首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
秋末冬初常遇到冻土记录与地温记录不配合的问题,为此我们统计了1979—1983年五年冻土与地温资料,发现地面最低温度小于-4.0℃无冻土有29天,08时5厘米地温在0℃以下无冻土22天,甚至08时5厘米地温为-1.9℃尚无冻土。这种差异在开始冻结的浅层土壤中最为明显。冻土是由含水分的土壤温度降到0℃以下时而出现的冻结现象。影响土壤增热和冷  相似文献   

2.
探讨石家庄冻土变化特征与气候因子的关系,以期作好土壤冻融预测.利用石家庄地区5个观测站1981—2010年逐日地温、降水量、蒸发量和冻土观测数据,采用线性趋势、完全相关系数和多元回归方法,分析讨论了该地区冻土变化特征与地温、降水量、蒸发量的变化关系.结果表明:石家庄地区土壤表面始冻期呈现明显推迟趋势,土壤表面解冻期呈现明显提前趋势,其中,中部地区始冻期推迟,解冻期提前趋势最为明显;11—12月平均地面最低温度与土壤表面始冻期正相关明显,2—3月平均地面最低温度与土壤表面解冻期负相关明显;秋季降水量和蒸发量对土壤表面始冻期推迟,冬季降水量和蒸发量对土壤表面解冻期提前影响较小.  相似文献   

3.
在对库尔勒-鄯善沿线极端最低地温和最大冻土深度对比分析基础上,应用极值分布原理和谢赫特尔公式预测库尔勒-鄯善沿线今后50年、100年一遇极端最低地温和最大冻土深度及各深层地温.从中发现了最冷月40cm地温与最大冻土深度存在负相关关系,这对于输油管道的埋深等具有实用价值.  相似文献   

4.
冻土观测是指量取含有水分的土壤因温度下降到0℃或以下呈冻结状态时的冻结厚度。而在冻土观测记录中,有时5、10厘米深地温已为0℃或以下,但冻土器内管仍无冻结冰柱。当出现这种情况时,查看附近地表面,会发现土壤的确冻结了。显而易见,这种记录有问题。为什么会出现这种记录呢? 一、仪器安装使用方面 1、冻土器内管水量不足,顶部为空气所充塞。 2、内管里的链子断开,下部的重锤将软橡皮管拉长。 3、内、外管的0线与地面不齐平。 4、外管内有落进的降水(或外管破裂处渗进水)或其它物,其热容量缓解了降温速度和幅度。  相似文献   

5.
在我国地面气象观测中,冻土的自动观测一直未能实现,为了解决这一问题,本文基于频域反射(Frequency Domain Reflectometry,FDR)测量原理,通过测量土壤介电常数变化实现冻土测量的方法,设计了一种基于平面电容传感器分层检测冻土的传感器,土壤冻结时,其内部水分会相变为冰,水的介电常数远大于冰,利用水冻结相变后引起介电常数急剧变化的特性,建立了基于土壤介电常数、地温反演冻土的数学模型,并进行了典型土壤实验室冻结试验及外场对比观测试验,结果表明:冻土传感器能正确分辨土壤冻结状态,测量数据与人工观测趋势一致,相关系数可达0.99以上,平均测量误差小于3cm,基于介电特性的冻土传感器可以准确连续测量土壤的冻结深度及其生消变化。  相似文献   

6.
干旱及灌溉对冬小麦根系和产量的影响研究   总被引:1,自引:0,他引:1  
在郑州农业气象试验站开展不同程度干旱、灌溉试验,研究了不同水分条件对冬小麦根系活力、形态及产量的影响。结果表明,干旱条件下,冬小麦根系活力和根直径均有明显的降低,根长有明显增加,土壤下层所占根系总体积比例增大,且随着发育期的推进,下层根系所占比例呈现增大的趋势,水分利用效率有明显提高;随着干旱程度的增加,上述变化趋势更加明显。在灌溉量相同的情况下,越冬期灌溉,有利于冬小麦根系活力和根直径增加,但不利于根系的向下伸展;返青期和拔节期灌溉有利于根系向下伸展、水分利用效率提高、理论产量增加,但不利于根系活力和直径的增加;拔节期灌溉,可适当增大灌溉量,减少灌溉次数,以提高水分利用效率。综合根系形态和活力、水分利用效率及产量,在冬小麦干旱持续发生条件下,在返青期、孕穗期灌水600 m~3·hm~(-2)左右,可根据干旱程度适当增减灌水量,重旱条件下适当增加灌水次数,少量多灌缓解旱情,而重大干旱年份灌水困难条件下可只在拔节期灌水600 m~3·hm~(-2),以实现产量的减损和节水效果。  相似文献   

