首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Evaporation is an important component of surface heat and water balance, and is affected directly by land use and climate change. This paper studies the changes of evaporation in China associated with the global climate change, and explores characteristics of the corresponding regional water cycle variations. The 20-cm-caliber pan evaporation measurements collected from 427 meteorological stations in China from 1957 to 2001 are analyzed to disclose the small-pan evaporation variation trend in China and the associated causes. The results show that although the annual average temperature over China exhibits an upward tendency of 0.2°C/10 yr for the past 45 years,the pan evaporation on the whole has decreased by -34.12mm/10 yr. Nonetheless, a significant increase of pan evaporation is observed in a few areas such as the northern part of the Greater Hingan Mountains in Northeast China and the Beishan Mountains in Inner Mongolia. The largest decrease of pan evaporation lies in East China, northern parts of Northwest China,South China, and southern Tibet. An analysis of energy balance and aerodynamics using Penman's formula proves that the drop of pan evaporation in East China is mainly due to a significant decline of source energy for evaporation, while that in West China is mostly attributed to an aerodynamic reduction. The analysis on tendencies of various meteorological and other related factors shows that wind speed and sunshine hours are two most important factors causing the pan evaporation reduction in China.  相似文献   

2.
This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 2008 and the extremely heavy precipitation thresholds determined for different stations by REOF, trend coefficients, linear trend, Mann-Kendall test and variance analysis. The results are shown as follows. The frequency distribution of extremely heavy precipitation is high in the middle of South China and low in the Guangdong coast and western Guangxi. There are three spatial distribution types of extremely heavy precipitation in South China. The consistent anomaly distribution is the main type. Distribution reversed between the east and the west and between the south and the north is also an important type. Extremely heavy precipitation events in South China mainly occurred in the summer-half of the year. Their frequency during this time accounts for 83.7% of the total frequency. In the 1960s and 1980s, extremely heavy precipitation events were less frequent while having an increasing trend from the late 1980s. Their climatological tendency rates decrease in the central and rise in the other areas of South China, and on average the mean series also shows an upward but insignificant trend at all of the stations. South China's frequency of extremely heavy precipitation events can be divided into six major areas and each of them shows a different inter-annual trend and three of the representative stations experience abrupt changes by showing remarkable increases in terms of Mann-Kendall tests.  相似文献   

3.
This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990 s. Observations indicate an abrupt increase in summer mean surface air temperature(SAT) over Northeast Asia since the mid-1990 s. Accompanying this abrupt surface warming, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature(Tmax), daily minimum temperature(Tmin), annual hottest day temperature(TXx), and annual warmest night temperature(TNx) were observed. There were also increases in the frequency of summer days(SU) and tropical nights(TR).Atmospheric general circulation model experiments forced by changes in sea surface temperature(SST)/ sea ice extent(SIE),anthropogenic greenhouse gas(GHG) concentrations, and anthropogenic aerosol(AA) forcing, relative to the period 1964–93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes,although the abrupt decrease in precipitation since the mid-1990 s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA(through aerosol–radiation and aerosol–cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere–land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply that the abrupt summer surface warming and increases in hot temperature extremes over Northeast Asia since the mid-1990 s will probably sustain in the next few decades as GHG concentrations continue to increase and AA precursor emissions over both North America and Europe continue to decrease.  相似文献   

4.
Model Projections of Precipitation Minus Evaporation in China   总被引:1,自引:0,他引:1       下载免费PDF全文
Changes in precipitation minus evaporation (P -E) are analyzed to investigate the possible impacts of climate change on water resource conditions in China. Simulations of SRES A1B and 20C3M scenarios from the WCRP CMIP3 GCMs are employed in the study. Time slice analysis shows that there would be more annual mean P -E across China in 2040-2055 and 2080-2099, compared to 1980-1999, with the largest percentage change over Northwest China and the Bohai Rim area. Precipitation and evaporation would also increase over entire China during these two periods. Annual mean P -E, precipitation, and evaporation averaged over the whole China and its eight sub-areas all yield generally upward trends during the 21st century. This indicates that on annual mean scale, the global warming related precipitation dominates the hydroclimate conditions in China. On seasonal mean scale, although precipitation is projected to increase over China, P -E exhibits both decreasing and increasing trends over certain regions of China. This suggests that the variation of global warming related evaporation dominates hydroclimate conditions over some parts of China, especially in northern China. Therefore, in hydroclimate condition projections, considering both evaporation and precipitation changes should be more reasonable than considering only precipitation.  相似文献   

