首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variability and Maintenance of Turbulence in the Very Stable Boundary Layer   总被引:2,自引:2,他引:0  
The relationship of turbulence quantities to mean flow quantities, such as the Richardson number, degenerates substantially for strong stability, at least in those studies that do not place restrictions on minimum turbulence or non-stationarity. This study examines the large variability of the turbulence for very stable conditions by analyzing four months of turbulence data from a site with short grass. Brief comparisons are made with three additional sites, one over short grass on flat terrain and two with tall vegetation in complex terrain. For very stable conditions, any dependence of the turbulence quantities on the mean wind speed or bulk Richardson number becomes masked by large scatter, as found in some previous studies. The large variability of the turbulence quantities is due to random variations and other physical influences not represented by the bulk Richardson number. There is no critical Richardson number above which the turbulence vanishes. For very stable conditions, the record-averaged vertical velocity variance and the drag coefficient increase with the strength of the submeso motions (wave motions, solitary waves, horizontal modes and numerous more complex signatures). The submeso motions are on time scales of minutes and not normally considered part of the mean flow. The generation of turbulence by such unpredictable motions appears to preclude universal similarity theory for predicting the surface stress for very stable conditions. Large variation of the stress direction with respect to the wind direction for the very stable regime is also examined. Needed additional work is noted.  相似文献   

2.
1 INTRODUCTION Being one of the important factors that govern the track and intensity change of the tropical cyclone (TC) [1, 2], topographic features are closely related with topographic parameters and the speed of latitudinal flows. As shown in a statistical study by Brand et al., with its passage through the islands of the Philippines, the TC begins to decrease the mean maximum surface wind speed from 47 m/s to 45 m/s 4 hours before reaching the Philippines. They also find that when …  相似文献   

3.
Characteristics of Submeso Winds in the Stable Boundary Layer   总被引:2,自引:2,他引:0  
The characteristics of submeso motions in the stable boundary layer are examined using observations from networks of sonic anemometers with network sizes ranging from a few hundred metres to 100 km. This study examines variations on time scales between 1 min and 1 h. The analysis focuses on the behaviour of the spectra of the horizontal kinetic energy, the ratios of the three velocity variances, their kurtosis, the dependence of horizontal variability on time scale, and the inter-relationship between vertical vorticity, horizontal divergence and deformation. Motions on larger time and space scales in the stable boundary layer are found to be nearly two-dimensional horizontal modes although the ratio of the vorticity to the divergence is generally on the order of one and independent of scale. One exception is a small network where stronger horizontal divergence is forced by a decrease in surface roughness. The horizontal variability, averaged over 1 h, appears to be strongly influenced by surface heterogeneity and increases with wind speed. In contrast, the time dependence of the horizontal structure on time scales less than one hour tends to be independent of wind speed for the present datasets. The spectra of the horizontal kinetic energy and the ratio of the crosswind velocity variance to the along-wind variance vary substantially between networks. This study was unable to isolate the cause of such differences. As a result, the basic behaviour of the submeso motions in the stable boundary layer cannot be generalized into a universal theory, at least not from existing data.  相似文献   

4.
赵建华  张强  隆霄 《气象学报》2013,71(4):731-742
局地地形起沙对沙尘模式的预报精度具有重要影响。基于狭管与下滑效应以及气流过山的已有研究成果,研究了中性层结与局地平缓地形条件下风速在这两种效应下次网格参数化问题,然后基于平坦地形的起沙公式、引入局地地形的摩擦速度,得到了相应的次网格起沙公式,最后对狭管效应、下滑效应以及两效应的叠加进行了理想试验。试验表明:(1)对于狭管效应的次网格参数化问题,风从狭管的阔口进(出)、窄口出(进)时,风速、跃移通量与起沙量均增大(减小);(2)下滑效应致使风速、跃移通量与起沙量均增大,且山脚增幅大于山坡;(3)对于两种效应的叠加,当气流从狭管的阔口进、窄口出时,风速、跃移通量和起沙量同时增大,山脚风速大于山坡,大粒径沙粒跃移通量增幅大于小粒径沙粒。反之,窄口进、阔口出时,出入口宽度之比存在一临界值,大于此临界值,风速减小;反之增大。而且,除了在山脚的小粒径沙粒在一定风速条件下跃移通量会增大外,其余情况均减少。最后,提出了本参数化方法与数值模式耦合的分算法与整算法。  相似文献   

