首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
利用2009年7月—2015年12月河西走廊东部乌鞘岭和天祝逐时气温、日照、地面2 min风场及每隔6 h云量资料,详细分析乌鞘岭山区大气温差、云量特征的时间变化及其预报关系,旨在提高天祝最低气温的预报准确率。结果表明:冬季08时气温乌鞘岭高于天祝的频率超过50%,温差强度达4~6℃;春夏季5—9月气温乌鞘岭高于天祝的频率低于40%,温差强度较弱在2℃以下。云量中夜间至清晨(02—8时)少,傍晚较多;5—9月较多,冬季较少。天空状况除冬季晴天多,出现频率高于50%外,其它季节阴天较多,晴天次之,多云较少,不足20%。乌鞘岭谷风多,而天祝山风多。气温乌鞘岭高于天祝的频率和强度与云量、山谷风、太阳照射时间、季节和天气系统密切相关。晴天和阴雨天气报准,天祝最低气温预报准确率最多可能提高30%,晴天报准时预报准确率最多可提高10%以上。  相似文献   

2.
一种逐时气温预报方法   总被引:4,自引:0,他引:4  
利用2006~2010年陕西10地市逐小时的气温和逐日的最高气温、最低气温、平均总云量、降水量资料,通过线性回归方法建立了一种基于日最高气温和最低气温预报以及临近气温实况资料的逐时气温预报模型,并对2011年每天的逐时气温预报进行检验。结果表明:该方法在晴天、多云和阴雨天的预报能力依次减弱,其中晴天和多云天02~18时的预报效果好于19时至次日01时的,而阴雨天01~10时的预报效果好于其它预报时段的;当日最高气温和最低气温预报较为准确时,西安站各预报时刻的准确率均在60%以上,其中14~17时的准确率较高,晴天的达到100%,多云天的在96%~99%之间,阴雨天的准确率偏低一些,特别是11~17时较晴天和多云天偏低了12%~27%;该方法可以将24 h日最高(低)气温预报细化到逐时气温预报,同时考虑了气温日变化的地域差异、季节特征、以及在晴天、多云和阴雨天的不同表现,具有一定的业务应用和推广价值。  相似文献   

3.
辽宁地区ECMWF模式气温预报检验及误差订正研究   总被引:1,自引:0,他引:1  
利用2016—2018年ECMWF细网格模式12—36 h内2 m温度预报产品,选取辽宁地区65个城镇站点观测资料,评估预报产品在不同季节的预报准确率,并按季节分析固定误差订正方法和最优滑动周期订正方法对提高准确率的作用。结果表明:ECMWF模式预报产品对辽宁地区气温预报的准确率表现为,ECMWF模式最高气温冬季预报最优(城镇站点预报准确率为81.5%),最低气温夏季预报最好(城镇站点预报准确率为84.3%);采用最优滑动周期订正后,2016—2018年辽宁地区的最高气温和最低气温准确率较ECMWF模式自身分别提高了19.7%和20.5%,最低气温的预报准确率提高程度优于最高气温;在整个空间分布中,ECMWF模式对辽宁中部平原地区最高(低)气温预报准确率高于东、西部地区,辽宁东北部和西南部以及东南部的长白山余脉影响区域准确率明显低于其他区域。同时,在各季中,最高气温和夏季最低气温的订正预报能力优于其他季节;在地面晴、雨两种特征下,对辽宁地区24 h气温预报进行订正检验表明,该检验结果对辽宁地区最高(低)气温订正有一定补充作用,尤其是冬季降水出现时,最高气温预报补充订正效果最为显著。  相似文献   

4.
利用2016年1月1日—2018年12月31日ECMWF细网格模式2 m温度预报产品,使用三次多项式差值方法内插到站点,并用中短期天气预报检验方法,对南疆西部12个国家站与15个区域自动站共27个站的最高、最低气温未来24 h预报效果进行检验分析。结果表明:ECMWF细网格模式2 m温度预报产品对南疆西部非山区站未来24 h最高、最低气温的预报能力较好,对山区站未来24 h预报效果差;对南疆西部最高、最低气温的预报效果随季节变化,夏季预报准确率高于冬季,秋季预报准确率最低;模式最高气温预报准确率在降雪、高温天气时较高,最低气温预报准确率在降雨时较高,在高温过程中较低;模式对于降雨、降雪、大风/沙尘等天气最高气温预报偏低,高温事件中最高气温预报偏高。最低气温预报在降雨、高温天气中偏高,降雪时偏低,大风/沙尘天气最低气温预报偏东地区偏高、偏北地区偏低。降雪、高温天气预报相对降雨、大风/沙尘天气预报效果更稳定。  相似文献   

