首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Net primary production(NPP)of crop represents the capacity of sequestrating atmospheric CO_2 in agro-ecosystem,and it plays an important role in terrestrial carbon cycling.By linking the Crop-C model with climate change scenario projected by a coupled GCM FGOALS via geographical information system (GIS)techniques,crop NPP in China was simulated from 2000 to 2050.The national averaged surface air temperature from FGOALS is projected to increase by 1.0℃over this period and the corresponding atmospheric CO_2 concentration is 535 ppm by 2050 under the IPCC AIB scenario.With a spatial resolution of 10×10 km~2,model simulation indicated that an annual average increase of 0.6 Tg C yr~(-1)(Tg=10~(12)g) would be possible under the AIB scenario.The NPP in the late 2040s would increase by 5%(30 Tg C) within the 98×10~6 hm~2 cropland area in contrast with that in the early 2000s.A further investigation suggested that changes in the NPP would not be evenly distributed in China.A higher increase would occur in a majority of regions located in eastern and northwestern China,while a slight reduction would appear in Hebei and Tianjin in northern China.The spatial characteristics of the crop NPP change are attributed primarily to the uneven distribution of temperature change.  相似文献   

2.
The ability of seven global coupled ocean-atmosphere models to reproduce East Asian monthly surface temperature and precipitation climatologies during 1961 1990 is evaluated. January and July climate differences during the 2050s and 2090s relative to 1961-1990 projected by the seven-model ensemble under the Special Report on Emission Scenarios (SRES) A2 and B2 scenarios are then briefly discussed. These projections, together with the corresponding atmospheric CO2 concentrations under the SRES A2 and B2 scenarios, are subsequently used to drive the biome model BIOME3 to simulate potential vegetation distribution in China during the 2050s and 2090s. It is revealed that potential vegetation belts during the 2050s shift northward greatly in central and eastern China compared to those during 1961-1990. In contrast, potential vegetation change is slight in western China on the whole. The spatial pattern of potential vegetation during the 2090s is generally similar to that during the 2050s, but the range of potential vegetation change against 1961 1990 is more extensive during the 2090s than the 2050s, particularly in western China. Additionally, there exists model-dependent uncertainty of potential vegetation change under the SRES A2 scenario during the 2090s, which is due to the scatter of projected climate change by the models. The projected change in potential vegetation under the SRES A2 scenario during the 2090s is attributable to surface temperature change south of 35°N and to the joint changes of surface temperature, precipitation, and atmospheric CO2 concentration north of 35°N.  相似文献   

3.
Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulating present-day precipitation shows encouraging results. The spatial distributions of both mean and extreme precipitation, especially the locations of main precipitation centers, are reproduced reasonably. The simulated annual cycle of precipitation is close to the observed. The performance of the model over eastern China is generally better than that over western China. A weakness of the model is the overestimation of precipitation over northern and western China. Analyses on the potential change in precipitation projected under the A1B scenario show that both annual mean precipitation intensity and extreme precipitation would increase significantly over southeastern China. The percentage increase in extreme precipitation is larger than that of mean precipitation. Meanwhile, decreases in mean and extreme precipitation are evident over the southern Tibetan Plateau. For precipitation days, extreme precipitation days are projected to increase over all of China. Both consecutive dry days over northern China and consecutive wet days over southern China would decrease.  相似文献   

4.
Winter wheat is one of China’s most important staple food crops, and its production is strongly influenced by weather, especially droughts. As a result, the impact of drought on the production of winter wheat is associated with the food security of China. Simulations of future climate for scenarios A2 and A1B provided by GFDL-CM2, MPI_ECHAM5, MRI_CGCM2, NCAR_CCSM3, and UKMO_HADCM3 during 2001-2100 are used to project the influence of drought on winter wheat yields in North China. Winter wheat yields are simulated using the crop model WOFOST (WOrld FOod STudies). Future changes in temperature and precipitation are analyzed. Temperature is projected to increase by 3.9-5.5 for scenario A2 and by 2.9-5.1 for scenario A1B, with fairly large interannual variability. Mean precipitation during the growing season is projected to increase by 16.7 and 8.6 mm (10 yr)-1 , with spring precipitation increasing by 9.3 and 4.8 mm (10 yr)-1 from 2012-2100 for scenarios A2 and A1B, respectively. For the next 10-30 years (2012-2040), neither the growing season precipitation nor the spring precipitation over North China is projected to increase by either scenario. Assuming constant winter wheat varieties and agricultural practices, the influence of drought induced by short rain on winter wheat yields in North China is simulated using the WOFOST crop model. The drought index is projected to decrease by 9.7% according to scenario A2 and by 10.3% according to scenario A1B during 2012-2100. This indicates that the drought influence on winter wheat yields may be relieved over that period by projected increases in rain and temperature as well as changes in the growth stage of winter wheat. However, drought may be more severe in the near future, as indicated by the results for the next 10-30 years.  相似文献   