5.
Remarks on the Definition and Estimation of Friction Velocity   总被引:3,自引:1,他引:2  
One of the mainscaling parameters in similarity theory of the atmospheric boundary layer is friction velocity. Unfortunately, several definitions of friction velocity exist in the literature. Some authors use the component of the horizontal Reynolds stress vector in the direction of the mean wind vector to define friction velocity. Others define the friction velocity by means of the absolute value of the horizontal Reynolds stress vector. The two definitions coincide only if the direction of the mean wind vector is parallel to the horizontal Reynolds stress vector. In general, the second definition gives larger values for the friction velocity. Over complex terrain the situation is further complicated by the fact that the terrain following flow is not necessarily horizontal. Thus, several authors have proposed to use terrain following coordinate systems for the definition of friction velocity. By means of a large dataset of fast-response wind measurements with an ultrasonic anemometer the friction velocities resulting from the different definitions are compared. Furthermore, it is shown that friction velocity can be well estimated from horizontal wind speed, and even better from simple horizontal or vertical turbulence parameters.  相似文献   

6.
分层气流条件下地形降水的二维理想数值试验   总被引:1,自引:0,他引:1  
杨婷  闵锦忠  张申龑 《气象科学》2017,37(2):222-230
利用WRF v3.5中尺度数值模式,在条件不稳定层结下,针对分层气流(基本气流风速和大气湿浮力频率呈二层均匀分布)过山时,地形对降水的影响进行了多组二维理想数值试验,以研究不同高度、尺度山脉和不同方向基本气流对降水形态和分布的影响。模拟结果表明,地形重力波触发对流是地形降水的主要机制之一,地形波的特征(波长、振幅)和传播均受到地形和基本气流的影响,其中,强基本气流流经高而陡峭的山脉时,更容易在其背风坡捕捉到重力波,地形降水呈现多种模态,反之亦然;当改变基本气流与山脉交角时,主要通过影响地形强迫抬升速度、基流对波动稳定性发展来进一步影响地形降水的强度和分布。  相似文献   

7.
Summary Local scale windfield and air mass characteristics during the onset of two foehn wind events in an alpine hydro-catchment are presented. Grounding of the topographically modified foehn was found to be dependent on daytime surface heating and topographic channelling of flow. The foehn front was observed to advance down-valley until the valley widened significantly. The foehn wind appeared to decouple from the surface downstream of the accelerated flow associated with the valley constriction, and to be lifted above local thermally generated circulations including a lake breeze. Towards evening, the foehn front retreated up valley in response to reduced surface heating and the intrusion into the study area of a deep and cool air mass associated with a regional scale mountain-plain circulation. Differences in the local windfield observed during both case study events reflect the importance of different thermal and dynamic forcings on airflow in complex terrain. These are the result of variation in surface energy exchanges, channelling and blocking of airflow. Observations presented here have both theoretical and applied implications with regard to forecasting foehn onset, wind hazard management, recreational activities and air quality management in alpine settings. Received January 23, 2001 Revised October 17, 2001  相似文献   

8.
关于影响超级对流单体形成因素的数值试验   总被引:1,自引:1,他引:1  
王恩微  许焕斌 《高原气象》1991,10(2):217-224
  相似文献   

9.
SOME MEASUREMENTS OF TURBULENCE CHARACTERISTICS OVER COMPLEX TERRAIN   总被引:2,自引:0,他引:2  
Results are presented from a windturbulence measurements campaign at the summit of ahill in complex terrain in Andros island (Greece)where a wind turbine park has been constructed. Meanturbulence parameters and power spectra from three 30 mmasts located at the summit, upwind and downwind ofthe hill are analysed to ascertain the differencesfrom respective parameters in flat terrain and toassess the influence of the irregular topography. Thevariances of the horizontal (vertical) wind components are found tobe smaller (larger) than the onesfrom flat terrain. Of the available correlations forthe power spectra, the Von Karman one was found togive better results, although the low frequency partsshow pronounced lags. The asymmetry of the upwindterrain for different wind directions and especiallyits slope is clearly felt both by variances and byspectra. This influence, as expected, is found toincrease with increasing stability. These results havean important significance for wind turbine design andwind energy utilisation.  相似文献   

