首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Lagrangian and Eulerian statistics are obtained from a water-channel experiment of an idealized two-dimensional urban canopy flow in neutral conditions. The objective is to quantify the Eulerian \((T^{\mathrm{E}})\) and Lagrangian \((T^{\mathrm{L}})\) time scales of the turbulence above the canopy layer as well as to investigate their dependence on the aspect ratio of the canopy, AR, as the latter is the ratio of the width (W) to the height (H) of the canyon. Experiments are also conducted for the case of flat terrain, which can be thought of as equivalent to a classical one-directional shear flow. The values found for the Eulerian time scales on flat terrain are in agreement with previous numerical results found in the literature. It is found that both the streamwise and vertical components of the Lagrangian time scale, \(T_\mathrm{u}^\mathrm{L} \) and \(T_\mathrm{w}^\mathrm{L} \), follow Raupach’s linear law within the constant-flux layer. The same holds true for \(T_\mathrm{w}^\mathrm{L} \) in both the canopies analyzed \((AR= 1\) and \(AR= 2\)) and also for \(T_\mathrm{u}^\mathrm{L} \) when \(AR = 1\). In contrast, for \(AR = 2\), \(T_\mathrm{u}^\mathrm{L} \) follows Raupach’s law only above \(z=2H\). Below that level, \(T_\mathrm{u}^\mathrm{L} \) is nearly constant with height, showing at \(z=H\) a value approximately one order of magnitude greater than that found for \(AR = 1\). It is shown that the assumption usually adopted for flat terrain, that \(\beta =T^{\mathrm{L}}/T^{\mathrm{E}}\) is proportional to the inverse of the turbulence intensity, also holds true even for the canopy flow in the constant-flux layer. In particular, \(\gamma /i_\mathrm{u} \) fits well \(\beta _\mathrm{u} =T_\mathrm{u}^\mathrm{L} /T_\mathrm{u}^\mathrm{E} \) in both the configurations by choosing \(\gamma \) to be 0.35 (here, \(i_\mathrm{u} =\sigma _\mathrm{u} / \bar{u} \), where \(\bar{u} \) and \(\sigma _\mathrm{u} \) are the mean and the root-mean-square of the streamwise velocity component, respectively). On the other hand, \(\beta _\mathrm{w} =T_\mathrm{w}^\mathrm{L} /T_\mathrm{w}^\mathrm{E} \) follows approximately \(\gamma /i_\mathrm{w} =0.65/\left( {\sigma _\mathrm{w} /\bar{u} } \right) \) for \(z > 2H\), irrespective of the AR value. The second main objective is to estimate other parameters of interest in dispersion studies, such as the eddy diffusivity of momentum \((K_\mathrm{{T}})\) and the Kolmogorov constant \((C_0)\). It is found that \(C_0\) depends appreciably on the velocity component both for the flat terrain and canopy flow, even though for the latter case it is insensitive to AR values. In all the three experimental configurations analyzed here, \(K_\mathrm{{T}}\) shows an overall linear growth with height in agreement with the linear trend predicted by Prandtl’s theory.  相似文献   

2.
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (\(\alpha \) and \(\beta )\) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., \(\alpha = 3\) and \(\beta = 1/26~\hbox {(ms)}^{-1}\) for the infrared, and \(\alpha = 3\) and \(\beta = 1/19~\hbox {(ms)}^{-1}\) for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter \(\alpha \) and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of \(\alpha \). The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.  相似文献   

3.
A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate \(\epsilon \), the length scale of energy-containing eddies \(\mathcal {L}\), a turbulence anisotropy parameter \(\varGamma \), the Richardson number Ri, and the normalized rate of destruction of temperature variance \(\eta _\theta \equiv \epsilon _\theta /\epsilon \). Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin–Obukhov similarity theory, where z is the height above the Earth’s surface, and L is the Obukhov length corresponding to \(\{Ri,\eta _\theta \}\). Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale \(\sim \) 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.  相似文献   

4.
The influence of wave-associated parameters controlling turbulent \(\hbox {CO}_2\) fluxes through the air–sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air–sea \(\hbox {CO}_2\) fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of \(\hbox {CO}_2\) with a mean flux of \(-1.3\, \upmu \hbox {mol m}^{-2}\hbox {s}^{-1}\) (\(-41.6\hbox { mol m}^{-2}\hbox {yr}^{-1}\)). The results of a quantile-regression analysis computed between the \(\hbox {CO}_2\) flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.  相似文献   