5.
Winter wheat is one of China's most important staple food crops, and its production is strongly influenced by weather, especially droughts. As a result, the impact of drought on the production of winter wheat is associated with the food security of China. Simulations of future climate for scenarios A2 and A1B provided by GFDL_CM2, MPI_ECHAM5, MRI_CGCM2, NCAR_CCSM3, and UKMO_HADCM3 during 2001- 2100 are used to project the influence of drought on winter wheat yields in North China. Winter wheat yields are simulated using the crop model WOFOST (WOrld FOod STudies). Future changes in temperature and precipitation are analyzed. Temperature is projected to increase by 3.9-5.5℃ ? for scenario A2 and by 2.9-5.1℃ ? for scenario A1B, with fairly large interannual variability. Mean precipitation during the growing season is projected to increase by 16.7 and 8.6 mm (10 yr)-1, with spring precipitation increasing by 9.3 and 4.8 mm (10 yr)-1 from 2012-2100 for scenarios A2 and A1B, respectively. For the next 10-30 years (2012- 2040), neither the growing season precipitation nor the spring precipitation over North China is projected to increase by either scenario. Assuming constant winter wheat varieties and agricultural practices, the influence of drought induced by short rain on winter wheat yields in North China is simulated using the WOFOST crop model. The drought index is projected to decrease by 9.7% according to scenario A2 and by 10.3% according to scenario A1B during 2012-2100. This indicates that the drought influence on winter wheat yields may be relieved over that period by projected increases in rain and temperature as well as changes in the growth stage of winter wheat. However, drought may be more severe in the near future, as indicated by the results for the next 10-30 years.  相似文献   

6.
Regional climate change in China under the IPCC A2 Scenario, was simulated for continuous 10-yr period by the MM5V3, using the output of an IPCC A2 run from CISRO Mark 3 climate system model as lateral and surface boundary conditions. The regional climate change of surface air temperature, precipitation, and circulation were analyzed. The results showed that (1) the distribution of mean circulation, surface air temperature, and precipitation was reproduced by the MM5V3. The regional climate model was capable to improve the regional climate simulation driven by GCM. (2) The climate change simulation under the IPCC A2 Scenario indicated that the surface air temperature in China would increase in the future, with a stronger trend in winter and the increasing magnitude from the south to the north. The precipitation distribution would appear a distinct change as well. Annual mean precipitation would remarkably increase in Northeast China, Yangtze and Huaihe River Valley, and the south area of the valley. Meanwhile, rainfall would show a decreasing trend in partial areas of North China, and many regions of Southwest and Northwest China.  相似文献   

7.
Lightning is one of the most important natural sources of atmospheric NOx.The authors investigate the2000–2050 changes in NOx emissions from lightning using the global three-dimensional Goddard Earth Observing System chemical transport model(GEOS-Chem)driven by meteorological fields from the Goddard Institute for Space Studies(GISS)general circulation model(GCM)3.Projected changes in climate over 2000–2050are based on the Intergovernmental Panel on Climate Change(IPCC)A1B scenario.The global NOx emission from lightning is simulated to be 4.8 Tg N in present day and to increase by about 16.7%over 2000–2050 as a result of the future climate change.The largest present-day emissions and climate-induced changes are found in the upper troposphere in the tropics.Regionally in eastern China(20–55 N,98–125 E),NOx emissions from lighting is simulated to be 0.3 Tg N(6.3%of the global total emission)in present day and to increase by 26.7%over2000–2050.The simulated changes in NOx from lightening correspond well with the projected future changes in convective precipitation.  相似文献   