7.
冻土观测分析王吉兴(张掖地区气象局734000)“冻土是指含有水分的土壤因温度降到0℃或以下时而呈冻结的状态,是反映土壤热状况的一项指标,在研究地表和大气的热量交换上有一定的意义”。由冻土的定义可知,与冻土说明:①因08时不进行80cm,160cm地...  相似文献   

8.
利用1976—2012年甘南藏族自治州8个气象站的冬季最大冻土深度、气温、地温、日照时数、降水量、相对湿度、蒸发、积雪资料,分析了近37年甘南高原冬季最大冻土深度的空间分布以及时间变化特征,进而采用相关系数法进一步探讨了冬季最大冻土深度变化的原因。结果表明:在空间分布上,甘南高原冬季最大冻土深度分布与本地海拔高度和地理位置密切相关。甘南高原冬季最大冻土深度梯度呈西北—东南走向,最大值出现在西北部夏河,最小值出现在东南部舟曲。时间变化上,近37年,甘南高原冬季最大冻土深度呈下降趋势,西北部高海拔区较东南部低海拔区下降更为明显,甘南高原不同地区冬季最大冻土深度在不同时段内存在明显的3—5年和6—7年的周期反映,除合作、玛曲外,在20世纪80到90年代都发生了减小突变。相关系数法分析表明,影响甘南高原冬季最大冻土深度的气象因子主要是热力因子,热力因子中关联最强的是地温和气温,水分因子中与甘南高原大部分站关联最强的是积雪日数。  相似文献   

9.
利用1985—2021年呼伦贝尔市15个国家气象站各层地温、第一冻土层下限、最大冻土深度资料,研究呼伦贝尔市冻土气候演变特征,同时采用重标极差(R/S)和非周期循环分析,统计最大冻土深度等气象要素时间序列的Hurst指数、分维数和非周期循环的平均循环长度,分析最大冻土深度等气象要素变化趋势和记忆周期。研究表明:(1)0cm地温、40cm平均地温、80cm平均地温都呈现出增大趋势,且0cm地温增大趋势最显著,特别是0cm地温最小值增大更加明显。(2)冻结持续日数呈缓慢减小趋势,其中中部偏北海拔超过600 m山区持续时间最长,西南部和东南部地区持续时间最短。(3)7月中旬冻土在北部地区开始,9月开始到10月下旬向西南和东南地区扩展,次年5月上旬至6月下旬自西南和东南地区向北部地区开始消失。(4)最大冻土深度呈现逐年减小趋势,突变年份出现在1988年,最大冻土深度在7-9月最浅,次年2-4月最深,10月-次年1月是最大冻土深度不断加深的过程,5-6月是最大冻土深度显著减小的时段,其中最大冻土深度最大值出现在西部偏南地区。(5)R/S和非周期循环分析表明,冻结持续日数和最大冻土深度未来减小趋势仍将持续,持续时间分别为10 a和8 a;0cm地温、40cm平均地温、80cm平均地温未来增大趋势仍将持续,持续时间都为12 a。  相似文献   

10.
初冬,当5厘米深度地温在0℃上下变化时,容易出现误读和正、负号记错的情况,冻土的冻结与否也不好掌握。经统计本站1975—1983年11至12月地面最低温度和8时5厘米地温、冻土等资料,我们发现它们之间有一定的变化规律。  相似文献   

