首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
云下部正电荷区与负地闪预击穿过程   总被引:1,自引:0,他引:1  
张义军  孟青  吕伟涛  马明  郑栋 《气象学报》2008,66(2):274-282
三维雷电观测系统LMA(Lightning Mapping Array)是最近发展起来的基于GPS时钟同步的闪电VHF辐射源到达时间差(TOA)定位技术,能以很高的时间分辨率(50 ns)和空间定位精度(50-100 m)展现闪电放电发展过程的三维时空分布,揭示雷暴中电荷结构及其与放电过程的关系.文中利用三维雷电VHF辐射源观测资料分析了负地闪预击穿过程的时空分布特征,讨论了云下部正电荷区对负地闪发生的影响,其结果表明在首次回击之前存在长时间预击穿过程的负地闪中,预击穿过程是云中部负电荷区与下部正电荷区之间的一种云内放电过程,闪电起始于云中部负电荷区,然后向下发展传输,进入正电荷区后闪电通道在云下部正电荷区水平发展,其放电特征与反极性云闪放电一致,云内放电过程最后阶段的K型击穿激发了地闪的梯级先导,梯级先导穿过云下部正电荷区向下发展传输.云下部正电荷的存在是导致负地闪首次回击之前存在长时间云内预击穿过程的主要原因.  相似文献   

2.
闪电宽带电场三维定位及其回波特征   总被引:4,自引:2,他引:2       下载免费PDF全文
利用自制闪电宽带电场三维定位系统, 分析了山东地区一次雷暴过程闪电三维时空结构。结果表明, 在云内击穿放电整个时间序列中, 辐射源空间分布(对应强电场区分布)呈现明显的三极性分层电荷结构, 并分布在3个高度层次: 6~8 km为上部正电荷区, 4~6 km为中部负电荷, 2.5~4 km为下部次正电荷区。云内放电首先出现在中部负电荷区, 然后产生向上发展的负流光进入上部正电荷区传输, 形成向上发展的云闪; 随着雷暴发展, 产生向下发展的负流光进入下部次正电荷区, 形成向下发展的云闪, 且能维持到雷暴发展后期。结合雷达回波分析表明, 雷达回波的强度影响着闪电活动, 强回波区的增加会使得强电场区域增加, 但是强电场区域并不与最强回波区域对应, 除下部正电荷区的底部会有部分辐射源出现在回波强度为40~50 dBz的区域中以外, 大多数的辐射源出现在25~35 dBz的中等回波区范围内, 强回波区域中通常较少出现击穿放电。  相似文献   

3.
青藏高原云闪起始阶段放电特征分析   总被引:1,自引:0,他引:1  
2003年夏季在青藏高原那曲地区进行了雷电综合观测试验,利用宽带干涉仪系统获取的闪电资料,根据辐射源定位结果和相应的电场变化对云闪放电起始阶段进行了分析,初步分析结果表明:雷暴过境时地面电场为正值的情况下,云闪放电多发生在中部负电荷区和下部正电荷区之间,上部正电荷区一般不参与放电。虽然不同的云闪会有不同的放电发展过程,但放电起始阶段具有相似的特征。云闪放电起始于中部负电荷区,在初始几十毫秒内,辐射源垂直向下发展,云内负流光向下发展速度约为1.14~1.72×105m/s。在下部正电荷区内,闪电通道可以垂直发展,也可以水平发展。且发生在正电荷区的放电过程比较复杂,正电荷区辐射点比负电荷区要多。  相似文献   

4.
闪电放电通道的三维结构特征   总被引:18,自引:9,他引:9  
通过对闪电VHF辐射源高时空分辨率的三维观测资料的分析发现,无论云闪还是地闪其时间和空间分布特征可表明雷暴中的基本电荷结构。云内闪电放电不仅发生在上部正电荷区与中部主负电荷区之间,也同样会在中部主负电荷区与下部正电荷区之间发生,除极性相反之外,其它特征是一致的。云闪过程在最初的10一20ms内垂直向上(正常极性)或向下(反极性)发展,之后转为水平方向的传输。在正电荷区辐射点较多,闪电通道清晰;在负电荷区辐射点较少,且从闪电的起始位置以一种倒退的方式水平延伸闪电通道。云闪中的K型击穿不仅发生在闪电的后期,而且还发生在活跃期,并不时发展到正电荷区而触发新的闪电分叉。负地闪首次回击之前的梯级先导过程辐射较强,继后回击前的直窜先导的辐射较弱。回击之间闪电在云内水平发展,通道以细小的分叉为主要特征,其间不时有没有到地的企图先导过程发生。正地闪的先导过程基本没有可探测到的辐射点,在回击之前有一段云内过程,回击之后有更长的云内过程发展,其闪电通道不像负地闪那样精细,在回击之后的最初阶段辐射点较少,而在通道的顶端辐射点反而较多。正负地闪的发生发展特征有很大的不同,表明正、负极性的电荷击穿及传输过程的机制存在明显差异。  相似文献   

