首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 578 毫秒
1.
本文简要介绍了青藏高原东坡理塘大气综合观测站的情况。利用该站20072008年观测资料, 分析比较了青藏高原东坡地区高原草甸下垫面情况下近地层气象要素及能量输送的季节变化特征。结果表明:理塘地区近地层气象要素及能量输送的季节变化显著, 具有明显的水热同期特点。各个季节近地层气象要素和湍流通量, 如风、气温、感热通量、潜热通量等, 日变化显著。风速、动量通量、摩擦速度等要素的平均日最大值和最小值分别出现在下午和日出前。比湿的峰值出现在日出前。辐射和热平衡分量的日均最大值与最小值分别出现在正午及日出前。地表热源强度分析表明, 理塘白天为热源, 在春夏秋三季夜间为弱的热源与冷源交替出现。在雨季, 潜热输送在陆气间热量交换过程中占主导作用, 感热输送是次要的;干季的结果与雨季相反, 感热是首要的。   相似文献   

2.
高山草甸下垫面夏季近地层能量输送及微气象特征   总被引:8,自引:5,他引:3  
李跃清  刘辉志  冯健武 《大气科学》2009,33(5):1003-1014
利用青藏高原东坡理塘站2007年6~8月的观测资料, 分析了高原东坡草甸下垫面夏季近地层气象要素和湍流通量日变化特征, 并用涡动相关法估算地面的曳力系数。结果表明: 水平风速、 动量通量、 摩擦速度等均在下午最大, 早晨最小。二氧化碳浓度表现为早晚高、 中午低的日变化特征, 比湿的最大值出现在早晨。地表辐射、 热量平衡各分量最高值出现在中午, 最低值出现在早晨。地表反照率表现出早晚高中午低的 “U” 型分布, 日平均值为0.164。夏季地面热源强度在白天午后表现为强的热源, 在夜里表现为弱的冷、 热源交替出现。夏季近地层地气热量交换中, 感热输送作用小, 潜热输送占主要地位。  相似文献   

3.
利用2008年1月-2010年2月青藏高原东南缘大理站的长期观测资料,初步分析了该地区近地层基本气象要素、辐射通量和湍流通量的日变化和季节变化.结果表明,各参数均表现出显著的日循环结构和干、湿季变化特征.近地层的风速、气温和动量通量等均在早晨最小、午后最大;相对湿度、地表温度等均是湿季高于干季.近地层2 m高度处的盛行风向,白天以东东南风和东风为主,夜间以静风和偏西风为主,并且盛行风向转变与日出、日落时间有较好的对应关系.地表辐射四分量最高值出现在正午,最低值出现在日出前.除向上短波辐射通量干季大于湿季外,其他辐射分量都是湿季大于干季.地表反照率表现出非对称的“U”形分布,早晨最大、傍晚次之及中午最小.早晚地表反照率差异可能是由于露水、东西两面山体不同程度遮挡以及云的影响造成的.感热、潜热通量全年有相似的日变化过程,变化幅度随季节变化,但潜热通量明显大于感热通量,表明地气热量交换中,感热作用小,潜热输送占主导地位.感热通量一天之中约在20:00出现最小值,这主要是由于风速减弱和地气温差回升影响热量交换系数造成的.地面对大气的加热作用明显,主要是以潜热方式加热大气;地面全年均为大气热源,白天表现为强热源,夜间则表现为较弱的冷源.  相似文献   

4.
利用2009年7月在青藏高原理塘、林芝、海北、拉萨获得的气象观测资料,对比分析了这些地区近地层气象要素、辐射收支及湍流通量日变化特征。结果表明:无论是高原东部、中部还是北部,无论是高原台地还是高山峡谷区,7月份近地层各气象要素、湍流通量、辐射收支都有明显的日变化。各地区的地表辐射、感热、潜热等最高值都出现在中午,最低值出现在早晨。地表反照率日变化均呈早晚高中午低的“U”型分布。地面热源强度在白天均为热源,正午为强热源,在夜间表现为弱的冷、热源交替出现。7月份近地层地气热量交换中,感热输送作用小,潜热输送占主导地位。动量通量和摩擦速度均在风速较大的下午较大,风速小的早晨小。   相似文献   