5.
The multiple time scale climate changes are studied and calculated with statistical analysis and wavelet transformation on the basis of daily series of observed data over the period 1901-2007 in Macau.The result shows that statistically significant oscillations with 2 to 5 years of period generally exist in the series of climate variables(e.g.annual mean surface air temperature and precipitation as well as evaporation etc.),but with obvious locality in time domain.The variation of annual mean surface air temperature has a quasi 60-year period.The phases of the 60-year variation approximately and consistently match that of Atlantic Multidecadal Oscillation(AMO).The oscillations of seasonal mean surface air temperature in summer and winter have the periods of quasi 30-year and quasi 60-year,respectively.These two periods of oscillations have statistically significant correlation with Pacific decadal oscillation(PDO) and AMO,individually.The multidecadal variations of the precipitation of the annually first flood period and annual evaporation are dominated by periods of quasi 30-year and quasi 50-year,respectively.  相似文献   

6.
Daily observations of wind speed at 12 stations in the Greater Beijing Area during 1960–2008 were homogenized using the Multiple Analysis of Series for Homogenization method. The linear trends in the regional mean annual and seasonal (winter, spring, summer and autumn) wind speed series were-0.26,-0.39,-0.30,-0.12 and-0.22 m s-1 (10 yr)-1 , respectively. Winter showed the greatest magnitude in declining wind speed, followed by spring, autumn and summer. The annual and seasonal frequencies of wind speed extremes (days) also decreased, more prominently for winter than for the other seasons. The declining trends in wind speed and extremes were formed mainly by some rapid declines during the 1970s and 1980s. The maximum declining trend in wind speed occurred at Chaoyang (CY), a station within the central business district (CBD) of Beijing with the highest level of urbanization. The declining trends were in general smaller in magnitude away from the city center, except for the winter case in which the maximum declining trend shifted northeastward to rural Miyun (MY). The influence of urbanization on the annual wind speed was estimated to be about-0.05 m s-1 (10 yr)-1 during 1960–2008, accounting for around one fifth of the regional mean declining trend. The annual and seasonal geostrophic wind speeds around Beijing, based on daily mean sea level pressure (MSLP) from the ERA-40 reanalysis dataset, also exhibited decreasing trends, coincident with the results from site observations. A comparative analysis of the MSLP fields between 1966–1975 and 1992–2001 suggested that the influences of both the winter and summer monsoons on Beijing were weaker in the more recent of the two decades. It is suggested that the bulk of wind in Beijing is influenced considerably by urbanization, while changes in strong winds or wind speed extremes are prone to large-scale climate change in the region.  相似文献   

7.
1961-200年中国各季降水趋势变化   总被引:1,自引:0,他引:1       下载免费PDF全文
Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test for quantifying the significance. The geographical patterns of trends in the seasonal indices of extremes were similar to those of total precipitation. For winter, both total and extreme precipitation increased over nearly all of China, except for a small part of northern China. Increasing trends in extreme precipitation also occurred at many stations in southwestern China for spring and the midlower reaches of the Yangtze River and southern China for summer. For autumn, precipitation decreased in eastern China, with an increasing length of maximum dry spell, implying a drying tendency for the post-rainy season. Wetting trends have prevailed in most of western China for all seasons. The well-known 'flood in the south and drought in the north' trend exists in eastern China for summer, while a nearly opposite trend pattern exist for spring.  相似文献   