5.
雷暴中双极性窄脉冲事件的位置与辐射强度   总被引:2,自引:2,他引:0       下载免费PDF全文
双极性窄脉冲事件(NBE)是一类特殊的大气放电现象,能产生强甚低频/低频(VLF/LF)和甚高频(VHF)辐射。为了探索NBE发生的气象环境和放电特性,选出重庆双频段闪电定位网络在一次雷暴过程中观测到的608次正极性NBE(简称正NBE)和82次负极性NBE(简称负NBE),对比发生位置和辐射强度。结果表明:正NBE主要分布于7~15 km高度处,归一化到距离辐射源100 km处的VLF/LF电场变化峰值的平均值为13.4 V·m-1,平均VHF辐射功率为73.5 kW。负NBE主要发生在两个高度范围,72例负NBE分布于16~20 km高度,它们倾向于发生在30~35 dBZ回波顶高大于18 km的对流云顶及附近,其平均归一化VLF/LF电场变化峰值为42.7 V·m-1,平均VHF辐射功率为76.9 kW。10例负NBE分布于4~8 km高度,全部发生于对流核内部。其平均归一化的VLF/LF电场变化峰值为2.7 V·m-1,平均VHF辐射功率为18.2 kW。从统计结果看,在VLF/LF频段,上部负NBE的辐射强度普遍强于正NBE和下部负NBE;在VHF频段,上部负NBE的辐射强度与正NBE基本相当,大于下部负NBE;下部负NBE在两个频段的辐射通常弱于正NBE。  相似文献   

6.
利用甘肃中川地区GPS同步的7个测站闪电慢天线获得的电场变化资料, 通过非线性最小二乘法对2004年8月20日一次雷暴过程中的10次云闪进行了拟合分析, 估算了其所中和的电矩、 取向及空间位置等参量。结果表明, 其中5次云闪是雷暴云中部主负电荷区与其下部正电荷区之间的放电, 另外5次是中部主负电荷区与其上部正电荷区之间的放电, 对应的放电中心的海拔高度分别在3.2~5.6 km和6.8~7.7 km, 中和电矩分别约为4.56~61.0 C·km和 1.06~15.9 C·km。发生在雷暴云上部正电荷区与中部主负电荷区之间的闪电所中和电矩较发生在雷暴云中部主负电荷区与下部正电荷区之间的闪电所中和电矩小。结果证实了中国内陆高原地区雷暴云的上部和下部有两个正电荷区存在, 与闪电放电相联系的雷暴云电荷结构可用简化的三极性来代表。  相似文献   

7.
短基线时间差闪电辐射源探测系统和初步定位结果   总被引:6,自引:3,他引:3  
张泉  郄秀书  张广庶 《高原气象》2003,22(3):226-234
介绍了一种新型的闪电探测设备———短基线时间差法辐射源定位系统,并选取2002年夏季野外观测实验中的辐射源定位结果,结合电场变化特征分别对两次地闪和云闪进行了分析。结果表明,该系统对地闪先导过程和云闪产生的辐射源能够较好地定位。定位结果的个例分析证实,观测地区的两次云闪放电过程都由起始于云下部负电荷区的负极性击穿引发,然后向上发展到上部正电荷区,通道的发展速度约为1.29×105m·s-1,地闪梯级先导的传播速度约为1.73×105m·s-1。  相似文献   