5.
利用2009年7月在青藏高原理塘、林芝、海北、拉萨获得的气象观测资料,对比分析了这些地区近地层气象要素、辐射收支及湍流通量日变化特征。结果表明:无论是高原东部、中部还是北部,无论是高原台地还是高山峡谷区,7月份近地层各气象要素、湍流通量、辐射收支都有明显的日变化。各地区的地表辐射、感热、潜热等最高值都出现在中午,最低值出现在早晨。地表反照率日变化均呈早晚高中午低的"U"型分布。地面热源强度在白天均为热源,正午为强热源,在夜间表现为弱的冷、热源交替出现。7月份近地层地气热量交换中,感热输送作用小,潜热输送占主导地位。动量通量和摩擦速度均在风速较大的下午较大,风速小的早晨小。  相似文献   

6.
青藏高原五道梁地区湍流输送特征的研究   总被引:25,自引:11,他引:25  
祁永强  王介民 《高原气象》1996,15(2):172-177
根据1994年6-7月在青藏高原五道梁地区的湍流脉动观测资料,分析了该地区近地层能量平衡、感热和谱热的日变化及湍流强度和端流谱特征。结果表明:晴天该地区近地层能量基本平衡,各能量分量的日变化与常情况相同;白天感热通量的输送占主导地位,潜热通量占次要地位,符合半干旱的一般特征。  相似文献   

7.
城市近地层湍流通量及CO2通量变化特征   总被引:1,自引:0,他引:1  
利用北京325m气象塔47m高度上2006年全年连续观测获得的湍流资料,分析了北京城市近地层动量通量、感热通量、潜热通量和CO2通量的典型日变化、月平均日变化和季节变化特征。分析结果显示:动量通量具有明显的单波峰日变化特征,在15时(北京时间)左右达到最大,季节变化中春季最大,冬季次之,夏、秋季最小;感热通量和潜热通量全年变化范围分别为-92~389W.m-2和-75~376W.m-2,其日变化也表现为单波峰特征。感热通量的日变化受城市下垫面和人为热源影响,入夜后虽然降为负值,但只略小于0。阴雨天感热通量和潜热通量均很小,降雨前后有明显区别。感热和潜热最大值分别在春季3月和夏季6月,最小值都在冬季1月;城市下垫面CO2通量总表现为正值,即净排放,最大值为3.88mg.m-2.s-1,不稳定情况下最小值小于-2mg.m-2.s-1。受到人类活动的影响,CO2通量的日变化特征在工作日与周末有明显区别;由于冬季采暖,CO2通量明显大于夏季;在夜间,CO2通量受进城车辆的影响也出现高值。  相似文献   

8.
利用苏州地区2011年12月20日—2012年8月13日的湍流观测资料对不同季节、高温、台风强天气过程下的湍流特征进行分析。结果表明:城市地区不同季节动量通量、感热通量、潜热通量日变化明显,各通量的夏季平均值、最大值均高于冬春季,夏季感热通量日最大值为160.2 W·m-2,感热在城市地表能量平衡中的作用大于潜热,各季节潜热通量平均值仅为感热通量的40%~45%。降水量和植被覆盖度影响地表能量平衡,尤其影响地表热量在感热和潜热之间的分配。在高温天气过程中,感热通量增加明显,其峰值约是夏季平均的1.93倍。由于水汽较少,潜热通量明显减少,约为夏季日平均值的60%。速度三分量谱中u谱与w谱在低频区存在两个峰值,说明在城市复杂下垫面里,湍流激发机制中存在低频过程的影响。在台风天气过程中,动量通量大且变化快,感热输送弱,潜热输送波动大。速度谱w基本不符合"-5/3"次律,惯性子区最小且向高频移动,这和台风内部的复杂上升下沉气流有关。  相似文献   

