首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H2O on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H2O. The chemical effects of this H2O increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%--6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000--2050 than between 2050--2100, driven mainly by the larger relative change in chlorine in the earlier period.  相似文献   

2.
It is a worthwhile attempt to address the role of the Qinghai-Xizang Plateau in the seasonal transition of general circulation from a global prospective. In this paper, the CCM1 (R15L7)-LNWP spectral model is used to study the influences of the Qinghai-Xizang Plateau on the seasonal transfer of the general circulation, with the objective analysis form the State Meteorological Center for March 17, 1996 as the initial field. A mid-level heating source in regions on the same latitudes is shown to cause a warming center of 224 K to form on the level of 200 hPa that warms up the atmosphere by more than 7 K and a drop of temperature by about 6 K on most of the 200-hPa layer over the Antarctic continent, with the largest negative center being-8.28 K. It is favorable to the deepening and widening of the polar vortexes in the course of transition from summer to winter. The topographic effect of the plateau plays a vital role in forming and maintaining the mean troughs and ridges of the atmospheric circulation in Northern Hemisphere such that it strengthens (weakens) the south-north positive gradient of temperature on the northern (southern) side of the latitude zone in which the plateau sits and increases the north-south gradient of temperature near 30°N. The seasonal transition is thus favored so that the bulk travel of global westerly at the middle latitudes and the formation of Asian monsoon in early summer are made possible. In the equatorial and low-latitude areas where the geopotential is increased, the effect of the plateau terrain is also evident in that it is favorable for the northern withdrawal of the tropical high ridge in Southern Hemisphere and the northern shift of the subtropical high in Northern Hemisphere. In addition, the effect also helps increase the polar easterly over the Southern Hemisphere and weaken the low zone at 500 hPa. It acts as an increasing factor for the polar vortex around the Ross Sea and contributes to the genesis of the Somali Jet on the equator.  相似文献   

3.
The impact of La Ni?a on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Ni?a events considered. This study shows that this is mainly due to the decadal variation of La Ni?a's impact on the winter Arctic stratosphere since the late 1970 s. Specifically,during the period1951–78,the tropospheric La Ni?a teleconnection exhibits a typical negative Pacific–North America pattern,which strongly inhibits the propagation of the planetary waves from the extratropical troposphere to the stratosphere,and leads to a significantly strengthened stratospheric polar vortex. In contrast,during 1979–2015,the La Ni?a teleconnection shifts eastwards,with an anomalous high concentrated in the northeastern Pacific. The destructive interference of the La Ni?a teleconnection with climatological stationary waves seen in the earlier period reduces greatly,which prevents the drastic reduction of planetary wave activities in the extratropical stratosphere. Correspondingly,the stratospheric response shows a less disturbed stratospheric polar vortex in winter.  相似文献   

4.
The hydrologic changes and the impact of these changes constitute a fundamental global-warmingrelated concern. Faced with threats to human life and natural ecosystems, such as droughts, floods, and soil erosion, water resource planners must increasingly make future risk assessments. Though hydrological predictions associated with the global climate change are already being performed, mainly through the use of GCMs, coarse spatial resolutions and uncertain physical processes limit the representation of terrestrial water/energy interactions and the variability in such systems as the Asian monsoon. Despite numerous studies, the regional responses of hydrologic changes resulting from climate change remains inconclusive. In this paper, an attempt at dynamical downsealing of future hydrologic projection under global climate change in Asia is addressed. The authors conducted present and future Asian regional climate simulations which were nested in the results of Atmospheric General Circulation Model (AGCM) experiments. The regional climate model could capture the general simulated features of the AGCM. Also, some regional phenomena such as orographic precipitation, which did not appear in the outcome of the AGCM simulation, were successfully produced. Under global warming, the increase of water vapor associated with the warmed air temperature was projected. It was projected to bring more abundant water vapor to the southern portions of India and the Bay of Bengal, and to enhance precipitation especially over the mountainous regions, the western part of India and the southern edge of the Tibetan Plateau. As a result of the changes in the synoptic flow patterns and precipitation under global warming, the increases of annual mean precipitation and surface runoff were projected in many regions of Asia. However, both the positive and negative changes of seasonal surface runoff were projected in some regions which will increase the flood risk and cause a mismatch between water demand and water availability in the agricul  相似文献   

