首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
利用国际耦合模式比较计划第六阶段(CMIP6)中18个地球系统模式总初级生产力(GPP)模拟数据,基于传统的多模式集合平均(MME)和可靠集合平均方法(REA),在4个未来情景(SSP1-2.6,SSP2-4.5,SSP3-7.0和SSP5-8.5)下预估了21世纪全球陆地生态系统GPP的变化量,并分析了GPP变化的驱动因子。研究结果表明:在4个未来情景下,基于REA方法预估的全球陆地生态系统年GPP在未来时期(2068—2100年)比历史时期(1982—2014年)分别增长了(14.85±3.32)、(28.43±4.97)、(37.66±7.61)和(45.89±9.21)Pg C,其增量大小和不确定性都明显低于MME方法。在4个情景下,大气CO2浓度增长对GPP变化的贡献最大,基于REA方法计算的贡献占比分别为140%、137%、115%和75%;除SSP5-8.5(24%)外,其他情景下升温均导致全球陆地生态系统GPP降低(-42%、-37%、-16%),部分抵消了CO2施肥效应的正面贡献。温度的影响存在纬度差异:升温在低纬度地区对GPP有负向贡献,在中高纬度地区为正向贡献。降水和辐射变化对GPP变化的贡献相对较小。  相似文献   

2.
蒸散发是水文循环和能量传输的中间环节,同时也是联结土壤、植被、大气过程的纽带。基于第六次国际耦合模式比较计划(CMIP6)12个全球气候模式数据,研究了SSP1-2.6、SSP2-4.5和SSP5-8.5三种情景下,长江流域2020-2099年实际蒸散发ET(Evapotranspiration,简称ET)的时空变化及其影响因素。研究结果表明,在3种气候变化情景下长江流域ET相较基准期(1995-2014年)均存在显著增加趋势,且长江中下游地区增加趋势最为显著;SSP1-2.6情景ET较基准期先快速增加,21世纪60年代之后减缓并趋于平稳,SSP2-4.5和SSP5-8.5情景下均呈持续增加趋势。研究了降水(Precipitation,简称Pr)、气温(Air Temperature,简称T)和叶面积指数LAI(Leaf Area Index,简称LAI)对长江流域ET的影响;SSP1-2.6和SSP2-4.5情景下,长江流域ET受T影响最为显著,而SSP5-8.5情景下,LAI是影响ET的主导因素。在3种气候情景下,辐射强迫越大,植被增加趋势越显著,对ET的影响越强(SSP5-8.5、SSP2-4.5、SSP1-2.6情景下影响逐渐减弱),而ET对LAI的敏感性则逐渐降低(SSP1-2.6、SSP2-4.5、SSP5-8.5情景下敏感性逐渐降低)。  相似文献   

3.
针对《巴黎协定》提出的温控目标,利用耦合模式比较计划第五阶段(CMIP5)模式在RCP2.6、RCP4.5和RCP8.5情景下的模拟结果,初步分析了全球升温情景下陆地生态系统净初级生产力(NPP)相对于参考时段(1986—2005年)的变化,重点分析了1.5℃和2℃升温时NPP相对于参考时段的变化量,并探讨了大气CO2浓度、气温、降水和辐射的变化及其对NPP变化的影响。CMIP5基于各典型浓度路径模拟的全球陆地生态系统NPP均呈增加趋势,且NPP增加量与升温幅度成正比。在相同的升温幅度下,基于各典型浓度路径模拟的各环境因子和NPP的变化量较为一致。陆地生态系统NPP总量增加主要由大气CO2浓度上升驱动,其他环境因子的影响相对较弱。中国东南部、非洲中部、美国东南部和亚马孙雨林西部地区NPP增加最明显。NPP变化量的空间格局主要由大气CO2浓度增加和升温控制,降水和辐射的影响相对较小。具体而言,大气CO2浓度上升对中低纬度的NPP变化贡献最大,对北方高纬度地区NPP变化贡献较小。温度上升有利于促进北方高纬度地区和青藏高原地区NPP,但对中低纬度地区的NPP有较强的抑制作用。鉴于既有典型浓度路径和地球系统模型的限制,本文对未来升温情景下陆地生态系统NPP的预估仍存在较大的不确定性,需要在未来的研究中进一步改进。  相似文献   