5.
应用滑动平均(5 d、7 d)、类卡尔曼滤波递减平均两种订正方法对哈尔滨地区国家级指导预报最高(最低)气温产品进行预报能力初步检验及偏差订正。结果表明:两种订正方法对最高气温与最低气温预报产品24-240 h预报时效大部分时段均有正的订正效果,最高(最低)气温预报准确率提高1-2%,平均绝对误差0.1-0.2℃,其中24-96 h预报时效预报能力稍好,120 h之后预报能力较差,订正后预报准确率也不足60%。气温预报偏差还表现为明显的季节变化特征,7-9月最高气温的预报效果优于冬春季,冬半年的订正幅度较夏季稍大。另外,不同天气状况下降水天气对气温预报有一定的影响,如果能进一步改进模式预报中降水带来的偏差,将进一步提高模式订正效果。  相似文献   

6.
该文选取了2010—2015年贵州省贵阳站的逐日最高气温、总云量、降水量、湿度等资料,统计不同天空状况下的日最高气温的变化特点,并采用SPSS逐步回归筛选出影响最高气温的关键因子,建立回归模型。得出:①贵阳站阴雨天气出现频率要远多于晴和多云天气,尤其是冬春季,晴和多云天气多出现在夏秋季。在同一月份,晴好天气下和阴雨天气下,平均日最高气温有较大的差异,冬春季差异最大,平均最高相差15℃;②影响因子中前1 d日最高、最低气温及地面最高、最低温度与日最高气温的相关性较高,其中相关性最高的因子为前1 d日最高气温,相关性最高的季节为秋季;③在晴和多云天气下时,前1 d日最高气温对日最高气温的影响最大,而在阴天和雨天天气下时,则是前1 d日最低气温的影响最大。在不同的天空状况下,晴天天气下的拟合效果最好,估计误差值都在2℃以内,从季节上来看,夏季的拟合效果最好,平均估计误差值为1.6℃。  相似文献   

7.
利用2018年1—10月华南3 km区域高分辨率模式08时、20时起报的气温预报和实况资料,采用线性内插法进行站点预报值处理,并从平均均方根误差及预报准确率的角度,检验分析了贵州省72 h预报内逐24 h最高(低)气温预报质量。结果表明,72 h内随着预报时效的增加,预报准确率差异较小;日最低气温预报准确率相对最高气温平均高出20%左右;08时起报的最高(低)气温预报优于20时的。同时发现,最高(低)气温的预报能力在月份上存在明显差异,6—8月预报性能总体优于其它月份;在24~48 h预报中,东北—西南向一带较贵州其它区域展现出更高的预报能力。在9个主要城市站上,最高(低)气温均表现出较高的预报技巧,其中,20时起报的兴义站24 h最低气温准确率100%。通过对2018年7月18日气温预报质量检验,最高(低)气温及35.0℃以上高温事件预报准确率均在80%左右,较好反映了天气实况。因此,华南3 km高分辨率区域模式对贵州气温预报具有较好的参考价值。  相似文献   