5.
A 3-D chemical transport model (OSLO CTM2) is used to investigate the impact of the increase of NOx emission over China. The model is capable to reproduce basically the seasonal variation of surface NOx and ozone over eastern China. NOx emission data and observations reveal that NOx over eastern China increases quite quickly with the economic development of China. Model results indicate that NOx concentration over eastern China increasingly rises with the increase of NOx emission over China, and accelerates to increase in winter. When the NOx emission increases from 1995 to its double, the ratio of NO2/NOx abruptly drops in winter over northern China. Ozone at the surface decreases in winter with the continual enhancement of the NOx level over eastern China, but increases over southern China in summertime. It is noticeable that peak ozone over northern China increases in summer although mean ozone changes little. In summer, ozone increases in the free troposphere dominantly below 500 hPa.Moreover, the increases of total ozone over eastern China are proportional to the increases of NOx emission.In a word, the model results suggest that the relationship between NOx and ozone at the surface would change with NOx increase.  相似文献   

6.
Oceanic Origin of A Recent La Nina-Like Trend in the Tropical Pacific   总被引:1,自引:0,他引:1  
Global ocean temperature has been rising since the late 1970s at a speed unprecedented during the past century of recordkeeping.This accelerated warming has profound impacts not only on the marine ecosystem and oceanic carbon uptake but also on the global water cycle and climate.During this rapid warming period,the tropical Pacific displays a pronounced La Nin a-like trend,characterized by an intensification of west-east SST gradient and of atmospheric zonal overturning circulation,namely the Walker circulation.This La Nin a-like trend differs from the El Nin o-like trend in warm climate projected by most climate models,and cannot be explained by responses of the global water cycle to warm climate.The results of this study indicate that the intensification of the zonal SST gradient and the Walker circulation are associated with recent strengthening of the upper-ocean meridional overturning circulation.  相似文献   

7.
1998年南海夏季风爆发前后的海洋上空大气边界层   总被引:2,自引:0,他引:2       下载免费PDF全文
The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily during May-June 1998 on board Research Vessels Kexue 1 and Shiyan 3. The MABL height is defined as the height at the lowest level where virtual potential temperature increases by 1 K from the surface. The results indicate that the MABL height decreased over the northern South China Sea (SCS) and remained the same over the southern SCS, as sea surface temperature (SST) fell for the northern and rose for the southern SCS after the monsoon onset. Over the northern SCS, a decrease in both the SST and the surface latent-heat flux after the onset resulted in a reduction of the MABL height as well as a decoupling of MABL from clouds. It was found that MABL height reduction corresponded to rainfall occurrence. Over the southern SCS, a probable reason for the constant increase of SST and surface heat flux was the rainfall and internal atmospheric dynamics.  相似文献   

8.
The KdV equation with topography included in an N-level model is derived. It is shown that if the topography ex-ists. the KdV equation may describe the solitary Rossby waves in the case of basic current without vertical shear, and itis no necessary to introduce the MKdV equation. The results of calculations show that the change of horizontal shearpattern of basic flow may cause an important change of the streamline pattern of the solitary waves with the oddmeridional wavenumber m, and has no effect for the even meridional wavenumber m. The vertical shear increases thesteepness of the barotropic solitary modes, and it has a complicated effect on the baroclinic modes. The influences oftopographic slope on the solitary waves are very great. The southern and northern slopes of topography may cause dif-ferent solitary wave patterns, with the effect of northern slope greater. The effect of Froude number on the solitarywaves is generally to steepen the solitary waves, however, the effect also depends on the meridional wavenumber m andthe modes of solitary wave.  相似文献   

9.
With the extreme drought (flood) event in southern China from July to August in 2022 (1999) as the research object, based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022, it is found that there are significant differences in the characteristics of the vertically integrated moisture flux (VIMF) anomaly circulation pattern and the VIMF convergence (VIMFC) anomaly in southern China in drought and flood years, and the VIMFC, a physical quantity, can be regarded as an indicative physical factor for the "strong signal" of drought and flood in southern China. Specifically, in drought years, the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent, while those are opposite in flood years. Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022, five SST high impact areas (i.e., the North Pacific Ocean, Northwest Pacific Ocean, Southwest Pacific Ocean, Indian Ocean, and East Pacific Ocean) are selected via the correlation analysis of VIMFC and the global SST in the preceding months (May and June) and in the study period (July and August) in 1961-2022, and their contributions to drought and flood in southern China are quantified. Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport. Furthermore, it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other, namely an anticyclonic (cyclonic) circulation pattern anomaly in southern China and the coastal areas of east China. These two types of opposite anomalous moisture transport structures can not only drive the formation of drought (flood) in southern China but also exert its influence on the persistent development of the extreme weather.  相似文献   