5.
We used numerical simulations to investigate the general relationship between urban morphology and the intensity of wind gusts in built-up areas at the pedestrian level. The simulated urban boundary layer developed over a 19.2 km (length) \(\times \) 4.8 km (width) \(\times \) 1.0 km (height) simulation domain, with 2-m resolution in all directions, to explicitly resolve the detailed shapes of buildings and the flow at the pedestrian level. This complex computation was accomplished using the lattice Boltzmann method and by implementing a large-eddy simulation model. To generalize the results, a new parameter that expresses the intensity of gusts (the gust index, \({\tilde{U}}_{ max})\) was defined as the local maximum wind speed divided by the freestream velocity. In addition, this parameter was decomposed into the mean wind-speed ratio, \({\tilde{U}} \) and turbulent gust ratio, \({\tilde{U}}^{{\prime }}\) to evaluate the qualities of gusts. These parameters were useful for quantitatively comparing the gust intensities within urban canopies at different locations or even among different experiments. In addition, the entire horizontal domain was subdivided into homogeneous square patches, in which both the simulated gust parameters and the morphological characteristics of building geometries were averaged. This procedure masked the detailed structure of individual buildings but retained the bulk characteristics of the urban morphology. At the pedestrian level, the gust index decreased with increasing building cover. Compared to \({\tilde{U}} \), the quantity \({\tilde{U}}^{{\prime }}\) notably contributed to the index throughout the range of plan area index \((\lambda _p)\) values. The dependences of all normalized wind-speed ratios transiently changed at \(\lambda _p =~0.28\). In cases where \(\lambda _p < 0.28, {\tilde{U}} \) decreased with increasing \(\lambda _p \), although \({\tilde{U}}^{{\prime }}\) was almost constant. In cases where \(\lambda _p > 0.28, {\tilde{U}}\) was almost constant and \({\tilde{U}}^{{\prime }}\) decreased with increasing \(\lambda _p \). This was explained by the change in flow regimes within the building canyon. At a higher elevation above the canopy layer, \(\lambda _p \) becomes less relevant to normalized wind-speed ratios, and instead the aerodynamic roughness length became important.  相似文献   

6.
The effects on the convective boundary layer (CBL) of shading due to shallow cumulus clouds are investigated. The main question is to see whether clouds are able to produce secondary circulations by shading of the surface (dynamic heterogeneities) and how these dynamic heterogeneities interact with static heterogeneities in terms of the production of secondary circulations. Also the effects of cloud shadows on cloud-field characteristics are analyzed. The effects are studied using large-eddy simulations of a cloud-topped CBL with an idealized surface. Over a homogeneous surface, shadows trigger secondary circulations with different strengths depending on the solar zenith angle \(\vartheta \), with large \(\vartheta \) favouring the development of secondary circulations. Over a static heterogeneous surface with a simple striped pattern, the strength of secondary circulations is effectively reduced by dynamic heterogeneities at small \(\vartheta \). At large \(\vartheta \), however, the effect on secondary circulations depends on the orientation of the striped static heterogeneities to the shadow-casting direction of the clouds. The influence of shadows is only small if they are cast perpendicular to the striped heterogeneity, but if stripes and the shadow-casting direction are parallel, secondary circulations are reduced in strength also for large \(\vartheta \). Shadow effects on the cloud-field characteristics vary with \(\vartheta \) as well. The results show that small \(\vartheta \) favours the development of small clouds with a reduced lifetime while large \(\vartheta \) promotes the development of larger clouds with an extended lifetime compared to non-shading clouds.  相似文献   

7.
A model of \(\hbox {CO}_{2}\) atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as \(\hbox {CO}_{2}\) concentrations at the Norunda research station located inside a mixed pine–spruce forest. We present the results of simulations of wind-speed profiles and \(\hbox {CO}_{2}\) concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323–351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated \(\hbox {CO}_{2}\) concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of \(^{14}\hbox {CO}_{2}\) is presented and discussed.  相似文献   