8.
利用2011年7月-2012年7月欧洲中期天气预报中心(ECMWF)模式细网格地面2m温度和广西区域自动站气温观测资料,对比分析了EC模式细网格2m温度24小时时效内在华南西部地区不同季节、不同天气系统影响下的预报性能。结果表明:(1)全年平均而言,低温预报误差整体较小,预报准确率达77.7%,高温预报误差变化较大,准确率只有32.8%,低温预报准确率比高温预报准确率高44.9%,低温预报具有较高的参考价值。(2)不同季节高温低温预报差异明显,在夏季(6月-8月)低温预报的准确率达80%,但最高温度的预报准确率只有10%左右;在冬季,最低温度准确率下降到65%左右,而最高温度准确率相反,上升至50%左右。(3)不同地理区域预报性能差别较大:最高温度预报1-3月桂西可信度较高,达60%,4-5月和11-12月四个月只有桂东部分地区的预报具有一定的参考价值。(4)从全年误差分布来看,高温预报在冬季是误差小的所占比重大,误差大的比重小,夏季的则相反,春秋的误差等级分布的较为均匀,每个等级所占比重相似。低温预报则分布的比较均匀,全年基本都是误差越小占比重越大,只是冬季误差小的比重相对较小。5)不同天气形势的温度预报性能亦不同:冬春季冷空气(锋面)影响过程和春季低温阴雨过程的高温预报有一定的参考价值;夏季区域性暴雨过程和副热带高压影响过程的高温预报参考价值较低,误差平均达31%和5.8%,可作为预报主观订正的幅度参考值,四种天气型的低温预报准确性都较高,达到70%以上。  相似文献   

9.
利用2018年1—10月华南3 km区域高分辨率模式08时、20时起报的气温预报和实况资料,采用线性内插法进行站点预报值处理,并从平均均方根误差及预报准确率的角度,检验分析了贵州省72 h预报内逐24 h最高(低)气温预报质量。结果表明,72 h内随着预报时效的增加,预报准确率差异较小;日最低气温预报准确率相对最高气温平均高出20%左右;08时起报的最高(低)气温预报优于20时的。同时发现,最高(低)气温的预报能力在月份上存在明显差异,6—8月预报性能总体优于其它月份;在24~48 h预报中,东北—西南向一带较贵州其它区域展现出更高的预报能力。在9个主要城市站上,最高(低)气温均表现出较高的预报技巧,其中,20时起报的兴义站24 h最低气温准确率100%。通过对2018年7月18日气温预报质量检验,最高(低)气温及35.0℃以上高温事件预报准确率均在80%左右,较好反映了天气实况。因此,华南3 km高分辨率区域模式对贵州气温预报具有较好的参考价值。  相似文献   

10.
取T 213模式的格点预报资料,利用卡尔曼滤波方法制作北海地区夏季的日最高气温预报方程,试报2003年6~7月合浦站逐日最高气温24h预报,效果不错,其对高温天气的预报准确率达50%,月平均绝对误差小于1℃。  相似文献   

11.
利用2012年1月至2014年8月重庆沙坪坝站的微波辐射计和探空数据,通过数值模拟检验微波辐射计的亮温精度,并统计分析晴空、有云和降水天气条件下微波辐射计反演产品的变化特征。结果表明:(1)有云时微波辐射计氧气通道53.85、54.00 GHz亮温与探空观测温度相关性较好;晴空和有云时MonoRTM模拟亮温与微波辐射计观测亮温相关性较好。(2)不同天气条件下,微波辐射计反演温度与探空观测值的相关性都较高,降水时4.0 km以下微波辐射计反演温度明显偏高,有云和晴空时3.8 km以下的温度平均绝对误差小于2℃。微波辐射计反演的相对湿度与探空观测值的相关性较同高度层温度的相关性差,有云时1.0~2.6 km高度反演的相对湿度平均误差很小,降水时4.5 km以下平均误差也较小且稳定。降水时4.0 km以下微波辐射计反演的水汽密度平均误差明显偏大,有云时多数高度层平均误差较小。(3)4.2 km以下降水时08:00微波辐射计反演温度的平均误差较大,有云时08:00微波辐射计反演温度和水汽密度的平均误差均较小。说明微波辐射计反演的大气廓线具有可用性,且在稳定大气环境中反演效果更好。  相似文献   

12.
高寒地区日光温室地温变化及预报   总被引:2,自引:0,他引:2  
利用2012年4月至2013年3月青海大通县日光温室内外地温、气温资料和大通县气象站人工观测资料,分析了高寒冷凉地区不同天气类型下日光温室地温变化规律。结果表明;研究区日光温室内日地温呈正弦曲线变化,晴天变化幅度最明显,阴天最小,地温变幅为地表〉5 cm〉10 cm〉15cm〉20 cm;室内地表、10 cm和20 cm平均地温月变化呈波形变化,最大值出现在7月,最小值在12月;随着深度增加,平均地温年较差逐渐减小;晴天、多云天、阴天不同深度地温平均日较差分别为9.6、8.3、6.1℃;地温日垂直变化仅在14时随着深度增加逐渐下降;除晴天室内最高温度外,其余温度要素与地温之间存在极显著正相关关系;建立的日光温室内10 cm最低温度预报方程和地表最低温度预报模型,可以在业务服务中应用。  相似文献   