9.
青藏高原东坡理塘地区近地层湍流通量与微气象特征研究   总被引:4,自引:2,他引:2  
李英  李跃清  赵兴炳 《气象学报》2009,67(3):417-425
简要介绍青藏高原东坡理塘大气综合观测站长期观测试验,并利用2006年1、7月资料分别代表该站冬季和夏季,初步分析和比较该地区冬、夏季近地层微气象特征和湍流通最输送情况,得到了以下结论:(1)风、温、湿均表现出明显的日变化特征.冬季风速值平均大于夏季,风速极大值均出现在下午;冬季温度梯度早晚大,白天小,而夏季均较小;湿度梯度早晚大于白天.(2)中件条件下风速廓线对数关系表现为一条直线而非中件条件下略偏离对数关系,晚上均有逆温现象出现.在一定高度能观测到较弱的逆湿现象.(3)冬季以感热为主,潜热值较小,夏季以潜热为主,但感热也较大,且冬季通量值要远小于夏季;冬季动量通量平均大于夏季,二氧化碳通量远小于夏季;浅层(地面以下2和5 cm)土壤热通量也具有明显的日变化特征,白天从土壤吸收热量,夜间则放出热量.(4)地面热源强度具有显著的日变化特征:白天为强热源,夜间冷热源特征不明显.冬季和夏季全天平均表现为热源,但夏季强度远大于冬季,平均达到134 W/m2左右,冬季仪约35.3 W/m2.  相似文献   

10.
利用中国科学院那曲高寒气候环境观测研究站2002—2015年自动气象塔(AWS_Tower)和2011—2014年涡动相关系统(EC)的观测资料,基于地表能量平衡组合法和涡动相关法计算那曲高寒草地下垫面湍流通量。利用涡动相关法对地表能量平衡组合法计算的感热通量、潜热通量进行校正,并将校正规律外推得到一个长时间连续的地表通量序列,分析那曲高寒草地下垫面感热通量、潜热通量的长时间变化特征以及地面热源与气候影响因子的关系。结果表明,该序列地表能量闭合度在春、夏、秋以及全年接近1,而冬季辐射观测值偏小导致能量闭合度正偏差较大为1. 34。近14年中,感热通量在年际变化上呈上升趋势;潜热通量呈显著减弱趋势,造成地面热源呈减弱趋势。地面热源与风速、地表温度、土壤湿度以及净辐射通量资料的关系显著。其中地面热源全年对净辐射通量响应显著,对地表温度在春、秋以及冬季响应显著,与土壤湿度在春、夏以及秋季响应明显,与风速在春季响应特征较为突出。季节变化上,感热通量在4月达到全年最大值,在7月为最小值;潜热通量在7月为全年最大值,在1月为最小值。  相似文献   

11.
青藏高原东坡理塘地区近地层湍流特征研究   总被引:7,自引:3,他引:4       下载免费PDF全文
李英  李跃清  赵兴炳 《高原气象》2009,28(4):745-753
利用中国气象局成都高原气象研究所在青藏高原东坡理塘地区建立的大气综合观测站观测资料, 以2006年1月和7月涡旋相关资料分别代表冬季和夏季, 分析和比较了该地区近地层包括风速、 风向、 大气稳定度在内的平均场特征, 以及湍流强度、 无量纲化风脉动方差相似性和地表通量变化特征,结果表明, 1月和7月稳定度基本集中在±0.5和±0.25之间; 湍流在<2 m·s-1的风速环境中发展最为旺盛, 随着风速的增大湍流强度减小迅速; 无量纲化三维风脉动方差符合Monin-Obukhov相似理论的“1/3”定律, 其最佳通用相似函数在稳定和不稳定条件下都可以拟合得到; 地表通量均表现出明显的日变化特征, 1月以感热为主, 潜热很小; 7月以潜热为主, 感热较小。  相似文献   