8.
The Nieuwstadt closed-form solution for the stationary Ekman layer is generalized for katabatic flows within the conceptual framework of the Prandtl model. The proposed solution is valid for spatially-varying eddy viscosity and diffusivity (O’Brien type) and constant Prandtl number (Pr). Variations in the velocity and buoyancy profiles are discussed as a function of the dimensionless model parameters \(z_0 \equiv \hat{z}_0 \hat{N}^2 Pr \sin {(\alpha )} |\hat{b}_\mathrm{s} |^{-1}\) and \(\lambda \equiv \hat{u}_{\mathrm{ref}}\hat{N} \sqrt{Pr} |\hat{b}_\mathrm{s} |^{-1}\), where \(\hat{z}_0\) is the hydrodynamic roughness length, \(\hat{N}\) is the Brunt-Väisälä frequency, \(\alpha \) is the surface sloping angle, \(\hat{b}_\mathrm{s}\) is the imposed surface buoyancy, and \(\hat{u}_{\mathrm{ref}}\) is a reference velocity scale used to define eddy diffusivities. Velocity and buoyancy profiles show significant variations in both phase and amplitude of extrema with respect to the classic constant \(\textit{K}\) model and with respect to a recent approximate analytic solution based on the Wentzel-Kramers-Brillouin theory. Near-wall regions are characterized by relatively stronger surface momentum and buoyancy gradients, whose magnitude is proportional to \(z_0\) and to \(\lambda \). In addition, slope-parallel momentum and buoyancy fluxes are reduced, the low-level jet is further displaced toward the wall, and its peak velocity depends on both \(z_0\) and \(\lambda \).  相似文献   

9.
The three turbulent velocity components, water vapour (\(\text {H}_2\text {O}\)), carbon dioxide (\(\text {CO}_{2}\)), and methane (\(\text {CH}_{4}\)) concentration fluctuations are measured above a boreal peatland and analyzed using conditional sampling and quadrant analysis. The overarching question to be addressed is to what degree lower-order cumulant expansion methods describe transport efficiency and the relative importance of ejections and sweeps to momentum, \(\text {CH}_{4}\), \(\text {CO}_{2}\) and \(\text {H}_2\text {O}\) fluxes across a range of atmospheric flow regimes. The patchy peatland surface creates distinctly different source and sink distributions for the three scalars in space and time thereby adding to the uniqueness of the set-up. The measured and modelled fractional contributions to the momentum flux show that sweep events dominate over ejections in agreement with prior studies conducted in the roughness sublayer. For scalar fluxes, ejections dominate the turbulent fluxes over sweeps. While ejective motions persist longer for momentum transport, sweeping events persist longer for all three scalars. Third-order cumulant expansions describe many of the results detailed above, and the results are surprising given the highly non-Gaussian distribution of \(\text {CH}_{4}\) turbulent fluctuations. Connections between the asymmetric contributions of sweeps and ejections and the flux-transport term arising in scalar turbulent-flux-budget closure are derived and shown to agree reasonably well with measurements. The proposed model derived here is much simpler than prior structural models used to describe laboratory experiments. Implications of such asymmetric contributions on, (i) the usage of the now proliferating relaxed-eddy-accumulation method in turbulent flux measurements, (ii) the constant-flux assumption, and (iii) gradient-diffusion closure models are presented.  相似文献   

10.
The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where \(C = 3d_{3}\,+\,1 (d_{3}\) is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when \(C \approx 1\), and anisotropic when \(C \ll 1\). Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability \(\xi = (z-z_{\mathrm{d}})/L_{{\textit{MO}}}\), where z is the measurement height, \(z_{\mathrm{d}}\) is the displacement height, and \(L_{{\textit{MO}}}\) is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., \(\xi < 0\)) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.  相似文献   