8.
Interdecadal variability of temperature and precipitation in China since 1880   总被引:28,自引:0,他引:28  
Reconstruction of a homogeneous temperature and precipitation series for China is crucial for a proper understanding of climate change over China. The annual mean temperature anomaly series of ten regions are found from 1880 to 2002. Positive anomalies over China during the 1920s and 1940s are noticeable.The linear trend for the period of 1880-2002 is 0.58℃ (100a)^-1, which is a little less than the global mean (0.60℃ (100a)^-l). 1998 was the warmest year in China since 1880, which is in agreement with theestimation of the global mean temperature. The mean precipitation on a national scale depends mainly on the precipitation over East China. Variations of precipitation in West China show some characteristics which are independent of those in the east. However, the 1920s was the driest decade not only for the east, but also for eastern West China during the last 120 years. The most severe drought on a national scale occurred in 1928. Severe droughts also occurred in 1920, 1922, 1926, and 1929 in North China.It is noticeable that precipitation over East China was generally above normal in the 1950s and 1990s;severe floods along the Yangtze River in 1954, 1991, and 1998 only occurred in these two wet decades.An increasing trend in precipitation variations is observed during the second half of the 20th century in West China, but a similar trend is not found in East China, where the 20- to 40-year periodicities are predominant in the precipitation variations.  相似文献   

9.
This study investigated the second indirect climatic effect of anthropogenic aerosols,including sulfate,organic carbon(OC) ,and black carbon(BC) ,over East Asia.The seasonal variation of the climatic response to the second indirect effect was also characterized.The simulation period for this study was 2006.Due to a decrease in autoconversion rate from cloud water to rain as a result of aerosols,the cloud liquid water path(LWP) ,and radiative flux(RF) at the top of the atmosphere(TOA) changed dramatically,increasing by 14.3 g m-2 and decreasing by-4.1 W m-2 in terms of domain and annual average.Both LWP and RF changed most in autumn. There were strong decreases in ground temperature in Southwest China,the middle reaches of the Yangtze River in spring and autumn,while maximum cooling of up to-1.5 K occurred in the Chongqing district.The regional and annual mean change in ground temperature reached-0.2 K over eastern China.In all seasons except summer,precipitation generally decreased in most areas north of the Yangtze River,whereas precipitation changed little in South China.Precipitation changed most in summer,with alternating bands of increasing(~40 mm) and decreasing(~40 mm) precipitation appearing in eastern China.Precipitation decreased by 1.5-40 mm over large areas of Northeast China and the Huabei Plain.The domain and annual mean change in precipitation was approximately-0.3 mm over eastern China.The maximum reduction in precipitation occurred in summer,with mean absolute and relative changes of-1.2 mm and-3.8%over eastern China.This study revealed considerable climate responses to the second indirect effect of aerosols over specific regions of China.  相似文献   

10.
STUDIES ON CLIMATE CHANGE IN CHINA IN RECENT 45 YEARS   总被引:6,自引:0,他引:6       下载免费PDF全文
Based on the data of monthly mean air temperature and precipitation from about 400 stationsin 1951—1995.and the data of maximum and minimum air temperatures,relative humidity,totalcloud cover and low-cloud cover,sunshine duration,evaporation,wind speed,snow-covered daysand depth,and soil temperatures in 8 layers from 0 m down to 3.2 m from 200 odd stations in 1961—1995.the climate change and its characteristics in China in recent 45 years have been analyzedand studied comprehensively.This paper,as the first part of the work.has analyzed the climatechange and regularities of such meteorological elements as mean air temperature,maximum andminimum air temperatures,precipitation,relative humidity and sunshine duration.The possiblemechanism on climate change in China and the climate change and regularities of othermeteorological elements will be discussed in another paper as the second part.  相似文献   

11.
冰川变化与气候变化关系的若干探讨   总被引:30,自引:5,他引:25  
冰川变化是气候变化的产物,但它与气候参数的关系表现出不稳定。本文通过理论分析发现:对以上的冰川进退基本上决定于温度变化,与降水的关系不大。对10^1年以内的冰川波动,其大范围的总体特征亦基本上决定于温度变化。个别冰川则比较复杂,但在冰川上部无消融区的物质平衡基本上决定于降水。  相似文献   