4.
青藏高原是海-陆-气相互作用的敏感区域,其降水对当地乃至亚洲水循环起着重要作用,但目前对该区域在21世纪的降水时空演变规律仍认识不足。本文以第六次国际耦合模式比较计划(CMIP6)的25个气候模式模拟数据为基准,结合观测数据评估了各模式对青藏高原历史时期(1961-2014年)降水变化的模拟能力,发现多模式集合平均模拟效果优于多数单模式。由多模式集合平均分析了SSP1-2.6、SSP2-4.5、 SSP3-7.0和SSP5-8.5四种情景下青藏高原2015-2099年降水时空特征,发现未来青藏高原年降水量在时间上呈现增加趋势,在空间上呈现西北向东南递增的特征。相对于参考时段(1995-2014年),降水增幅在近期(2020-2039年)呈现北正南负的特征,高值区分布在藏北高原中西部和昆仑山区,而在21世纪中期(2040-2059年)和末期(2080-2099年)降水增幅南北相反的特征消失,其高值区分布在南部地区,且排放情景越高,增幅越大,空间差异也越大。到21世纪末,青藏高原年降水量在SSP1-2.6、 SSP2-4.5、 SSP3-7.0和SSP5-8.5情景下较参考时段分别增加约6...  相似文献   

5.
马阳  崔洋  张雯  李欣 《干旱气象》2023,(1):43-53
为预估黄河流域宁夏段不同地区未来气候特征及其变化趋势,利用宁夏区内19个国家气象站观测资料和CMIP6(Coupled Model Intercomparison Project 6)模式数据,在检验CMIP6模式对宁夏气温模拟能力的基础上,对不同情景下宁夏引黄灌区、中部干旱带和南部山区未来气温变化进行预估。结果表明:(1)CMIP6大部分模式对黄河流域宁夏段年平均气温模拟能力较好,空间相关系数为0.603~0.930,时间相关系数为0.381~0.782,多模式集合优于单个模式模拟效果。(2)在SSP1-2.6、SSP2-4.5、SSP3-7.0、SSP5-8.5 4种情景下,预计2021—2099年黄河流域宁夏段年平均气温均呈明显增温趋势,增温速率为0.09~0.68℃·(10 a)-1。不同情景下增温速率差异明显,SSP1-2.6情景下呈减小趋势,SSP2-4.5情景下先增后减,SSP3-7.0情景下呈“增大、减小、增大”特征,SSP5-8.5情景下呈增大趋势。(3)预计4种情景下21世纪30年代引黄灌区、中部干旱带和南部山区年平均气温分别达10.91~11...  相似文献   

6.
基于国家气候中心中等分辨率模式版本BCC-CSM2-MR开展的第六次耦合模式比较计划(CMIP6)模拟结果, 首先利用辽河流域80个气象站点观测资料对模式的性能进行了评估, 然后分析了未来不同共享社会经济路径(SSP)情景下的气温降水变化趋势。结果表明: 模式能较好的模拟气温和降水的月、季、年变化, 模拟的气温较观测气温偏低, 模拟的降水略偏多; 模式对秋季和冬季气温的模拟性能明显优于夏季和春季, 对夏季降水的模拟性能较好。模式较好地模拟了辽河流域气温南高北低的纬向分布以及降水自东南向西北逐渐减少的空间分布形势, 较好地模拟出辽河流域冷暖中心位置, 模拟的降水偏少地区位于辽河流域水系稀疏地区。相对于基准期(1995—2014年), 未来辽河流域气温、降水基本呈增加趋势, 未来不同时期不同情景气温增幅均表现为平均最低气温>平均气温>平均最高气温, 冬季和春季增温幅度较大, 夏季降水量增幅最显著。随着排放情景升高, 平均气温和平均最低(最高)气温增幅持续增大, 显著增温地区集中于辽河流域东北部。SSP1-2.6和SSP2-4.5情景下预估降水的增幅自西南向东北递减, 降水增加大值区位于辽宁西部; SSP3-7.0和SSP5-8.5情景下降水增幅自西向东逐渐递减, 降水增幅显著区域位于辽河流域上游的内蒙古和辽宁西部。  相似文献   