11.
常见的冻土测量错误原因及防范措施   总被引:1,自引:0,他引:1  
1 引言 冻土是指含有水分的土壤因温度下降到0℃或以下时而呈冻结的状态,这种现象在气象学上称为冻土.该项目是中国北方地区许多气象台站的冬季观测项目之一.它是以灌注在橡胶皮管中水的冻结深度为记录的,《地面气象观测规范》规定每天08时观测一次.在观测地温表以后,把冻土器的铁盖连同橡皮内管取出来,用一手拿住橡皮管而以另一手摸测管内冰柱的下端与哪一刻度线相近(从零厘米线进行计算,即冻土深度),以厘米为单位,只取整数,小数四舍五入.冻土深度不足0.5 cm,记"0",冻土全部融化或没有冻土时,冻土栏不填.  相似文献   

12.
本文以青海省刚察、海晏、共和、天峻4个站代表青海湖地区,利用1981-2014年的气温、地温及冻土资料,对青海湖地区气温、地温及冻土变化进行分析,得出:青海湖地区的气温变化称逐渐升温的态势,这同全球的气温变化趋势一致,均为升温的态势,青海湖地区年平均气温的升温率为0.55℃/10a,变暖的季节主要是冬季;青海湖地区的地温变化同气温变化基本一致,也称逐渐升温的态势;最大冻土深度的变化与地温变化的关系并不明显,而与极端最低气温有着反相关。  相似文献   

13.
青海高原多年冻土对气候变化的响应   总被引:2,自引:0,他引:2  
年平均地温是冻土分带划分的主要指标之一,本利用青海高原气象台站的年平均地温资料,建立了年平均地温与海拔和经纬度的关系模型,结合地理信息分析系统和DEM数据模似出青海高原的冻土分布图。分析了青海高原多年冻土对气候变化的响应及其对生态环境的影响。结果表明:气候变暖已引起高原多年冻土面积的减少和冻土下界的升高,特别是在多年冻土边缘不衔接或岛状冻土区发生比较明显的退化。二十世纪60年代与90年代相比,高原多年冻土下界分布高度上升约71米,季节性冻土厚度平均减小19cm。年最大冻土深度变化的空间分布特征与青海高原年近40a来气温变化的空间特征相一致。  相似文献   

14.
冻土器无记录的原因赵翠珍(清水河县气象局)冻土是指含有水分的土壤因温度下降至0℃或以下时而呈冻结的状态。由于测定冻土的冻土器是一装在特制硬橡胶管内的带有刻度的胶皮内管,因此,测得的冻土记录与自然地面的冻结深度往往不同,在地面温度降至0℃或以下时,内管...  相似文献   

15.
利用新疆输油气管道沿线14个气候观测站1971-2010年逐日14时160 cm地温观测数据、日平均气温和日最低气温数据资料,分别采用均值法和线性倾向估计法分析了输油气管线160 cm地温的时空分布特征和地温的变化趋势,同时还分析了新疆输油气管道沿线160 cm地温与气温的变化关系.结果表明:输油气管道沿线160 cm地温总体呈北低南高的态势,近30 a南北疆管线地温均上升了1℃左右,有所不同的是,大气的升温幅度较160 cm地温升温明显,且地温变化滞后于气温变化,二者之间无显著的相关关系.冬季管线160 cm最低地温出现时间南北疆略有差异,南疆大部分在2月中旬出现,北疆则在2月下旬至3月上旬出现.  相似文献   

16.
高寒地区冻土活动层变化特征分析   总被引:5,自引:0,他引:5  
利用1960-2010年黑龙江省83个气象站的冻土和0 cm地温资料,采用线性回归和多项式回归方法,分析了黑龙江省冻土活动层的时空变化特征,揭示了黑龙江省五个典型气候区域最大冻土深度的变化趋势与特征,讨论了黑龙江省冻土活动层的影响因子。结果表明:黑龙江省冻土活动层冻结开始于9月份,至冬季3月份冻土深度达到最大值,8月份时冻土厚度接近于0 cm。由北向南,最大冻土深度逐渐变小,冻结开始时间逐渐推迟,融化结束时间逐渐提前。黑龙江省最大冻土深度均呈显著减小趋势,存在明显的退化趋势。从年代际变化上看,20世纪90年代前黑龙江省最大冻土深度变化不大,最大冻土深度较深,90年代后最大冻土深度呈显著减小趋势。高纬度地区地温低,在同等条件下冻土深度较低纬度地区大。  相似文献   