12.
合肥城市发展对气候的影响   总被引:1,自引:0,他引:1  
利用1968-1999年气象资料,选取肥西站作为对比站,分析了合肥市城市发展对气候的影响。结果表明:城区热岛效应使近30年城乡年平均气温差值升高到0.5℃,年平均最低气温差值升高到0.8-1.0℃,但白天受下垫面和云量影响,城市最高度增幅不明显。同时,热凫效应还使城区霜期缩短,30年来霜期缩短20-40天,城区干岛效应也使年降水量逐年相对减少(主要减少在汛期时段)。30年来年降水量相对减少60-200mm;城区空气日益干燥,每年的雾日数相对急剧减少,30年来减少10-20天。  相似文献   

13.
开封市近55a气温变化特征分析   总被引:3,自引:1,他引:3       下载免费PDF全文
利用开封市1951-2005年气温资料,分析了开封市近55a气温变化特征,结果表明:开封市总体气温变化呈上升趋势,与全球气候变化基本一致;年平均气温前期10a较低,中期30a保持稳定,后期15a明显上升;夏季气温相对稳定,春、秋和冬季气温升高,冬季气温升高尤明显;1-4月及10-12月气温升高,5、8、9月气温相对稳定,6、7月气温略有下降。年极端最高气温明显下降,年平均最高气温保持稳定,年极端最低气温和年平均最低气温都明显升高。极端气温事件减少,发生程度降低。  相似文献   

14.
利用开封市1951-2005年气温资料,分析了开封市近55 a气温变化特征,结果表明:开封市总体气温变化呈上升趋势,与全球气候变化基本一致;年平均气温前期10 a较低,中期30 a保持稳定,后期15 a明显上升;夏季气温相对稳定,春、秋和冬季气温升高,冬季气温升高尤明显;1-4月及10-12月气温升高,5、8、9月气温相对稳定,6、7月气温略有下降。年极端最高气温明显下降,年平均最高气温保持稳定,年极端最低气温和年平均最低气温都明显升高。极端气温事件减少,发生程度降低。  相似文献   

15.
利用1961—2010年库尔勒气象站年平均气温、年平均气压、年降水量、年平均地面风速、年沙尘日数、年沙尘暴日数及年日照时数等资料,分析了近50 a库尔勒市气候变化基本特征。分析表明:(1)近半个世纪来库尔勒市年平均气温上升速率为0.29℃/10 a,高于0.22℃/10 a的全国平均水平,与全球变暖的大背景相一致;(2)年降水量变化趋势不明显,但年际变率大;(3)年平均地面风速减小速率为0.25 m/s/10 a;(4)年沙尘日数、年沙尘暴日数都呈减少趋势,减少速率分别为14.3 d/10 a和0.77 d/10 a;(5)库尔勒年平均气压前期和后期较低、中期较高,年日照时数年际变化较大;(6)库尔勒的气温、年沙尘日数用Mann-kendall方法检验分别在不同年份发生了的突变。与同期相邻轮台站相比,年平均气温、年平均地面风速、年沙尘日数和年沙尘暴日数变化趋势存在明显不同,这可能和两地不同的城市化速度、绿程度有关。  相似文献   

16.
长江流域近40年强降水的变化趋势   总被引:30,自引:8,他引:30  
杨宏青  陈正洪  石燕  任国玉 《气象》2005,31(3):66-68
利用长江流域109个气象站1960-2001年的逐日降水资料,采用泰森多边形方法计算整个长江流域的面雨量,研究了长江流域面雨量的变化趋势。结果表明:长江流域年面雨量呈增加趋势,但不显著。从长江流域各站暴雨日数和暴雨量趋势变化的空间分布来看,长江流域年、夏季6~8月的暴雨日数和暴雨量表现为较大范围的增加趋势,但通过显著性检验的站并不多,显著增加的中心在江西省。  相似文献   