7.
“一带一路”区域未来气候变化预估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用耦合模式比较计划第5阶段(CMIP5)提供的18个全球气候模式的模拟结果,预估了3种典型浓度路径(RCP2.6、RCP4.5、RCP8.5)下“一带一路”地区平均气候和极端气候的未来变化趋势。结果表明:在温室气体持续排放情景下,“一带一路”地区年平均气温在未来将会持续上升,升温幅度随温室气体浓度的增加而加大。在高温室气体排放情景(RCP8.5)下,到21世纪末期,平均气温将普遍升高5℃以上,其中北亚地区升幅最大,南亚和东南亚地区升幅最小。对于降水的变化,预估该区域大部分地区的年降水量将增加,其中西亚和北亚增加最为明显,而且在21世纪中期,RCP2.6情景下的增幅要比RCP4.5和RCP8.5情景下的偏大,而在21世纪后期,RCP8.5情景下降水的增幅比RCP2.6和RCP4.5情景下的偏大。未来极端温度也将呈升高的趋势,增温幅度高纬度地区大于低纬度地区、高排放情景大于低排放情景。而且在高纬度区域,极端低温的增暖幅度要大于极端高温的增幅。连续干旱日数在北亚和东亚总体呈现减少趋势,而在其他地区则呈增加趋势。极端强降水在“一带一路”区域总体上将增强,增强最明显的地区位于南亚、东南亚和东亚。  相似文献   

8.
利用观测资料、GPCC再分析资料和第六次耦合模式比较计划(CMIP6)模拟结果,研究了我国西北地区近几十年及未来降水变化趋势。结果表明,1979—2019年我国西北干旱半干旱区降水在全年各季节均有显著增加,其中秋季增加最多。CMIP6模拟结果显示,随着全球变暖,我国西北地区降水在2015—2100年将继续增加。至21世纪末,在SSP2-4.5和SSP5-8.5情景下,我国西北地区年平均降水量将分别增加约13.7%(37 mm)和25.8%(78 mm),其中降水量增加最多的季节分别为夏季和春季。考虑到西北地区蒸发量也将随全球变暖而增加,模式平均的结果显示西北地区年平均净降水量在两种情景下的增幅分别约1.4%和4.9%,表明我国西北地区未来气候呈现显著的变湿趋势。进一步分析表明,西北地区未来降水增加可能与局地大气低层位势高度降低和上升运动加强有关。  相似文献   

9.
陆地生态系统碳汇显著降低大气CO2浓度上升和全球变暖的速率,受人类活动和气候变化的影响,陆地生态系统碳通量具有强烈的时空变化,其估算结果仍存在较大的不确定性,不同因子的贡献尚不清晰。为此,利用遥感驱动的陆地生态系统过程模型BEPS模拟分析了1981—2019年全球陆地生态系统碳通量的时空变化特征,评价了大气CO2浓度、叶面积指数(Leaf Area Index,LAI)、氮沉降、气候变化对全球陆地生态系统碳收支变化的贡献。1981—2019年全球陆地生态系统总初级生产力(Gross Primary Productivity,GPP)、净初级生产力(Net Primary Productivity,NPP)和净生态系统生产力(Net Ecosystem Productivity,NEP)的平均值分别为115.3、51.3和2.7 Pg·a-1(以碳质量计,下同),上升速率分别为0.47、0.21和0.06 Pg·a-1。全球大部分区域GPP和NPP显著增加,NEP显著上升(p<0.05)的区域明显少于GPP和NPP。1981—2019年,全球NEP累积为105.2 Pg,森林、稀树草原及灌木、农田和草地的贡献分别为76.4、15.8、9.4和3.6 Pg。CO2浓度、LAI、氮沉降和气候变化各自对NEP的累积贡献分别为58.4、20.6、0.7和-43.6 Pg,全部4个因子变化对NEP的累积贡献为39.8 Pg,其中CO2浓度上升是近40 a全球陆地生态系统NEP上升的主要贡献因子,其次为LAI。  相似文献   