11.
Both observational and numerical studies of the convective boundary layer (CBL) have demonstrated that when surface heat fluxes are small and mean wind shear is strong, convective updrafts tend to organize into horizontal rolls aligned within 10–20\(^\circ \) of the geostrophic wind direction. However, under large surface heat fluxes and weak to negligible shear, convection tends to organize into open cells, similar to turbulent Rayleigh-Bénard convection. Using a suite of 14 large-eddy simulations (LES) spanning a range of \(-z_i/L\) between zero (neutral) and 1041 (highly convective), where \(z_i\) is the CBL depth and L is the Obukhov length, the transition between roll- and cellular-type convection is investigated systematically for the first time using LES. Mean vertical profiles including velocity variances and turbulent transport efficiencies, as well the “roll factor,” which characterizes the rotational symmetry of the vertical velocity field, indicate the transition occurs gradually over a range of \(-z_i/L\); however, the most significant changes in vertical profiles and CBL organization occur from near-neutral conditions up to about \(-z_i/L \approx \) 15–20. Turbulent transport efficiencies and quadrant analysis are used to characterize the turbulent transport of momentum and heat with increasing \(-z_i/L\). It is found that turbulence transports heat efficiently from weakly to highly convective conditions; however, turbulent momentum transport becomes increasingly inefficient as \(-z_i/L\) increases.  相似文献   

12.
Large-eddy simulation (LES) is used to investigate the effects of building-height variability on turbulent flows over an actual urban area, the city of Kyoto, which is reproduced using a 2-m resolution digital surface dataset. Comparison of the morphological characteristics of Kyoto with those of European, North American, and other Japanese cities indicates a similarity to European cities but with more variable building heights. The performance of the LES model is validated and found to be consistent with turbulence observations obtained from a meteorological tower and from Doppler lidar. We conducted the following two numerical experiments: a control experiment using Kyoto buildings, and a sensitivity experiment in which all the building heights are set to the average height over the computational region \(h_{all}\). The difference of Reynolds stress at height \(z=2.5h_{all}\) between the control and sensitivity experiments is found to increase with the increase in the plan-area index (\(\lambda _p\)) for \(\lambda _p > 0.32\). Thus, values of \(\lambda _p\approx 0.3\) can be regarded as a threshold for distinguishing the effects of building-height variability. The quadrant analysis reveals that sweeps contribute to the increase in the Reynolds stress in the control experiment at a height \(z= 2.5h_{all}\). The exuberance in the control experiment at height \(z=0.5h_{all}\) is found to decrease with increase in the building-height variability. Although the extreme momentum flux at height \(z=2.5h_{all}\) in the control experiment appears around buildings, it contributes little to the total Reynolds stress and is not associated with coherent motions.  相似文献   

13.
Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (\(\delta /h \approx 10\), where h is the height of the roughness elements and \(\delta \) is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO? bricks of uniform height. Six cases are tested for a fixed plan solidity (\(\lambda _\mathrm{P}\)) with variations in frontal density (\(\lambda _\mathrm{F}\)), while the other six cases have varying \(\lambda _\mathrm{P}\) for fixed \(\lambda _\mathrm{F}\). Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541–566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend’s similarity hypothesis with varying \(\lambda _\mathrm{F}\), however, the agreement is worse for cases with varying \(\lambda _\mathrm{P}\). The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the ‘effective shelter area’ in Raupach and Shaw (Boundary-Layer Meteorol 22:79–90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence play a significant role in assessing outer-layer similarity.  相似文献   

14.
The surface of windy Antarctic snowfields is subject to drifting snow, which leads to the formation of sastrugi. In turn, sastrugi contribute to the drag exerted by the snow surface on the atmosphere and hence influence drifting snow. Although the surface drag over rough sastrugi fields has been estimated for individual locations in Antarctica, its variation over time and with respect to drifting snow has received little attention. Using year-round data from a meteorological mast, seasonal variations in the neutral drag coefficient at a height of 10 m \((C_{{ DN}10})\) in coastal Adelie Land are presented and discussed in light of the formation and behaviour of sastrugi based on observed aeolian erosion patterns. The measurements revealed high \(C_{{ DN}10} \) values \((\ge \) 2 \(\times \) 10\(^{-3})\) and limited drifting snow (35% of the time) in summer (December–February) versus lower \(C_{{ DN}10} \) values \((\approx \) 1.5 \(\times \) \(10^{-3})\) associated with more frequent drifting snow (70% of the time) in winter (March–November). Without the seasonal distinction, there was no clear dependence of \(C_{{ DN}10} \) on friction velocity or wind direction, but observations revealed a general increase in \(C_{{ DN}10} \) with rising air temperature. The main hypothesis defended here is that higher temperatures increase snow cohesion and the development of sastrugi just after snow deposition while inhibiting the sastrugi streamlining process by raising the erosion threshold. This increases the contribution of the sastrugi form drag to the total surface drag in summer when winds are lighter and more variable. The analysis also showed that, in the absence of erosion, single snowfall events can reduce \(C_{{ DN}10} \) to \(1\,\times \,10^{-3}\) due to the burying of pre-existing microrelief under newly deposited snow. The results suggest that polar atmospheric models should account for spatial and temporal variations in snow surface roughness through a dynamic representation of the sastrugi form drag.  相似文献   