8.
郑天雪  谭涌波  罗林洁 《大气科学》2022,46(6):1407-1424
本研究将云闪随机放电参数化方案植入到偶极电荷结构中,固定主负电荷区的参数和位置,通过不断调整上部正电荷区的参数(电荷浓度和水平范围)和位置以此来模拟不同高度处起始的正极性云闪,进而探讨正云闪放电特征与雷暴电荷分布之间的关系。模拟结果表明在偶极电荷结构中,抬升上部正电荷区的高度,能够产生如观测所示的高海拔正云闪,不同于普通正云闪起始于向上传播的负先导及水平或稍向下延伸的正先导,高海拔处起始的正云闪以大范围向下传播的正先导及水平或轻微向上延伸的负先导为主要特征。随着上部正电荷区位置的抬升,正云闪起始高度也随之升高,当上部正电荷区抬升到一定高度后(本研究中当上部正电荷区下边界超过12 km),云闪通常起始于主正电荷区内,且上部正电荷区的浓度以及水平半径对于云闪的起始高度没有显著影响。此外,云闪正、负先导通道的长度与电荷区的浓度、水平半径以及起始点和负、正电荷区之间的距离存在显著的正相关关系。  相似文献   

9.
青藏高原东北部地区闪电特征初步分析   总被引:3,自引:0,他引:3  
利用VHF辐射源三维定位系统及快、慢天线资料,对青海大通地区5次雷暴过程中云闪、负地闪、正地闪的起始高度、持续时间、辐射源数目及正、负地闪云内放电过程的持续时间和回击次数进行了统计分析.研究表明,该地区闪电持续时间较短,平均<0.5 s;正、负地闪首次回击发生前均有较长时问的云内放电过程,正地闪的云内放电过程持续时间略长于负地闪;负地闪的回击次数较少,平均为2.5次,其中40%的负地闪只有1次回击,而正地闪回击次数均为1次;云闪的起始高度最高,负地闪的起始高度低于云闪,正地闪的起始高度最低;云闪产生的辐射源数目最多,负地闪少于云闪,正地闪产生的辐射源数目最少.  相似文献   

10.
云闪放电通道发展及其辐射特征   总被引:3,自引:5,他引:3  
利用闪电宽带干涉仪系统,对中国南方(广东)地区云闪时空演变特征、辐射及其相应电场变化特征进行分析研究。根据云闪电场变化波形,云闪放电过程可划分成活跃阶段和最后阶段,辐射源定位结果表明,云闪放电起始于向上发展的负击穿过程,通道向上发展的速度约为3~3.3×105m·s-1。云闪放电的主通道在活跃阶段形成,该期间辐射源随时间演变和相应电场变化表明,云内电荷结构具有上正下负的偶极性电荷结构。云闪的最后阶段辐射源主要在早期形成的通道内出现,其辐射源活动特征与地闪的回击过程比较相似;云闪辐射能量主要集中在2~3MHz以下的低频段,且辐射强度随频率增加迅速减弱。  相似文献   

11.
云中闪电及云下部正电荷的初步分析   总被引:10,自引:10,他引:10  
1986年夏季,我们在兰州中川机场附近对雷暴过程中的闪电进行了3站电场、电场变化及声光差的同步观测。本文定量分析了8月3日和4日两次雷暴过程中的7个云闪放电。结果表明,除一个为云中负电荷区和其上部正电荷区之间的放电外,其余都是负电荷区和云下部范围很大的正电荷区之间的放电。放电中心在海拔高度为3.8—6km之间(对应环境温度为7.6—-13.5℃),中和电矩约18—48Ckm。云下部的这种放电现象在文献中还很少见报道。  相似文献   

12.
云闪K过程的三维时空特征   总被引:3,自引:3,他引:0       下载免费PDF全文
K过程是闪电放电过程中的一种放电事件。该文使用两套VHF宽带干涉仪2010年夏季在广州从化地区获取的3次云闪三维闪电辐射源定位数据,分析其中的K过程时空发展特征与地面电场特征。结果表明:宽带干涉仪观测到的K过程主要由快速发展的负极性放电事件组成,按定位结果的分布可划分为3个阶段:负极性反冲先导发生在云闪起始区域下方,沿正先导一端已有路径向闪电起始区域传播;部分反冲先导能进入之前负先导建立的通道并快速发展;反冲先导将原有通道激活后进一步促进负先导继续发展。同时使用辐射源三维定位数据计算了8次反冲先导的平均发展速度,反冲先导的发展速度为106~107 m·s-1量级,与负地闪中的负极性直窜先导相似,但均小于回击速度。  相似文献   