8.
How the “Best” Models Project the Future Precipitation Change in China   总被引:8,自引:0,他引:8  
Projected changes in summer precipitation characteristics in China during the 21st century are assessed using the monthly precipitation outputs of the ensemble of three “best” models under the Special Report on Emissions Scenarios (SRES) A1B, A2, and B1 scenarios. The excellent reproducibility of the models both in spatial and temporal patterns for the precipitation in China makes the projected summer precipitation change more believable for the future 100 years. All the three scenarios experiments indicate a consistent enhancement of summer precipitation in China in the 21st century. However, the projected summer precipitation in China demonstrates large variability between sub-regions. The projected increase in precipitation in South China is significant and persistent, as well as in North China. Meanwhile, in the early period of the 21st century, the region of Northeast China is projected to be much drier than the present. But, this situation changes and the precipitation intensifies later, with a precipitation anomaly increase of 12.4%–20.4% at the end of the 21st century. The region of the Xinjiang Province probably undergoes a drying trend in the future 100 years, and is projected to decrease by 1.7%–3.6% at the end of the 21st century. There is no significant long-term change of the projected summer precipitation in the lower reaches of the Yangtze River valley. A high level of agreement of the ensemble of the regional precipitation change in some parts of China is found across scenarios but smaller changes are projected for the B1 scenario and slightly larger changes for the A2 scenario.  相似文献   

9.
More and more rainstorms and other extreme weather events occur in the context of global warming, which may increase the risks of landslides. In this paper, changes of landslides in the 21 st century of China under the high emission scenario RCP8.5(Representative Concentration Pathway) are projected by using a statistical landslide forecasting model and the regional climate model RegCM4.0. The statistical landslide model is based on an improved landslide susceptibility map of China and a rainfall intensity–duration threshold. First, it is driven by observed rainfall and RegCM4.0 rainfall in 1980–99, and it can reproduce the spatial distribution of landslides in China pretty well.Then, it is used to forecast the landslide changes over China in the future under the RCP8.5 scenario. The results consistently reveal that landslides will increase significantly in most areas of China, especially in the southeastern, northeastern, and western parts of Northwest China. The change pattern at the end of the 21 st century is generally consistent with that in the middle of the 21 st century, but with larger increment and magnitude. In terms of the probability,the proportion of grid points that are very likely and extremely likely to experience landslides will also increase.  相似文献   

10.
To meet the low warming targets proposed in the 2015 Paris Agreement,substantial reduction in carbon emissions is needed in the future.It is important to know how surface climates respond under low warming targets.The present study investigates the surface temperature changes under the low-forcing scenario of Representative Concentration Pathways(RCP2.6)and its updated version(Shared Socioeconomic Pathways,SSP1-2.6)by the Flexible Global Ocean-Atmosphere-Land System(FGOALS)models participating in phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6,respectively).In both scenarios,radiative forcing(RF)first increases to a peak of 3 W m^?2 around 2045 and then decreases to 2.6 W m^?2 by 2100.Global mean surface air temperature rises in all FGOALS models when RF increases(RF increasing stage)and declines or holds nearly constant when RF decreases(RF decreasing stage).The surface temperature change is distinct in its sign and magnitude between the RF increasing and decreasing stages over the land,Arctic,North Atlantic subpolar region,and Southern Ocean.Besides,the regional surface temperature change pattern displays pronounced model-to-model spread during both the RF increasing and decreasing stages,mainly due to large intermodel differences in climatological surface temperature,ice-albedo feedback,natural variability,and Atlantic Meridional Overturning Circulation change.The pattern of tropical precipitation change is generally anchored by the spatial variations of relative surface temperature change(deviations from the tropical mean value)in the FGOALS models.Moreover,the projected changes in the updated FGOALS models are closer to the multi-model ensemble mean results than their predecessors,suggesting that there are noticeable improvements in the future projections of FGOALS models from CMIP5 to CMIP6.  相似文献   

11.
This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years.It is shown that observed climate change in China bears a strong similarity with the global average.The country-averaged annual mean surface air temperature has increased by 1.1℃over the past 50 years and 0.5-0.8℃over the past 100 years,slightly higher than the global temperature increase for the same periods.Northern China and winter have experienced the greatest increases in surface air temperature.Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable,with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase,and North China a severe drought.Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings,show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases,while the temperature change of the first half of the 20th century may be due to solar activity,volcanic eruptions and sea surface temperature change.A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC(National Climate Center,China Meteorological Administration)and the IAP(Institute of Atmospheric Physics,Chinese Academy of Sciences),as well as 40 models developed overseas,indicate a potential significant warming in China in the 21st century,with the largest warming set to occur in winter months and in northern China.Under varied emission scenarios,the country-averaged annual mean temperature is projected to increase by 1.5-2.1℃by 2020,2.3-3.3℃by 2050, and by 3.9-6.0℃by 2100,in comparison to the 30-year average of 1961 1990.Most models project a 10% 12% increase in annual precipitation in China by 2100,with the trend being particularly evident in Northeast and Northwest China,but with parts of central China probably undergoing a drying trend.Large uncertainty exists in the projection of precipitation,and further studies are needed.Furthermore,anthropogenic climate change will probably lead to a weaker winter monsoon and a stronger summer monsoon in eastern Asia.  相似文献   