10.
文章利用CMIP5全球气候模式和RegCM4区域气候模式模拟的内蒙古降水量和平均气温的逐月数据,分别将2个气候模式1961—2005年的模拟结果与实际观测值进行对比,综合评估2个气候模式对内蒙古降水量和平均气温的模拟能力,并预估分析3种RCPs情景下2021—2100年内蒙古未来降水量和平均气温的可能变化特征。结果显示:CMIP5模式对年降水量模拟效果优于RegCM4模式,而RegCM4模式对年平均气温的细节模拟更具有优势,总体上CMIP5模式对内蒙古降水量和平均气温均具有良好的模拟能力。未来80年内蒙古气候呈暖湿变化趋势,其中RCP8.5情景增幅最大,年降水量和年平均气温分别增加了21.6%和5.3℃,RCP4.5情景次之,RCP2.6情景增加趋势不明显。四季和各年代的降水量和平均气温也一致呈增加趋势,其中冬季降水量增幅最大,最大可达22.15%,秋季平均气温在RCP2.6和RCP4.5情景下增幅最大,分别为1.50℃和2.22℃,冬季平均气温在RCP8.5情景下增幅最大,为3.67℃;RCP2.6情景下,年降水量和年平均气温分别在21世纪60年代和40年代增幅最大,分别为8.12%和1.57℃,而RCP4.5和RCP8.5情景下则均在21世纪90年代增加幅度最大,最大分别可达18.52%和5.80℃。  相似文献   

11.
基于CMIP6的16个全球模式试验数据,多模式集合预估了《巴黎协定》1.5°C/2°C温升目标下“一带一路”倡议的主要陆域未来气温和降水变化。与观测相比较,多模式集合能够比较准确地刻画“一带一路”主要陆域1995~2014年气温和降水的空间结构特征。在SSP2-4.5、SSP3-7.0和SSP5-8.5三种不同路径情景下,相对于工业革命前(1850~1900年),全球升温1.5°C与2°C分别将发生在2020年代中后期与2040年左右。全球1.5°C与2°C温升目标下,预计“一带一路”陆域平均的气温分别显著升高1.84°C和2.43°C,两者相差0.59°C,模式间标准差分别为0.18°C和0.21°C;区域平均的降水分别显著增加20.14 mm/a和30.02 mm/a,相差9.88 mm/a,模式间标准差分别为10.79 mm/a和13.72 mm/a。两种温升目标下,“一带一路”主要陆域气温空间上均表现为一致性显著增暖,高纬度的增温幅度普遍比低纬度大;降水变化具有明显的空间差异性,地中海与黑海地区、中国南部至中南半岛地区减少,其他地区的降水普遍增加。P-E指数表征的干旱化未来在欧洲地区、中国南部至中南半岛地区、南亚印度东部地区、东南亚和赤道非洲中部地区达到最大。  相似文献   

12.
Zi-An GE  Lin CHEN  Tim LI  Lu WANG 《大气科学进展》2022,39(10):1673-1692
The middle and lower Yangtze River basin (MLYRB) suffered persistent heavy rainfall in summer 2020, with nearly continuous rainfall for about six consecutive weeks. How the likelihood of persistent heavy rainfall resembling that which occurred over the MLYRB in summer 2020 (hereafter 2020PHR-like event) would change under global warming is investigated. An index that reflects maximum accumulated precipitation during a consecutive five-week period in summer (Rx35day) is introduced. This accumulated precipitation index in summer 2020 is 60% stronger than the climatology, and a statistical analysis further shows that the 2020 event is a 1-in-70-year event. The model projection results derived from the 50-member ensemble of CanESM2 and the multimodel ensemble (MME) of the CMIP5 and CMIP6 models show that the occurrence probability of the 2020PHR-like event will dramatically increase under global warming. Based on the Kolmogorov–Smirnoff test, one-third of the CMIP5 and CMIP6 models that have reasonable performance in reproducing the 2020PHR-like event in their historical simulations are selected for the future projection study. The CMIP5 and CMIP6 MME results show that the occurrence probability of the 2020PHR-like event under the present-day climate will be double under lower-emission scenarios (CMIP5 RCP4.5, CMIP6 SSP1-2.6, and SSP2-4.5) and 3–5 times greater under higher-emission scenarios (3.0 times for CMIP5 RCP8.5, 2.9 times for CMIP6 SSP3-7.0, and 4.8 times for CMIP6 SSP5-8.5). The inter-model spread of the probability change is small, lending confidence to the projection results. The results provide a scientific reference for mitigation of and adaptation to future climate change.  相似文献   