10.
A three-level model system for the prediction of local flows in mountainous terrain is described. The system is based upon an operational weather prediction model with a horizontal grid spacing of about 10 km. The large-scale flow is transformed to a more detailed terrain, first by a mesoscale model with grid spacing of about 1 km, and then by a local-scale model with a grid spacing of about 0.2 km. The weather prediction model is hydrostatic, while the two other models are non-hydrostatic. As a case study the model system has been applied to estimate wind and turbulence over Várnes airport, Norway, where data on turbulent flight conditions were provided near the runway. The actual case was chosen due to previous experiences, which indicate that south-easterly winds may cause severe turbulence in a region close to the airport. Local terrain induced turbulence seems to be the main reason for these effects. The predicted local flow in the actual region is characterized by narrow secondary vortices along the flow, and large turbulent intensity associated with these vortices. A similar pattern is indicated by the sparse observations, although there seems to be a difference in mean wind direction between data and predictions. Due to fairly coarse data for sea surface temperature, errors could be induced in the turbulence damping via the Richardson number. An adjustment for this data problem improved the predictions.  相似文献   

11.
台风“苏迪罗”螺旋雨带造成福州特大暴雨成因分析   总被引:3,自引:0,他引:3  
受2015年第13号台风“苏迪罗”影响,福州出现特大暴雨。为研究台风登陆前局地强降水与地形的关系,针对福建长乐雷达的0 °仰角数据进行了风场反演,得到福州低空风场在强降雨发生时的结构及演变特征,综合利用NCEP 1 °×1 °再分析资料及福州三维地形数据,探索了福州地区持续性短时强降水的发生原因。结果表明:(1) “苏迪罗”影响期间正值南海季风爆发期,为台风提供了充沛的水汽;(2)强降雨发生时,福州地区存在正涡柱,配合强烈上升运动,为短时强降水的发生提供良好的动力条件;(3)雷达风场反演显示:当福州环境风场为东北气流,有一持久、稳定的分流区出现在福清北部,随着台风靠近,环境风逐渐由东北转为偏东风,分流区的位置也一直向内陆延伸,分流气流与台风环境气流形成了明显的辐合带,激发了螺旋雨带内中尺度对流云团的发生发展,造成短时强降水;(4)台风环境气流进入福州后出现的分流现象与福州的盆地地形有关。   相似文献   

12.
We present an analysis of data from a nearly 1-year measurement campaign performed at Høvsøre, Denmark, a coastal farmland area where the terrain is flat. Within the easterly sector upstream of the site, the terrain is nearly homogenous. This topography and conditions provide a good basis for the analysis of vertical wind-speed profiles under a wide range of atmospheric stability, turbulence, and forcing conditions. One of the objectives of the campaign was to serve as a benchmark for flow over flat terrain models. The observations consist of combined wind lidar and sonic anemometer measurements at a meteorological mast. The sonic measurements cover the first 100 m and the wind lidar measures above 100 m every 50 m in the vertical. Results of the analysis of observations of the horizontal wind-speed components in the range 10–1200 m and surface turbulence fluxes are illustrated in detail, combined with forcing conditions derived from mesoscale model simulations. Ten different cases are presented. The observed wind profiles approach well the simulated gradient and geostrophic winds close to the simulated boundary-layer height during both barotropic and baroclinic conditions, respectively, except for a low-level jet case, as expected. The simulated winds are also presented for completeness and show good agreement with the measurements, generally underpredicting the turning of the wind in both barotropic and baroclinic cases.  相似文献   