13.
非加温型四连栋塑料温室内外温湿度关系研究   总被引:7,自引:1,他引:7  
李军  杨秋珍  吴元中 《气象》2005,31(8):22-24
根据1999年12月~2002年8月典型天气(晴天、多云、阴天)下非加温型四连栋塑料温室中间1.5m高度气温、相对湿度的观测数据,应用逐步回归分析方法建立了冬季、春秋季、夏季典型天气下温室内日平均气温、日最高气温、日最低气温、日平均相对湿度与气象站气象要素间的关系式,为温室蔬菜品种筛选、蔬菜标准化栽培、无公害蔬菜生产和病虫害防治提供小气候方面的技术数据。  相似文献   

14.
为探讨微波辐射计和风廓线雷达探测数据的准确性和可用性,利用天津全运会期间获取的GPS探空资料,分析不同天气条件下微波辐射计探测温湿度、风廓线雷达测风的误差特征。结果表明:晴天、云天和雨天条件下,微波辐射计反演低空温度廓线效果均较好,反演高空温度廓线误差较大,云天条件下,反演的整层温度廓线与探空实测值相关性最优;3种天气条件下,微波辐射计反演相对湿度廓线的误差均较大,与探空实测值的相关性也较差;晴天和云天条件下,风廓线雷达探测风向、风速的误差均较小,雨天风廓线雷达测风效果较差;晴天和云天条件下1750 m以上,雨天3000 m以上,风廓线雷达探测风速数据与探空实测值相关性较好,低空探测风速与探空相关性较差;3500 m以下,3种天气条件下风廓线雷达探测风向与探空实测值相关性较差,3500 m以上相关性较好,数值在0.6—1.0之间波动变化。  相似文献   

15.
微波辐射计反演产品评价   总被引:6,自引:1,他引:5  
刘建忠  张蔷 《气象科技》2010,38(3):325-331
利用北京南郊探空资料,对从美国进口的微波辐射计近3年反演资料,从总体平均、早晚平均、平均年变化以及不同天空状况4个方面进行分析、评价,以了解该设备的性能和产品特点。结果表明:①温度均方根误差从近地面到5000 m,误差逐渐增大,5000 m以上又逐渐减小。相对误差总体平均不到0.2,且均为正,表明仪器反演的温度比探空的偏高。②湿度从近地面到3000 m误差逐渐增大,3000 m以上逐渐减小。总体平均相对湿度的误差均为正,表明仪器反演出的相对湿度比探空的偏高。③从温、湿度误差的早晚对比看,20:00的误差相对比08:00小。④从不同天空状况看,温度碧空、多云间晴效果较好,多云转阴、阴天效果较差;湿度多云转阴、阴天效果较好。⑤从温、湿度误差的年变化来看,温度均方根误差1500 m以下年内变化幅度较小,1500 m以上变化幅度较大,呈现出8月误差最小,3、4月最大;相对湿度的均方根误差在1500 m以下年内变化比较相似,1500 m以上脉动变化比较大。  相似文献   

16.
上海地区地面太阳紫外辐射的观测和分析   总被引:21,自引:0,他引:21  
通过对上海地区2001~2003年地面太阳总辐射和紫外辐射观测资料的分析表明:(1)上海地区太阳辐射和紫外辐射年总量分别为4487.1MJ/m^2和149.6MJ/m^2。(2)紫外辐射的季节变化特征十分明显,夏半年(4-9月)各月极大紫外辐射强度远大于冬半年(10月~次年3月),7月份最强,12月份最弱。(3)不同天气条件下,紫外辐射日变化显示出明显的差异,晴天强且稳定,多云天气波动较大,阴天则次之。(4)紫外辐射占总辐射的比例(η)也显示冬半年低,夏半年高的分布特征。(5)影响上海地区到达地面紫外辐射的主要因子有:太阳高度角的大小大致决定了到达地面紫外辐射的强弱,两者具有相近的年变化趋势;云、雨等天气类型是影响紫外辐射的重要因子;大气能见度对紫外辐射也有比较明显的影响。  相似文献   