12.
The climate change scenarios due to the human activity for East Asia and China by 2050 have been estimated bymeans of a simple global social-economic-climate-impact model combined with seven GCMs.The climate change sce-narios present that the annual mean temperature might increase obviously,by about 1.4℃,and the annual total precipi-tation might increase by about 4% in whole China in comparison with the present climate.The change of the precipita-tion might be much smaller than that of the temperature.The potential impacts of human activity-induced climate change on natural vegetation in China were estimated us-ing the vegetation-climate model developed specially for Chinese vegetation types and different climate change scenariosderived from seven GCMs for 2050.All scenarios suggest a great change in natural vegetation although details of pre-dicted types vary among the scenarios.There will be a northward shift of the vegetation types,with increase in the arealextent of tropical rainforests and decrease of the cold temperate coniferous forest and tundra.Consequently,consideringthese changes and shifts,especially in combination with the likely negative balance of precipitation andevapotranspiration,the moisture stress,i.e.,less water availability arises,the possible influences of climate change onChinese agriculture is also assessed roughly in this paper.  相似文献   

13.
The water deficits in different development stages and the whole growing season of winterwheat in North China under climate change scenarios are analyzed based on the meteorological da-ta,crop phenomenon and soil hydrological data of 30 weather stations.The results show that ifthe temperature rises,the potential evapotranspiration and crop maximum transpiration will in-crease 8%-10%;the actual evapotranspiration in whole growing season will increase about 1%-2%;and it seems to decrease in spring.Therefore the water deficit status would deteriorate.Theamount of water deficit in whole growing season would increase 14%-30%,and the water deficitisolines might shift southward with maximum shift distance being 190 km.As a result the climaticsuitability of winter wheat would change,and the variation rate of yield reduction will be 8%-20% of the present value which results in the declining output values.The irrigation amountwould increase 25%-33%,and the agriculture cost might increase owing to additional irrigation.  相似文献   

14.
Based on the analyses on amplitudes of historical variation of temperature and precipitation inthe past 500 years and latest 100 years,according to the regional climate change scenarios forChina estimated by composite GCM,the potential impacts of climate change on cropping systemsin China in future are simulated and assessed using the cropping system model developmentspecially for the Chinese cropping patterns.It is shown that under the projected future climatechange by 2050 the most parts of the present double cropping area would be replaced by thedifferent triple cropping patterns while the current double cropping area would shift towards thecentral part of the present single cropping area.More explicitly,the northern boundary of triplecropping area would shift from its current border at the Changjing River to the Huanghe River,ashift of more than 5 degrees of latitude.And the shift of multiple cropping areas leads to asignificant decrease of single cropping area.Furthermore,considering the changes mentioned above in combination with the likely negativebalance of precipitation and evapotranspiration and,therefore,increase of moisture stress(i.e.less water availability),as well as the possible increase of heat stress disaster and decrease of LGS(length of growing season),the potential implication of climate change for agriculture in China arealso analyzed roughly in this paper.As a result,however,it is still very difficult to reach a specific conclusion that the futureclimate change will he favorable or unfavorable to farm in China because of the complicated Chinesefarming patterns,the complex-various social and economic environment of agriculturaldevelopment and,especially,a great scientific uncertainties in the investigation/prediction ofclimate change.  相似文献   

15.
The climate change in China shows a considerable similarity to the global change, though there still exist some significant differences between them. In the context of the global warming, the annual mean surface air temperature in the country as a whole has significantly increased for the past 50 years and 100 years, with the range of temperature increase slightly greater than that in the globe. The change in precipitation trends for the last 50 and 100 years was not significant, but since 1956 it has assumed a weak increasing trend. The frequency and intensity of main extreme weather and climate events have also undergone a significant change. The researches show that the atmospheric CO2 concentration in China has continuously increased and the sum of positive radiative forcings produced by greenhouse gases is probably responsible for the country-wide climate warming for the past 100 years, especially for the past 50 years. The projections of climate change for the 21st century using global and regional climate models indicate that, in the future 20-100 years, the surface air temperature will continue to increase and the annual precipitation also has an increasing trend for most parts of the country.  相似文献   

