

18.
Climate change is leading to a redistribution of marine species, altering ecosystem dynamics as species extend or shift their geographic ranges polewards with warming waters. In marine systems, range shifts have been observed in a wide diversity of species and ecosystems and are predicted to become more prevalent as environmental conditions continue to change. Large-scale shifts in the ranges of marine species will likely have dramatic socio-economic and management implications. Australia provides a unique setting in which to examine the range of consequences of climate-induced range shifts because it encompasses a diverse range of ecosystems, spanning tropical to temperate systems, within a single nation and is home to global sea surface temperature change ‘hotspots’ (where range shifts are particularly likely to occur). We draw on global examples with a particular emphasis on Australian cases to evaluate these consequences. We show that in Australia, range shifts span a variety of ecosystem types, trophic levels, and perceived outcomes (i.e., negative versus positive). The effect(s) of range shifts on socio-economic change variables are rarely reviewed, yet have the potential to have positive and/or negative effects on economic activities, human health and ecosystem services. Even less information exists about potential management responses to range-shifting species. However, synthesis of these diverse examples provides some initial guidance for selecting effective adaptive response strategies and management tools in the face of continuing climate-mediated range shifts.  相似文献   

19.
The future forests of eastern North America will be shaped by at least three broad drivers: (i) vegetation change and natural disturbance patterns associated with the protracted recovery following colonial era land use, (ii) a changing climate, and (iii) a land-use regime that consists of geographically variable rates and intensities of forest harvesting, clearing for development, and land protection. We evaluated the aggregate and relative importance of these factors for the future forests of New England, USA by simulating a continuation of the recent trends in these drivers for fifty-years, nominally spanning 2010 to 2060. The models explicitly incorporate the modern distribution of tree species and the geographical variation in climate and land-use change. Using a cellular land-cover change model in combination with a physiologically-based forest landscape model, we conducted a factorial simulation experiment to assess changes in aboveground carbon (AGC) and forest composition. In the control scenario that simulates a hypothetical absence of any future land use or future climate change, the simulated landscape experienced large increases in average AGC—an increase of 53% from 2010 to 2060 (from 4.2 to 6.3 kg m−2). By 2060, climate change increased AGC stores by 8% relative to the control while the land-use regime reduced AGC by 16%. Among land uses, timber harvesting had a larger effect on AGC storage and changes in tree composition than did forest conversion to non-forest uses, with the most pronounced impacts observed on private corporate-owned land in northern New England. Our results demonstrate a large difference between the landscape’s potential to store carbon and the landscape’s current trajectory, assuming a continuation of the modern land-use regime. They also reveal aspects of the land-use regime that will have a disproportionate impact on the ability of the landscape to store carbon in the future, such as harvest regimes on corporate-owned lands. This information will help policy-makers and land managers evaluate trade-offs between commodity production and mitigating climate change through forest carbon storage.  相似文献   

20.
Mismatches between the spatial scales of human decision-making and natural processes contribute to environmental problems such as global warming and biodiversity losses. People damage the environment through local activities like clearing land or burning fossil fuels, but the damages only become manifest at larger regional or global scales where no one pays for them. Payments for ecological services like carbon sequestration can correct for these damages caused by scale mismatches. This paper presents a spatially explicit land-use model to investigate the consequences of scale mismatches for pollination and carbon storage services and examine the effect of payment for only carbon storage services. The model integrates processes in multiple spatial scales ranging from the parcel level used by landowners’ decision about deforestation, to the larger scale used by animals to pollinate plants, and finally to the global scale where carbon storage services are supplied. We show that payment for carbon storage services can become an effective mechanism to protect forests at the same time that it creates inequities among landowners in income level.These findings suggest that market-based approaches that focus on conservation of a single ecosystem service may reproduce unequal power relations among landowners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号