10.
This paper examines the dominant submonthly variability of zonally symmetrical atmospheric circula- tion in the Northern Hemisphere (NH) winter within the context of the Northern Annular Mode (NAM), with particular emphasis on interactive stratosphere-troposphere processes. The submonthly variability is identified and measured using a daily NAM index, which concentrates primarily on zonally symmetrical circulation. A schematic lifecycle of submonthly variability is developed that reveals a two-way coupling pro- cess between the stratosphere and troposphere in the NH polar region. Specifically, anomalous tropospheric zonal winds in the Atlantic and Pacific sectors of the Arctic propagate upwards to the low stratosphere, disturbing the polar vortex, and resulting in an anomalous stratospheric geopotential height (HGT) that subsequently propagates down into the troposphere and changes the sign of the surface circulations. From the standpoint of planetary-scale wave activities, a feedback loop is also evident when the anoma- lous planetary-scale waves (with wavenumbers 2 and 3) propagate upwards, which disturbs the anomalous zonally symmetrical flow in the low stratosphere, and induces the anomalous HGT to move poleward in the low stratosphere, and then propagates down into the troposphere. This increases the energy of waves at wavenumbers 2 and 3 in the low troposphere in middle latitudes by enhancing the land-sea contrast of the anomalous HGT field. Thus, this study supports the viewpoint that the downward propagation of stratospheric NAM signals may not originate in the stratosphere.  相似文献   

11.
The coupling between the stratosphere and the troposphere has been investigated by analysing low-frequency variations in: (1) the meridional mass flux into the polar cap (north of 60°N), computed separately for the stratosphere and the troposphere; (2) the polar cap mean surface pressure, and (3) the surface level meridional pressure gradient and zonal wind around 60°N. The analysis has been done for the 1979–93 Northern Hemisphere (NH) winters, using ECMWF reanalysis data. The results show that for all winters the meridional mass flux variations in the stratosphere precede those in the troposphere, by about one day. This result can also be obtained qualitatively with a very simple model, based on the zonally averaged zonal and meridional momentum equations. The lag is not very sensitive to the latitude of the southern boundary of the polar cap. The analysed variations in the polar cap mean surface pressure associated with variations in the meridional mass flux, determine most of the variability in the analysed meridional surface pressure gradient and the associated surface zonal wind around 60°N. The results also show that in the stratosphere the Coriolis force associated with the zonal-mean meridional wind is in near-balance with the convergence of the eddy momentum flux, and in the lower troposphere with the zonal frictional force. In summary, the results indicate that in the extratropical northern winter hemisphere, low-frequency variations in the meridional wind in the stratosphere induce low-frequency variations in the zonal wind near the surface.  相似文献   

12.
阿利曼  王君  冯锦明  李秀连 《大气科学》2016,40(5):1073-1088
本文利用1979~2014年NCEP-DOE日平均再分析资料和中国区域2375份航空器空中颠簸报告资料,研究中国东部区域高空颠簸的时空分布特征及其与热带中东太平洋海温异常(简称“海温异常”;空间范围:5°S~5°N,120°~170°W)的关系以及产生这种关系的可能原因。结果表明:中国东部地区高空颠簸与东亚副热带西风急流之间存在显著时空相关关系,其原因是高空纬向风引起的垂直风切变是构成高空颠簸时空分布的主导因素。中国东部夏季高空颠簸与海温异常存在正相关关系;冬季呈现南北两个正负相关区:以30°N为界,北部区域存在显著的负相关,南部区存在显著的正相关,在30°N急流轴附近区域无显著相关关系。海温异常影响中国高空颠簸时空分布的可能原因是海温变化引起对流层高层温度出现异常,进而影响温度的经向梯度,导致东亚副热带西风急流强度和位置出现异常(夏季,急流轴南侧出现西风异常;冬季,急流轴北侧出现东风异常,南侧出现西风异常)。高空纬向风的变化导致纬向风的垂直梯度和经向梯度出现异常,最终影响高空颠簸的时空分布特征。对流层高层温度的异常变化可能是由与热带海温异常相关的平流层水汽变化所引起。  相似文献   