16.
Previous studies have examined the projected climate types in China by 2100. This study identified the emergence time of climate shifts at a 1?scale over China from 1990 to 2100 and investigated the temporal evolution of K o¨ppen–Geiger climate classifications computed from CMIP5 multi-model outputs. Climate shifts were detected in transition regions(7%–8% of China's land area) by 2010, including rapid replacement of mixed forest(Dwb) by deciduous forest(Dwa) over Northeast China, strong shrinkage of alpine climate type(ET) on the Tibetan Plateau, weak northward expansion of subtropical winterdry climate(Cwa) over Southeast China, and contraction of oceanic climate(Cwb) in Southwest China. Under all future RCP(Representative Concentration Pathway) scenarios, the reduction of Dwb in Northeast China and ET on the Tibetan Plateau was projected to accelerate substantially during 2010–30, and half of the total area occupied by ET in 1990 was projected to be redistributed by 2040. Under the most severe scenario(RCP8.5), sub-polar continental winter dry climate over Northeast China would disappear by 2040–50, ET on the Tibetan Plateau would disappear by 2070, and the climate types in 35.9%and 50.8% of China's land area would change by 2050 and 2100, respectively. The results presented in this paper indicate imperative impacts of anthropogenic climate change on China's ecoregions in future decades.  相似文献   

17.
This study investigates the impact of global warming on drought/flood patterns in China at the end of the 21st century based on the simulations of 22 global climate models and a regional climate model(RegCM3) under the SRES(Special Report on Emissions Scenarios) A1B scenario.The standardized precipitation index(SPI),which has well performance in monitoring the drought/flood characteristics(in terms of their intensity,duration,and spatial extent) in China,is used in this study.The projected results of 22 coupled models and the RegCM3 simulation are consistent.These models project a decrease in the frequency of droughts in most parts of northern China and a slight increase in the frequency in some parts of southern China.Considering China as a whole,the spatial extents of droughts are projected to be significantly reduced.In contrast,future flood events over most parts of China are projected to occur more frequently with stronger intensity and longer duration than those prevalent currently.Additionally,the spatial extents of flood events are projected to significantly increase.  相似文献   

18.
In this paper, the changes in temperature and precipitation extremes over the next 20-30 years (2021-2050) in relative to the present day (1986-2005) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed based on a high-resolution climate change simulation performed by a regional climate model (the Abdus Salam International Center for Theoretical Physics (ICTP) RegCM3). The extreme indices of summer days (SU), frost days (FD), and growing season length (GSL) for temperature and simple daily intensity index (SDII), number of days with precipitation ≥10 mm d-1 (R10), and consecutive dry days (CDD) for precipitation are used as the indicators of the extremes. The results show that the indices simulated by RegCM3 in the present day show good agreement with the observed. A general increase in SU, a decrease in FD, and an increase in GSL are found to occur in the next 20-30 years over China. A general increase in SDII, an increase in R10 over western China, and a decrease in R10 in north, northeast, and central China are simulated by the model. Changes in CDD are characterized by a decrease in the north and an increase in the south and the Tibetan Plateau.  相似文献   

19.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

20.
Coupled Model Simulations of Climate Changes in the 20th Century and Beyond   总被引:10,自引:1,他引:9  
Several scenario experiments of the IPCC 4th Assessment Report (AR4) are performed by version g1.0 of a Flexible coupled Ocean-Atmosphere-Land System Model (FGOALS) developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS), including the "Climate of the 20th century experiment", "CO2 1% increase per year to doubling experiment" and two separate IPCC greenhouse gases emission scenarios AIB and B1 experiments. To distinguish between the different impacts of natural variations and human activities on the climate change, three-member ensemble runs are performed for each scenario experiment. The coupled model simulations show: (1) from 1900 to 2000, the global mean temper- ature increases about 0.5℃ and the major increase occurs during the later half of the 20th century, which is in consistent with the observations that highlights the coupled model's ability to reproduce the climate changes since the industrial revolution; (2) the global mean surface air temperature increases about 1.6℃ in the CO2 doubling experiment and 1.5℃ and 2.4℃ in the A1B and B1 scenarios, respectively. The global warming is indicated by not only the changes of the surface temperature and precipitation but also the temperature increase in the deep ocean. The thermal expansion of the sea water would induce the rise of the global mean sea level. Both the control run and the 20th century climate change run are carried out again with version g1.1 of FGOALS, in which the cold biases in the high latitudes were removed. They are then compared with those from version g1.0 of FGOALS in order to distinguish the effect of the model biases on the simulation of global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号