13.
青藏高原东北部地区夏季雷电特征的观测研究   总被引:28,自引:9,他引:19  
介绍了2002年夏季在海拔2650m的青海东部地区所进行的雷电综合观测实验及初步研究结果。实验中采用了GPS同步的6个站闪电快、慢电场变化和平均电场的同步观测,配合1ms的高速摄像对该地的雷暴电荷结构、闪电放电特征等进行了研究。初步研究结果表明,青海东部的雷暴云当顶时,地面电场既可受云内的负电荷所控制,也可能受正电荷所控制,揭示了雷暴电荷结构的复杂性。同时,闪电特征也存在一定的特殊性,所发生的地闪先导常以多分叉的形式慢速向地面行进,并在地面形成两个或两个以上的接地点;梯级先导的发展速度约为0.8~1.18×105m·s-1。同时在地闪发生之前和之后常有持续时间较长、闪道清晰的云内放电过程发生。高速摄像观测首次发现,在一次云内正电荷控制地面电场的雷暴条件下,云内放电过程呈现出双层结构特征。放电首先从上部负电荷区和下部正电荷之间的地方激发,然后上、下同时发展。在开始阶段只能看到向下的负流光通道,当上、下发展的通道分别到达负、正电荷区时,明亮的的主通道形成。之后放电在下部正电荷区以多分叉的形式水平扩展,下部的水平扩展停止后,主通道上部的放电开始水平扩展,是一种反极性的云内放电过程。  相似文献   

14.
"三维闪电探测系统研制"是国家科技部科研院所技术开发专项,其目标是开发完整的三维全闪(云闪、地闪、云内特殊放电事件)探测和定位系统.采用闪电VLF/LF和VHF辐射信号同步联合分析的方式,采用时差定位技术,利用闪电波形匹配、脉冲匹配、时域相关和频谱分析等方法,实现对闪电辐射事件的三维探测.2007年主要开展了以下3个方面的工作:  相似文献   

15.
放电后电荷重置对雷暴云电荷结构及闪电行为的影响   总被引:1,自引:0,他引:1  
为探究放电后电荷重置对雷暴云电过程的影响,在已有的三维雷暴云起、放电模式中分别加入两种不同的电荷重置方案:一种是植入法即放电后闪电通道上的感应电荷与原空间电荷叠加(简称ZR方案);另一种是中和法即放电后直接按一定比例降低闪电通道处的空间电荷浓度(简称ZH方案)。利用长春一次探空个例进行敏感性试验,发现放电后重置方式的不同会导致闪电特征存在明显差异:1)ZR方案下的云闪发生率比ZH方案下的云闪发生率少。闪电放电后ZR方案在云中植入异极性电荷,对雷暴云中电荷的中和量比ZH方案多,摧毁云中电场的能力更强;2)ZR方案下的正、负地闪发生率均比ZH方案多。相对于ZH方案,ZR方案中主正电荷区的分布范围大于主负电荷区,导致其出现了更多的正地闪;ZR方案中的云顶屏蔽层与主正电荷区的混合程度高,混合时间长,导致ZR方案在主正电荷区与主负电荷区之间触发了更多的负地闪;3)ZR方案下的闪电通道长度比ZH方案下的闪电通道长度短。ZR方案在云中植入异极性电荷,导致云中难以形成大范围同极性电荷堆,闪电通道传播局限在一对较小的异极性电荷堆内,而ZH方案不改变云中电荷分布,存在大范围同极性电荷堆,闪电通道传播范围较大。  相似文献   

16.
我们用一台自制宽带电场接收机和四台窄带电场接收机对同一闪电的辐射场进行了测量,得到了从2kHz到80MHz频段内云闪和地闪的绝对振幅谱。云闪和地闪的谱峰值分别出现在4kHz到10kHz和20kHz到80kHz频段内。在10kHz到2.8MHz内,地闪的平均谱按1/f衰减,2.8MHz到80MHz内,按1/f~(1·4)衰减。在40kHz以上,云闪的平均谱按1/f~(1·4)衰减。40kHz以下,地闪是主要的辐射源,40kHz以上,云闪和地闪有几乎相等的辐射强度。50km距离上,地闪首次回击辐射电场峰值的平均值为15.16V/m,标准差为8.38V/m。1MHz以下,地闪首次回击辐射总能量为0.84×10~5J,标准差为1.57×10~5J。峰值功率为0.85×10~(10)W,标准差为0.98×10~(10)W。峰值电流为27.80kA,标准差为17.12kA。电流时间变化率峰值为109.30kA/μs,标准差为91.53 kA/μs。我们对观测到的一些特殊的闪电现象也做了初步解释。  相似文献   