15.
Adequate high-quality data on three-dimensional velocities in the atmospheric surface layer (height \(\delta \)) were acquired in the field at the Qingtu Lake Observation Array. The measurement range occupies nearly the entire logarithmic layer from approximately \(0.006\delta \)\(0.2\delta \). The turbulence intensity and eddy structures of the velocity fluctuations in the logarithmic region were primarily analyzed, and their variations in the z (wall-normal) direction were revealed. The primary finding was that the turbulent intensity of wall-normal velocity fluctuations exhibits a sharp upswing in the logarithmic region, which differs from classic scaling law and laboratory results. The upswing of the wall-normal turbulence intensity in the logarithmic region is deemed to be linear based on an ensemble of 20 sets of data. In addition, the wall-normal extent of the correlated structures and wall-normal spectra were compared to low Reynolds number results in the laboratory.  相似文献   

16.
A method is proposed for estimating the surface-layer depth \((z_s)\) and the friction velocity \((u_*)\) as a function of stability (here quantified by the Obukhov length, L) over the complete range of unstable flow regimes. This method extends that developed previously for stable conditions by Argaín et al. (Boundary-Layer Meteorol 130:15–28, 2009), but uses a qualitatively different approach. The method is specifically used to calculate the fractional speed-up \((\varDelta S)\) in flow over a ridge, although it is suitable for more general boundary-layer applications. The behaviour of \(z_s \left( L\right) \) and \(u_*\left( L\right) \) as a function of L is indirectly assessed via calculation of \(\varDelta S\left( L\right) \) using the linear model of Hunt et al. (Q J R Meteorol Soc 29:16–26, 1988) and its comparison with the field measurements reported in Coppin et al. (Boundary-Layer Meteorol 69:173–199, 1994) and with numerical simulations carried out using a non-linear numerical model, FLEX. The behaviour of \(\varDelta S\) estimated from the linear model is clearly improved when \(u_*\) is calculated using the method proposed here, confirming the importance of accounting for the dependences of \(z_s\left( L \right) \) and \(u_*\left( L \right) \) on L to better represent processes in the unstable boundary layer.  相似文献   

17.
Mountain-top observations of greenhouse gas mixing ratios may be an alternative to tall-tower measurements for regional scale source and sink estimation. To investigate the equivalence or limitations of a mountain-top site as compared to a tall-tower site, we used the unique opportunity of comparing in situ measurements of methane (\(\hbox {CH}_{4}\)) and carbon dioxide (\(\hbox {CO}_{2}\)) mixing ratios at a mountain top (986 m above sea level, a.s.l.) with measurements from a nearby (distance 28.4 km) tall tower, sampled at almost the same elevation (1009 m a.s.l.). Special attention was given to, (i) how local wind statistics and greenhouse gas sources and sinks at the mountain top influence the observations, and (ii) whether mountain-top observations can be used as for those from a tall tower for constraining regional greenhouse gas emissions. Wind statistics at the mountain-top site are clearly more influenced by local flow systems than those at the tall-tower site. Differences in temporal patterns of the greenhouse gas mixing ratios observed at the two sites are mostly related to the influence of local sources and sinks at the mountain-top site. Major influences of local sources can be removed by applying a statistical filter (\(5{\mathrm{th}}\) percentile) or a filter that removes periods with unfavourable flow conditions. In the best case, the bias in mixing ratios between the mountain-top and the tall-tower sites after the application of the wind filter was \({-}0.0005\pm 0.0010\) ppm for methane (September, 0000–0400 UTC) and \(0.11\pm 0.18\) ppm for \(\hbox {CO}_{2}\) (February, 1200–1600 UTC). Temporal fluctuations of atmospheric \(\hbox {CH}_{4}\) and \(\hbox {CO}_{2}\) mixing ratios at both stations also showed good agreement (apart from \(\hbox {CO}_{2}\) during summertime) as determined by moving bi-weekly Pearson correlation coefficients (up to 0.96 for \(\hbox {CO}_{2}\) and 0.97 for \(\hbox {CH}_{4}\)). When only comparing mixing ratios minimally influenced by local sources (low bias and high correlation coefficients), our measurements indicate that mountain-top observations are comparable to tall-tower observations.  相似文献   