13.
Summary The Southerly Change Experiment (SOUCHEX) was conducted to examine the influence of the New Zealand Southern Alps on the structure and evolution of cold fronts, locally called southerly changes, as they travel up the east coast. The extensive data obtained by the augmented surface weather station network is used to examine in detail the mesoscale wind field associated with the events observed during the experiment. A comparison of the wind fields observed during the different events illustrates the influence of local dynamic and thermal factors. In particular, lee trough-induced northeasterlies and thermally developed diurnal wind systems are seen to interact with the wind field created by the passage of the front over the Southern Alps.It is apparent that the wind field associated with southerly changes responds to a variety of factors as the cold fronts propagate northwards. For example, there is a tendency for the flow to turn onshore producing a southeast wind during daytime over the Canterbury Plains south of Banks Peninsula probably due to diabatic heating of the mountains and plains. This onshore flow is in direct opposition to pre-frontal foehn northwesterly flow which often continues in the mountain regions and aloft after the front has moved up the coast. The interaction of these air masses over Canterbury creates difficulties for local forecasting. Also, the nocturnal passage of a southerly change is often difficult to detect in surface anemograph traces because of the decoupling of the boundary layer air from that above, producing low level drainage flow over the Canterbury Plains. The overall effect is to create a complex mesoscale wind field resulting from interaction of cold fronts with regional orographic and thermal influences.With 8 Figures  相似文献   

14.
Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean windspeed reading between the anemometers was as much as 2% for wind directions where the mean flow was horizontal. This difference was large enough to be attributed to the well-known overspeeding effect related to the differing distance constant (ranging from 1.7 to 5 m) of the cup anemometers. The application of a theoretical model of the cup-anemometer behaviour in athree-dimensional turbulent wind field proved successful in explaining theobserved differences.Additional measurements were taken with the anemometers tilted at known angles into and out of the incident wind flow. Thus, a field-derived angular response curve is constructed for each anemometer and the deviations from publishedwind-tunnel results are discussed.The uncertainties of, or false assumptions about, the angular response characteristics of the anemometers contribute the largest amount inthe observed errors of mean wind speed even for a horizontal mean flow. The angular response curves are finally used to correct the 10-min mean windspeed. The necessary information for the correction is the turbulent intensity (preferably in the vertical direction) and the mean flow inclination.For demanding applications, the angular response parameters of cup anemometers should be taken into account. The incorporation of the angular response parameters in a correction scheme would be most robustly applied if their variation with inclination and wind speed was smooth.  相似文献   

15.
Summary The three-dimensional cloud-resolving mesoscale model is used to simulate an individual Cb cloud in condition of real orography. We have conducted our numerical experiments over an area known as hail bearing clouds source. Once formed such clouds regenerate and propagate along the valley if the shallow layer of strong wind shear exists. The orographic effects on model Cb cloud are recognized through comparison of simulated cloud characteristics with those calculated for the flat terrain. Sensitivity experiments with respect to the wind shear layer depth are also conducted.Our results demonstrate the model capability to simulate well some observational Cb cloud characteristics. It is shown that the river valley is of essential importance for Cb cloud development. The most prominent features of the model cloud in this case are as follows: fast propagation along the river valley; considerable depth of the cold air nose with pronounced pulsation mechanism and intense cell regeneration at the leading edge of cold air outflow. Model and observed radar reflectivities in the vertical cross-section are in agreement. Some characteristics of surface cumulative rain precipitation are also well reproduced by the model. In contrast with the real orography case, the model cloud is more intense and it propagates freely in lateral direction for the flat terrain. The cell regeneration associated with forced updraft above the cold air nose is not pronounced in contrast with earlier considerations. Reflectivity pattern near the ground, having mainly bat-like wings, encircles much larger area with altitude compared to the case of real orography. Finally, the model cloud characteristics depend strongly on shear layer.Received June 2002; revised August 22, 2002; accepted October 1, 2002 Published online: April 10, 2003  相似文献   

16.
Canopy turbulence plays an important role in mass and energy exchanges at the canopy-atmosphere interface. Despite extensive studies on canopy turbulence over a flat terrain, less attention has been given to canopy turbulence in a complex terrain. The purpose of this study is to scrutinize characteristics of canopy turbulence in roughness sublayer over a hilly forest terrain. We investigated basic turbulence statistics, conditionally sampled statistics, and turbulence spectrum in terms of different atmospheric stabilities, wind direction and vertical structures of momentum fluxes. Similarly to canopy turbulence over a homogeneous terrain, turbulence statistics showed coherent structure. Both quadrant and spectrum analysis corroborated the role of intermittent and energetic eddies with length scale of the order of canopy height, regardless of wind direction except for shift of peak in vertical wind spectrum to relatively high frequency in the down-valley wind. However, the magnitude of the momentum correlation coefficient in a neutral condition was smaller than typical value over a flat terrain. Further scrutiny manifested that, in the up-valley flow, temperature skewness was larger and the contribution of ejection to both momentum and heat fluxes was larger compared to the downvalley flow, indicating that thermal instability and weaker wind shear in up-valley flow asymmetrically affect turbulent transport within the canopy.  相似文献   