17.
利用1959年10月至2018年4月沈阳地区7个气象站逐日冻土观测资料、逐日平均气温、逐日平均地温及5 cm、10 cm、15 cm、20 cm、40 cm地温观测资料,分析了近60 a沈阳地区最大冻土深度的时空变化特征,并探讨了其对气候变暖的响应。结果表明:近60 a来沈阳地区冻土一般在10月开始出现,翌年4月消融。1959-2018年沈阳地区年平均月最大冻土深度在2月和3月最大,10月最小;年最大冻土深度以-4.8 cm/10 a的速度显著变浅,年代平均最大冻土深度也呈变浅趋势。相关分析表明,近60 a沈阳地区日最大冻土深度与日平均气温、地温呈显著负相关关系,相关系数分别为-0.60和-0.72。Mann-Kendall检验表明,7个气象站年平均最大冻土深度均有突变发生,突变点大多出现在20世纪80年代。近60 a沈阳地区最大冻土深度开始日期和结束日期分别呈延后和提前趋势,趋势率分别为1.0 d/10 a和-3.2 d/10 a。1959-2018年沈阳地区平均冻土持续时间为164 d,年变化呈缩短趋势,趋势率为-4.4 d/10 a。  相似文献   

18.
2008年祁连山木里冻土区发现天然气水合物,冻土作为天然气水合物重要的形成条件,控制着陆域水合物的成藏。本文根据祁连山多年冻土参数经验公式,通过在ArcGIS中对由木里地区DEM空间分析,建立多年冻土参数计算模型,得到木里年均气温、年均地温和多年冻土厚度空间分布特征。木里地区年均气温-8~-5℃,年均地温-5~-2℃,冻土厚度80~180m;聚呼更矿区年均气温-7~-5℃,年均地温-4~-2℃,多年冻土厚度90~120m;大通山地区,年均气温低于-7℃,年均地温低于-4℃,冻土厚度大于130m。结合研究区烃源岩分布资料,认为木里盆地与大通山接壤的盆-山地貌过渡地带为天然气水合物最有可能成藏的区域。  相似文献   

19.
冻土是不少台站在冬季的观测项目。它是利用灌注在橡皮内管中水的冻结深度 (长度 )作为记录的 ,《规范》规定每天0 8时观测 1次。在检查台站的记录时发现 ,有时地面温度较低 ,甚至 5cm地温降到了 0℃以下 ,也没有冻土记录。从表面看没有冻土记录有疑误 ,但仔细分析应属正常情况。①地面温度表及浅层地温表安装在没有自然覆盖的裸地处 ,而冻土器是安装在有自然覆盖的地段。根据气象学理论 ,两地段的地面温度及浅层地温有较大的差异 ,在夜间有自然覆盖的地方地温偏高。②冻土器安装的允许误差是± 3cm ,因此台站冻土器的起点 (即零点 )位…  相似文献   

20.
基于1981—2021年北京地区6个气象站的逐日最大冻土深度、平均气温、平均地表温度及5、10、15、20、40、80 cm地温等资料,分析了近40年北京地区最大冻土深度的时空分布特征及其与气温和地温的关系。结果表明:北京地区最大冻土深度总体呈变浅趋势,气候倾向率为-2.3 cm/10 a,各站点最大冻土深度变浅趋势从西到东呈逐渐减弱趋势。北京地区最大冻土深度与40、80 cm地温相关性最好,与地表温度相关性较差。选取2021至2022年北京地区冻土对比试验数据,评估测温式冻土自动观测仪观测精度,发现仪器安装至少一个冻融周期后与冻土人工观测吻合度更好,测温式冻土自动观测仪的观测精度与仪器安装位置的地下岩层、土质分布密切相关,需要在仪器稳定运行后根据当地实际优化算法和冻融阈值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号