18.
For a horizontally homogeneous, neutrally stratified atmospheric boundary layer (ABL), aerodynamic roughness length, \(z_0\), is the effective elevation at which the streamwise component of mean velocity is zero. A priori prediction of \(z_0\) based on topographic attributes remains an open line of inquiry in planetary boundary-layer research. Urban topographies – the topic of this study – exhibit spatial heterogeneities associated with variability of building height, width, and proximity with adjacent buildings; such variability renders a priori, prognostic \(z_0\) models appealing. Here, large-eddy simulation (LES) has been used in an extensive parametric study to characterize the ABL response (and \(z_0\)) to a range of synthetic, urban-like topographies wherein statistical moments of the topography have been systematically varied. Using LES results, we determined the hierarchical influence of topographic moments relevant to setting \(z_0\). We demonstrate that standard deviation and skewness are important, while kurtosis is negligible. This finding is reconciled with a model recently proposed by Flack and Schultz (J Fluids Eng 132:041203-1–041203-10, 2010), who demonstrate that \(z_0\) can be modelled with standard deviation and skewness, and two empirical coefficients (one for each moment). We find that the empirical coefficient related to skewness is not constant, but exhibits a dependence on standard deviation over certain ranges. For idealized, quasi-uniform cubic topographies and for complex, fully random urban-like topographies, we demonstrate strong performance of the generalized Flack and Schultz model against contemporary roughness correlations.  相似文献   

19.
Observations using a three-dimensional scanning coherent Doppler lidar in an urban area revealed the characteristics of streaky structures above a rough, inhomogeneous surface for a high-Reynolds-number flow. The study focused on two points: (1) the frequency of occurrence and conditions required for the presence of streaky structures, and (2) the universal scaling of the spacing of streaky structures (\(\lambda )\). The horizontal snapshots of the radial velocity were visually classified into six groups: Streak, Mixed, Fishnet, No streak, Front, and Others. The Streak category accounted for more than 50% of all possible flows and occurred when the horizontal wind speed was large and the atmospheric stratification was near-neutral. The spacing (\(\lambda )\) was estimated from the power spectral density of the streamwise velocity fluctuations along the spanwise direction. The spacing \(\lambda \) decreased with an increase in the local velocity gradient. Furthermore, it was revealed that the local velocity gradient normalized by the friction velocity and the boundary-layer height (\(z_i )\) comprehensively predicts \(\lambda /z_i \) under various experimental and environmental conditions, in terms of the scale of motion (i.e., indoor and outdoor scales), thermal stratification (i.e., from weakly unstable to stable stratification), and surface roughness (i.e., from flat to very rough surfaces).  相似文献   

20.
Methane (\(\mathrm {CH}_{4}\)) is known to be emitted from lakes to the atmosphere via processes such as diffusion and ebullition (i.e., bubble emission). We developed a practical method for partitioning eddy-covariance \(\mathrm {CH}_{4}\) fluxes from a shallow lake into diffusive and ebullitive fluxes using a wavelet analysis based on local scalar similarity between the \(\mathrm {CH}_{4}\) concentration and other reference scalars, such as the air temperature or water vapour concentration, in the wavelet time-scale domain, with the hypothesis that similar and dissimilar fluctuation components are related to diffusive and ebullitive \(\mathrm {CH}_{4}\) fluxes, respectively. Our method is applied to approximately two weeks of data obtained at a shallow mid-latitude lake. The partitioned diffusive flux has a physically sound relationship with wind speed, supporting the validity of the method. The ratio of the diffusive flux to the total flux is typically 0.11 with flow from an area of steady bubble emission, but otherwise 0.36. Further validation is required using a larger dataset and data from other lakes. The proposed method can be easily applied to historical data because it requires only 10-Hz data of \(\mathrm {CH}_{4}\) concentration and other reference scalars, along with an empirical parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号