17.
蓝渝  张义军  吕伟涛  郑栋  陈绍东 《高原气象》2009,28(5):1025-1033
利用宽带傅立叶分析法对2008年7月30日和8月4日两次雷暴过程中, 距离观测点5~20 km范围内的55次负地闪回击过程, 33次云内闪电过程以及20次双极性窄脉冲事件(NBE)的电磁辐射信号进行了观测分析, 得到地闪回击、 云闪放电初始阶段以及双极性窄脉冲事件在0.1~40 MHz频带宽度下的电磁辐射能量谱密度。结果表明, 这三类闪电放电过程的辐射频谱波形均呈现出随频率增加、 幅值减小的趋势, 但在辐射强度和衰减速率上存在一定的差异。负地闪回击幅频波形在6~28 MHz频段上衰减速率相对缓慢; 云闪初始阶段在全频带上始终遵循f-1.2~f-1.4之间的衰减率递减, 且其频谱幅值与地闪回击的辐射能量谱幅值相差不大; NBE事件在0.1~40 MHz频带中辐射能量谱幅值基本都明显大于其他两类闪电放电过程, 特别是在10 MHz以上的HF、 VHF频带上其差异可达到20 dB。  相似文献   

18.
雷暴云电场的初步研究   总被引:1,自引:0,他引:1  
本文介绍了利用电场仪、闪电计数器以及雷达对雷暴云地面电场进行观测的结果。甘肃平凉地区雷暴云电荷分布一般为上正下负,云底附近有一小正电荷区。上层正电荷区可向上延伸,而下层负电荷区水平尺度可达数个公里,云底小正电荷区也可扩展10公里以上。 降水区地面呈现正电场。雷暴云闪电电矩变化可在40—300库伦公里间,平均值为120库伦公里,随着云体的发展,也就是说,随着雷达强回波高度的增高,大于180库伦公里的闪电增多。闪电后电场初始恢复速率平均为1/7/秒。 对于雷暴云电场特征的可能机制也作了初步讨论。  相似文献   

19.
雷暴云内电荷水平分布形式对闪电放电的影响   总被引:4,自引:4,他引:0       下载免费PDF全文
为了定量探究雷暴云内电荷水平分布形式对闪电类型和先导传播行为的影响,建立了典型雷暴云电荷结构模型,引入控制电荷水平分布的参数,利用改进的随机放电参数化方案,开展二维高分辨率模拟试验。结果表明:主正电荷区电荷水平分布不均匀且向中心聚集时,产生的闪电类型多为正地闪和正极性云闪,随着电荷水平分布趋于均匀,闪电类型转变为负地闪;主负电荷区电荷水平分布趋于均匀时,闪电类型由负地闪向正极性云闪再向正地闪转变;闪电先导传播特征有较大差异,电荷分布密集不均匀时,先导被束缚在电荷高密度中心,主要在电荷区内发展,当电荷分布单一均匀时,先导能穿出电荷区并水平延伸十几至二十多千米。分析两个电荷区之间的电位分布发现,电荷区电荷水平分布趋于均匀时,位势线向电荷密度中心集中,整个位势阱水平延展,闪电触发点的初始电位值有较大差异,有利于闪电类型和先导传播行为的改变。  相似文献   

20.
一种正地闪触发过程观测和分析   总被引:2,自引:1,他引:1       下载免费PDF全文
利用2008年夏季在山东滨州获得的无线电窄带干涉仪及同步快慢电场资料,对发生于2008年6月29日的一次具有2次回击的正地闪进行了波形特征分析及定位处理。结果表明,正地闪预击穿过程起始于云中部负电荷区域,有持续时间长达163ms的预击穿过程,并在预击穿后期产生很多双极性脉冲。通过与负地闪的比较,发现云下部正电荷区的浓度对云中触发闪电的极性有一定的影响。正先导的触发和传输过程需要长时间的云内放电过程来提供能量,正流光传输是非阶梯型,结合同步观测的快电场三维定位结果的结合,得到正地闪首次先导速度约为4.1×105 m.s-1,首次回击的速度约为9×107 m.s-1,直窜先导的速度约为4.7×106 m.s-1,继后回击的速度约为9.6×107 m.s-1。正地闪的回击速度偏小,可能是由于干涉仪通道是二维的,且有一定的误差,还讨论了正地闪继后回击产生的原因是由于下部正电荷区很强,不同于一般的正地闪且只有1次回击过程。在该个例中还观测到正先导传输过程中的VHF辐射,这可能是由于雷暴过程下部正电荷区域很强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号