13.
The equilibrium response of atmospheric circulation to the direct radiative effects of natural or anthropogenic aerosols is investigated using the Community Atmosphere Model (CAM3) coupled to two different ocean boundary conditions: prescribed climatological sea surface temperatures (SSTs) and a slab ocean model. Anthropogenic and natural aerosols significantly affect the circulation but in nearly opposite ways, because anthropogenic aerosols tend to have a net local warming effect and natural aerosols a net cooling. Aerosol forcings shift the Intertropical Convergence Zone and alter the strength of the Hadley circulation as found in previous studies, but also affect the Hadley cell width. These effects are due to meridional gradients in warming caused by heterogeneous net heating, and are stronger with interactive SST. Aerosols also drive model responses at high latitudes, including polar near-surface warming by anthropogenic aerosols in summer and an Arctic Oscillation (AO)-type responses in winter: anthropogenic aerosols strengthen wintertime zonal wind near 60°N, weaken it near 30°N, warm the troposphere, cool the stratosphere, and reduce Arctic surface pressure, while natural aerosols produce nearly opposite changes. These responses are shown to be due to modulation of stratospheric wave-driving consistent with meridional forcing gradients in midlatitudes. They are more pronounced when SST is fixed, apparently because the contrast in land-ocean heating drives a predominantly wavenumber-2 response in the northern hemisphere which is more efficient in reaching the stratosphere, showing that zonal heating variations also affect this particular response. The results suggest that recent shifts from reflecting to absorbing aerosol types probably contributed to the observed decadal variations in tropical width and AO, although studies with more realistic temporal variations in forcing would be needed to quantify this contribution.  相似文献   

14.
This study aims to understand the mechanisms which cause an overall reduction of SH extratropical cyclone activity with a slight increase in the high latitudes in a warmer climate simulated in general circulation models (GCMs) with increasing CO2. For this purpose, we conducted idealized model experiments by forcing warm temperature anomalies to the areas where climate change models exhibit local maximum warming—the tropics in the upper troposphere and the polar regions in the lower troposphere—simultaneously and separately. The Melbourne University atmospheric GCM (R21) coupled with prescribed SST was utilized for the experiments. Our results demonstrate that the reduction of SH extratropical cyclone frequency and depth in the midlatitudes but the slight increase in the high latitudes suggested in climate change models result essentially from the tropical upper tropospheric warming. With this tropical warming, the enhanced static stability which decreases baroclinicity in the low and midlatitudes turns out to be a major contributor to the decrease of cyclone activity equatorward of 45°S whereas the increased meridional temperature gradient in the high latitudes seems an important mechanism for the increase of cyclone activity over 50°–60°S.  相似文献   

15.
The Barents Sea is the most productive sea in the Arctic. The main causes of phytoplankton spring blooms are studied for a decadal time period of 2003–2013 at the region of (70 °N-80 °N, 30 °E-40 °E) in Barents Sea. Due to the rapidly ice melt in the southern region (70 °N-75 °N), almost no ice left after year 2005, sea surface temperature (SST) and wind speed (WIND) are two main dominant factors influencing phytoplankton blooming in the southern region. Ice melt is another important factor of phytoplankton blooming in the northern region (75 °N–80 °N). SST and CHL had positive correlations during blooming season but negative correlations during summer time. The lower SST in spring could result in earlier blooming in the region. Higher SST and higher WIND could result in later blooming. Positive NAO after April 2013 caused higher SST in 2013. Increasing WIND would cause CHL reduced accordingly. Blooming period is from late April to late May in the southern region, and 1–2 weeks later in the northern region. During blooming season, SST was less than 4 °C and WIND was less than 10 m/s. The higher winds (over 15 m/s) in early spring would brought more nutrients from bottom to surface and cause higher blooming (near 10 mg/m3 in year 2010) after WIND is reduced to 5−8 m/s. Higher WIND (around 10 m/s) could generate longer blooming period (more than a week) during late May in the southern region. Decrease of WIND and increase of melting ice, with slightly increase of SST and decrease of mixed layer depth (MLD), are all the factors of phytoplankton blooming in late spring and early summer.  相似文献   

16.
Summary The factors that control the strength of the ITCZ (Inter Tropical Convergence Zone) in an aquaplanet GCM (General Circulation Model) have been investigated. The strength of the equatorial ITCZ was found to increase rapidly with increase in meridional gradient of SST. On the other hand, the strength of the off-equatorial ITCZ does not increase rapidly with increase in meridional gradient of SST. This unusual difference in behavior between off-equatorial and equatorial ITCZ has been interpreted with a diagnostic model. The diagnostic model is based on budgets of moisture and dry static energy in the ITCZ. The diagnostic model indicates that the variations in the strength of the ITCZ are related to changes in the net energy convergence and vertical moist static stability. It was found that the net energy convergence in the off-equatorial ITCZ increases much less rapidly with meridional SST gradient than the equatorial counterpart. This difference in the behavior of net energy convergence is related to the surface wind speed which in the off-equatorial ITCZ simulation is largely insensitive to changes in the meridional SST gradient. Thus the primary difference between the equatorial and off-equatorial ITCZ is on account of the fact that wind speeds were lower in the former (on account of the constraint that zonal wind has to be zero at the equator). The impact of increasing the SST maximum on the strength of the ITCZ has also been studied. It was found that the strength of ITCZ increases with an increase in SST maximum. This increase in the strength of the ITCZ with the maximum SST is governed by the increase in boundary layer specific humidity and its impact on vertical moist static stability.  相似文献   