17.
利用1998-2012年635个气象站点的观察数据,对我国气温的时空变化趋势及其区域差异进行了分析和突变检验,结果表明:近15年来我国年平均气温呈现波动式下降的特点,但下降趋势不显著;全国绝大部分地区年均和四季气温在0.05显著水平未检测出显著的变化趋势,但Z值显示,气温存在不显著的变化倾向:青藏高原区年均气温存在上升倾向,而其他地区多呈下降倾向;春季气温呈上升和下降倾向的区域约各占一半,夏季绝大部分地区气温有上升倾向,而秋季和冬季大部分地区气温则呈现不显著下降趋势。典型站点的分析发现,显著变暖的站点气温基本都存在暖突变,而显著变冷的站点只有约27%的站气温存在冷突变。暖突变年份主要分布在于2005-2006年,冷突变年份多在2009-2011年。  相似文献   

18.
施能 《气象学报》1996,54(6):675-683
研究北半球冬季大气环流遥相关型的长期变化发现:WA,PNA型有明显趋势变化及年代际变化。WA型有明显负趋势,PNA型有正趋势,它们的强度突变分别发生于1980年代初(WA型1983年由强转弱)及1970年代中(PNA型1976年由弱转强)。与此同时,亚洲地区、亚欧地区的经向环流强度于1983年突然减弱。大气环流及遥相关型强度的这种年代际变化是中国冬季气候变化的一个重要原因。  相似文献   

19.
Although virtually all experts agree that CO2 emissions are causing anthropogenic global warming, public discourse is replete with contrarian claims that either deny that global warming is happening or dispute a human influence. Although the rejection of climate science is known to be driven by ideological, psychological, and political factors rather than scientific disagreement, contrarian views have considerable prominence in the media. A better understanding of contrarian discourse is therefore called for. We report a blind expert test of contrarian claims about climatological variables. Expert economists and statisticians were presented with representative contrarian statements (e.g., “Arctic ice is recovering”) translated into an economic or demographic context. In that blind test, contrarian claims were found to be misleading. By contrast, mainstream scientific interpretations of the data were judged to be accurate and policy relevant. The results imply that media inclusion of contrarian statements may increase bias rather than balance.  相似文献   

20.
2000年以来中国区域植被变化及其对气候变化的响应   总被引:1,自引:0,他引:1  
气候是植被变化的主要驱动因子,研究全球增暖背景下中国区域植被变化及其对气候的响应对于国家开展重大生态恢复评估和未来植被保护政策制定具有重要意义。利用2000-2016年MODIS植被指数(Normalized Difference Vegetation Index,NDVI)数据集,运用统计分析方法,从平均态、线性趋势、时间序列、相关性等方面系统分析了2000年以来中国区域植被变化及其对气候变化的响应。结果表明:中国区域NDVI在平均态上呈现从东南向西北递减的空间分布,受降水生长季的影响,东部地区植被指数明显较大;我国大部分地区NDVI呈现增加的趋势,其中湿润半湿润地区NDVI增长幅度为0.037·(10a)-1,而在干旱半干旱地区变化较小[0.013·(10a)-1]。NDVI的变化与气候驱动因素的相关性存在一定的区域差异,其中:NDVI与气温变化在东南沿海、东北东部以及青藏高原北部等地区呈现出显著正相关,而在青藏高原南部等地区呈现微弱的负相关;除青藏高原、塔里木盆地和东北北部等地区外,NDVI与降水量在全国大多数地区呈正相关。从全国平均来看,温度和降水变化对NDVI的贡献分别为7.5%和9.1%,其中温度对NDVI变化的贡献主要体现在湿润半湿润地区(9.3%),而降水的贡献则在干旱半干旱地区(12.2%)。植被变化对气候要素驱动的响应也呈现出明显的区域差异性,在我国东南沿海、云贵高原东部、四川盆地等南方地区以及黄河中下游、东北东部等部分地区,NDVI变化对气温的敏感性最强;而在中国北方干旱半干旱大部分地区,NDVI变化则是对降水驱动具有很显著的响应特征。总体而言,气温是驱动南方地区植被变化的主导因子,而降水则调控着北方地区植被生长变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号