17.
太湖局地小气候特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用2004年12月至2009年2月无锡马山自动站和无锡学前街自动站气温数据,分析了太湖地区局地小气候的变化特征。结果表明:太湖地区局地小气候特征非常显著,总体上表现为年际、季际、月际和各时段的平均气温较其他地区异常偏低。但在不同的气象条件背景下如晴天、雨天和各种特殊天气存在不同的特点。晴天太湖地区主要表现为气温偏低;雨天春夏秋季主要表现为气温偏高,而冬季表现为气温偏低。高温、暴雪天气条件下,太湖地区主要为气温偏低但强度上存在很大的差异,而寒潮天气条件下太湖地区气温相较其他地区则时高时低。  相似文献   

18.
利用2009年石家庄地区的4次机载PMS探测资料,对不同天气条件下大气气溶胶的数浓度、平均直径垂直分布和谱分布及一次晴天条件下的水平分布进行分析。结果表明:PCASP 探头探测的0.1-3.0 μm气溶胶粒子最大数浓度的量级为102-104 cm-3之间,平均值量级为102-103 cm-3之间,平均直径最大值介于0.225-0.717 μm,平均值介于0.148-0.167 μm。晴天条件下,气溶胶的数浓度随高度递减,直径随高度变化不大;逆温层底气溶胶明显积累,气溶胶浓度在大气边界层内明显高于其他层次;阴天轻雾情况下边界层内的气溶胶数浓度大于雨天和晴天,雨天气溶胶浓度最低;晴天气溶胶数浓度的水平分布不均匀;在云中气溶胶浓度明显下降,在云外气溶胶浓度较高。不同天气条件和晴天不同高度情况下,石家庄地区气溶胶谱型呈单峰分布,小于0.3 μm的细粒子对气溶胶的数浓度贡献最大,且随着高度的增加谱宽变窄。  相似文献   

19.
长沙市夏季百叶箱内外温度特征   总被引:1,自引:0,他引:1  
陈朝晖  范昱 《气象科技》2014,42(5):742-747
对长沙市2011、2012年夏季(6—9月)百叶箱内外温度同步观测资料进行统计分析,结果表明:百叶箱内外温度呈现白天箱外温度高于箱内,晚上低于箱内的日变化特征,但不同类型天气交替时间存在早晚不一。箱内外夏季平均温度、极端最高温度的变化趋势一致,但箱外温度高于箱内,且不同类型天气百叶箱内外温度存在差异,阴雨天平均相差1.2℃,多云差2.8℃,晴天差3.1℃,极端最高温差达6.4℃。特别是日最高温度大于等于35℃的高温日数,2年箱内共出现61天,而箱外多达125天;箱内极端最高温度为38.9℃,而箱外极端最高温度高达42.0℃。因此,在高温预报和公共气象服务工作中,应当要考虑外界温度(百叶箱外温度)与百叶箱内温度之间存在的差异。  相似文献   

20.
利用公益性行业(气象)科研专项项目"藏东南地区复杂下垫面地气交换观测研究"在藏东南地区进行的地气交换观测实验数据,分析典型晴天和阴天条件下不同下垫面能量过程的特征及其差异。结果表明:在典型晴空状态下,不同下垫面的地表净辐射均具有明显的日变化特征,在典型阴天的情况下,不同下垫面地表净辐射日均值显著减小;在典型晴空天气下,4种类型下垫面上潜热均随着净辐射的增加而表现为增加的趋势,在典型阴天的情况下,潜热通量明显比晴空天气小;不同下垫面感热通量的日变化存在显著的差异,不同下垫面感热的变化特征在典型晴空和阴天条件下的差异不明显;不同下垫面土壤热通量与净辐射的变化趋势基本一致,阴天夜晚土壤热流的交换与晴天夜晚的差异不大,四种下垫面土壤均存在能量损失,土壤处于降温状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号