12.
用大理、理塘和林芝的地面自动气象站资料,对比分析3站气温、相对湿度、本站气压、瞬时风速、地面温度的日变化特征。结果表明:大理、理塘和林芝气温最低值和相对湿度最大值的出现时间分别为7时、7时左右和8时左右,气温最高值和相对湿度最小值出现的时间均在16时左右。3站气压日变化呈“双峰双谷型,”2个高峰值时段分别出现在10时左右和凌晨0~1时,2个低谷值时段分别出现在17时左右和5时左右。风速在凌晨至7时左右较低,之后至傍晚不断增大并出现极大值,日落后逐渐减小。3站地面温度7时左右出现最低值,14时左右出现最高值。从季节变化情况看,气温和地面温度出现最高值、最低值的月份及变化幅度最大的月份基本相同。地面温度增、降幅度最大的季节分别是春季、秋季。气压随季节变化幅度较气温、相对湿度小。初春风速较大,秋季风速较小,风速对相对湿度有一定影响,大理和林芝相对湿度出现最小值的月份与风速出现最大值的月份相同。各要素值基本是大理最大,林芝次之,理塘最小,这与3站的纬度、海拔高度和下垫面性质有关。   相似文献   

13.
青藏高原汛期降水的时空分布特征   总被引:4,自引:1,他引:3  
根据1967~2008年青藏高原地区67个气象台站的月平均降水资料,利用线性趋势分析、EOF分解和Morlet小波变换等方法分析了青藏高原地区汛期(5~9月)降水的时空分布特征.结果表明:青藏高原汛期降水存在明显的区域性差异,EOF分解揭示出青藏高原汛期存在3种主要的空间分布型:南北反向型、全区一致型和东南-西北反向型...  相似文献   

14.
利用青藏高原气象台站逐日观测资料,采用候雨量稳定通过临界阈值的方法对高原雨季起讫期进行客观定量划分,在此基础上,进一步分析增暖背景下雨季起讫期和雨季降水演变特征,并对比增暖前后高原雨季起讫期及不同等级降水的响应特征。结果表明:青藏高原雨季平均开始期为5月第3候、结束期为9月第6候、共持续28候;青藏高原雨季降水集中期为6月中旬至9月中旬,并在7月上旬、下旬和8月下旬出现3个峰值,7月上旬为雨季主峰期;1961—2017年雨季降水量总体呈增加趋势,雨季降水量自东南向西北逐渐递减,高值区位于青藏高原东南部的横断山脉;青藏高原雨季气候于1997年开始增暖,增暖前后雨季起讫期区域间差异较大,增暖后雨季开始期在青藏高原西部明显推迟,其余地区均提前,结束期则总体推迟;气候增暖后中雨以上日数增多,雨季降水极端性显著增强且空间覆盖范围明显扩大。  相似文献   

15.
利用位于青藏高原东侧理塘大气综合观测站2008年观测资料,分析了高寒草甸下垫面上地表通量的时间变化特征,确定了温度、水汽和CO2的归一化标准差在不稳定情况下随稳定度变化的通量方差关系,应用通量方差法对感热、潜热和CO2通量进行了计算,并与涡旋相关系统的观测结果进行了比较。结果表明:地表通量月平均日变化呈较为规则的日循环特征,季节变化特征也很明显,雨季(5-9月)潜热大于感热,干季则以感热为主,CO2通量以6-9月值最大。在不稳定条件下,温度、水汽和CO2的归一化标准差随稳定度的变化均满足-1/3规律,其通量方差相似性常数分别为1.2,1.4和0.9。通量方差法估算出的通量值与涡旋相关观测得到的通量值有较好的一致性,但感热通量的效果优于潜热通量和CO2通量。该方法高估了感热通量尤其是潜热通量,而低估了CO2通量。采用直接观测的感热通量值计算潜热通量和CO2通量可改善计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号