13.
Future changes of terrestrial ecosystems due to changes in atmospheric CO2 concentration and climate are subject to a large degree of uncertainty, especially for vegetation in the Tropics. Here, we evaluate the natural vegetation response to projected future changes using an improved version of a dynamic vegetation model (CLM-CN-DV) driven with climate change projections from 19 global climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The simulated equilibrium vegetation distribution under historical climate (1981–2000) has been compared with that under the projected future climate (2081–2100) scenario for Representative Concentration Pathway 8.5 (RCP8.5) to qualitatively assess how natural potential vegetation might change in the future. With one outlier excluded, the ensemble average of vegetation changes corresponding to climates of 18 GCMs shows a poleward shift of forests in northern Eurasia and North America, which is consistent with findings from previous studies. It also shows a general “upgrade” of vegetation type in the Tropics and most of the temperate zones, in the form of deciduous trees and shrubs taking over C3 grass in Europe and broadleaf deciduous trees taking over C4 grasses in Central Africa and the Amazon. LAI and NPP are projected to increase in the high latitudes, southeastern Asia, southeastern North America, and Central Africa. This results from CO2 fertilization, enhanced water use efficiency, and in the extra-tropics warming. However, both LAI and NPP are projected to decrease in the Amazon due to drought. The competing impacts of climate change and CO2 fertilization lead to large uncertainties in the projection of future vegetation changes in the Tropics.  相似文献   

14.
CMIP6 Evaluation and Projection of Temperature and Precipitation over China   总被引:2,自引:0,他引:2  
This article evaluates the performance of 20 Coupled Model Intercomparison Project phase 6(CMIP6)models in simulating temperature and precipitation over China through comparisons with gridded observation data for the period of 1995–2014,with a focus on spatial patterns and interannual variability.The evaluations show that the CMIP6 models perform well in reproducing the climatological spatial distribution of temperature and precipitation,with better performance for temperature than for precipitation.Their interannual variability can also be reasonably captured by most models,however,poor performance is noted regarding the interannual variability of winter precipitation.Based on the comprehensive performance for the above two factors,the“highest-ranked”models are selected as an ensemble(BMME).The BMME outperforms the ensemble of all models(AMME)in simulating annual and winter temperature and precipitation,particularly for those subregions with complex terrain but it shows little improvement for summer temperature and precipitation.The AMME and BMME projections indicate annual increases for both temperature and precipitation across China by the end of the 21st century,with larger increases under the scenario of the Shared Socioeconomic Pathway 5/Representative Concentration Pathway 8.5(SSP585)than under scenario of the Shared Socioeconomic Pathway 2/Representative Concentration Pathway 4.5(SSP245).The greatest increases of annual temperature are projected for higher latitudes and higher elevations and the largest percentage-based increases in annual precipitation are projected to occur in northern and western China,especially under SSP585.However,the BMME,which generally performs better in these regions,projects lower changes in annual temperature and larger variations in annual precipitation when compared to the AMME projections.  相似文献   

15.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   

16.
Future changes in East Asian summer monsoon precipitation climatology, frequency, and intensity are analyzed using historical climate simulations and future climate simulations under the RCP4.5 scenario using the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project 5 (CMIP5) multi-model dataset. The model reproducibility is evaluated, and well performance in the present-day climate simulation can be obtained by most of the studied models. However, underestimation is obvious over the East Asian region for precipitation climatology and precipitation intensity, and overestimation is observed for precipitation frequency. The overestimation of precipitation frequency is mainly due to the large positive bias of the light precipitation (precipitation <10 mm/day) days, and the underestimation of precipitation intensity is mainly caused by the negative bias of the intense precipitation (precipitation >10 mm/day) intensity. For the future climate simulations, simple multi-model ensemble (MME) averages using all of the models show increases in precipitation and its intensity over almost all of East Asia, while the precipitation frequency is projected to decrease over eastern China and around Japan and increase in other regions. When the weighted MME is considered, no large difference can be observed compared with the simple MME. For the MME using the six best models that have good performance in simulating the present-day climate, the future climate changes over East Asia are very similar to those predicted using all of the models. Further analysis shows that the frequency and intensity of intense precipitation events are also projected to significantly increase over East Asia. Increases in precipitation frequency and intensity are the main contributors to increases in precipitation, and the contribution of frequency increases (contributed by 40.8 % in the near future and by 58.9 % by the end of the twenty-first century) is much larger than that of intensity increases (contributed by 29.9 % in the near future and by 30.1 % by the end of the twenty-first century). This finding also implies an increased risk of intense precipitation events over the East Asian region under global warming scenario. These results regarding future climate simulations show much greater reliability than those using CMIP3 simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号