17.
This study evaluates the prediction skill of stratospheric temperature anomalies by the Climate Forecast System version 2 (CFSv2) reforecasts for the 12-year period from January 1, 1999 to December 2010. The goal is to explore if the CFSv2 forecasts for the stratosphere would remain skillful beyond the inherent tropospheric predictability time scale of at most 2 weeks. The anomaly correlation between observations and forecasts for temperature field at 50 hPa (T50) in winter seasons remains above 0.3 over the polar stratosphere out to a lead time of 28 days whereas its counterpart in the troposphere at 500 hPa drops more quickly and falls below the 0.3 level after 12 days. We further show that the CFSv2 has a high prediction skill in the stratosphere both in an absolute sense and in terms of gain over persistence except in the equatorial region where the skill would mainly come from persistence of the quasi-biennial oscillation signal. We present evidence showing that the CFSv2 forecasts can capture both timing and amplitude of wave activities in the extratropical stratosphere at a lead time longer than 30 days. Based on the mass circulation theory, we conjecture that as long as the westward tilting of planetary waves in the stratosphere and their overall amplitude can be captured, the CFSv2 forecasts is still very skillful in predicting zonal mean anomalies even though it cannot predict the exact locations of planetary waves and their spatial scales. This explains why the CFSv2 has a high skill for the first EOF mode of T50, the intraseasonal variability of the annular mode while its skill degrades rapidly for higher EOF modes associated with stationary waves. This also explains why the CFSv2’s skill closely follows the seasonality and its interannual variability of the meridional mass circulation and stratosphere polar vortex. In particular, the CFSv2 is capable of predicting mid-winter polar stratosphere warming events in the Northern Hemisphere and the timing of the final polar stratosphere warming in spring in both hemispheres 3–4 weeks in advance.  相似文献   

18.
Afforestation has been deployed as a mitigation strategy for global warming due to its substantial carbon sequestration, which is partly counterbalanced with its biogeophysical effects through modifying the fluxes of energy, water, and momentum at the land surface. To assess the potential biophysical effects of afforestation, a set of extreme experiments in an Earth system model of intermediate complexity, the McGill Paleoclimate Model-2 (MPM-2), is designed. Model results show that latitudinal afforestation not only has a local warming effect but also induces global and remote warming over regions beyond the forcing originating areas. Precipitation increases in the northern hemisphere and decreases in southern hemisphere in response to afforestation. The local surface warming over the forcing originating areas in northern hemisphere is driven by decreases in surface albedo and increases in precipitation. The remote surface warming in southern hemisphere is induced by decreases in surface albedo and precipitation. The results suggest that the potential impact of afforestation on regional and global climate depended critically on the location of the forest expansion. That is, afforestation in 0°–15°N leaves a relatively minor impact on global and regional temperature; afforestation in 45°–60°N results in a significant global warming, while afforestation in 30°–45°N results in a prominent regional warming. In addition, the afforestation leads to a decrease in annual mean meridional oceanic heat transport with a maximum decrease in forest expansion of 30°–45°N. These results can help to compare afforestation effects and find areas where afforestation mitigates climate change most effectively combined with its carbon drawdown effects.  相似文献   

19.
李多  肖子牛  李泽椿 《气象》2012,38(4):411-418
基于中国东部北方地区279个气象台站1961-2008年的观测资料,以及1°×1°的全球海表温度资料,运用主成分分析、小波分析、相关分析等方法探讨中国东部北方地区冬季降雪的时空特征及同期全球海温与其的相关性。研究发现:中国东部北方区域(以下简称研究区)冬季降雪量存在2-3a、7-8a的高频振荡周期,及一个准16a的年代际尺度的低频振荡周期。在1961-2008年间,研究区域冬季降雪量总体呈现上升趋势,特别是45°N以北的研究区北部区域冬季降雪量在48年问增加显著,而45°N以南的研究区南部区域冬季降雪量变化并不明显。分析发现,位于北大西洋上30°-50°N,10°-40°W海区的海温与研究区域降雪的第一、二特征向量均为显著的正相关,研究区北部冬季降雪量与海温关系密切,南部区域冬季降雪量与全球海温的相关性不明显,海温变暖可能是导致研究区北部降雪显著增加的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号