17.
18.
The characteristics of the boundary layer over complex terrain (Lannemezan - lat.: 43.7° N and, long.: 0.7 ° E) are analyzed for various scales, using measurements obtained during the COCAGNE Experiment. In this first part, the dynamic characteristics of the flow are studied with respect to atmospheric stability and the relief at small (~20 km) and medium scales (~100 km). These relief scales depend on the topographical profile of the Lannemezan Plateau along the dominant axis of the wind (E-W) and the Pyrénées Mountains located at the south of the experimental site. The terrain heterogeneities have a standard deviation of ~48 m and a wavelength of ~2 km.The averaged vertical profiles of wind speed and direction over the heterogeneous terrain are analyzed. The decrease of wind speed within the boundary layer is greater than over flat terrain (WANGARA Experiment). However, a comparison between ETTEX (complex terrain) and COCAGNE vertical wind speed profiles shows good agreement during unstable conditions. In contrast, during neutral conditions a more rapid increase with normalized height is found with COCAGNE than with ETTEX and WANGARA data. The vertical profiles of wind direction reveal an influence of the Pyrénées Mountains on the wind flow. The wind rotation in the BL is determined by the geostrophic wind direction-Pyrénées axis angle (negative deviation) as the geostrophic wind is connected with the Mountain axis.When the geostrophic wind does not interact with the Pyrénées axis, the mean and turbulent wind flow characteristics (drag coefficient C D, friction velocity u *) depend on the topography of the plateau. When the wind speed is strong (>6 m s -1), an internal boundary layer is generated from the leading edge of the Plateau.  相似文献   

19.
An Analysis of Sonic Anemometer Observations In Low Wind Speed Conditions   总被引:2,自引:1,他引:1  
When the wind speed decreases below a certain value (1–2 m s-1) meandering (low frequency horizontal wind oscillations) starts to prevail. In these conditions it becomes difficult to define a precise mean wind direction and to estimate the airborne dispersion. To study the wind and turbulence characteristics during meandering, two sonic anemometer datasets, containing hourly wind observations, were analysed: the first one, lasting 1 year, was recorded in complex terrain (Graz, Austria) and the second one, lasting about 1month, was recorded in a rather flat area (Tisby, Sweden). It was found that meandering seems to exist under all meteorological conditions regardless of the stability or wind speed and it was confirmed that meandering sets a lower limit for the horizontal wind component variances. Further, it was found that the autocorrelation functions of the horizontal wind components, computed for the low wind cases, show an oscillating behaviour with the presence of large negative lobes. Two different relationships from the literature, and relevant to these oscillatory aspects, were fitted to the data. They contain two parameters: one associated and relevant to the classical integral time scale and the second with meandering occurrence. Based on these relationships, expressions for the mean square displacement of particles y2(t) were also derived.  相似文献   

20.
浙江省几种灾害性大风近地面阵风系数特征   总被引:1,自引:1,他引:0       下载免费PDF全文
阵风特性研究是大风预报和服务的基础。基于2011-2013年浙江省自动气象站逐日逐10 min测风资料,分析了浙江省陆地和近海海面冷空气、热带气旋和强对流大风的阵风系数特征。结果表明:冷空气和热带气旋大风阵风系数空间分布基本相同,大风主要发生在近海海面和沿海地区,海面阵风系数一般小于1.5,等值线平行于海岸线且自西向东逐渐减小,陆地阵风系数一般大于2.0,山区可超过3.0,表现出地形对阵风系数的增强作用。强对流大风阵风系数明显高于业务规范平均值,发生地点遍及浙江省各地,但发生概率超过10%的站点主要位于沿海地区和近海海面。风向基本不影响阵风系数空间分布。冷空气和热带气旋站点阵风系数与海拔高度有较高正相关性。模糊聚类分析发现:浙江省400 m以上山区站与70 m以下的低海拔站点在阵风系数特征上分属不同空间类型;基于逐步回归建立站点阵风系数预报模型,检验表明:模糊聚类可帮助提高模型阵风系数预报能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号