首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
利用2018年1月1日至12月31日逐小时欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)第五代全球大气再分析产品——ERA5和中国气象局多源降水分析系统(CMA multi-source precipitation analysis system,CMPAS)中逐小时降水产品(CMPAS-hourly),采用基于大气水物质收支平衡方程的水物质评估方法对广东2018年空中云水资源及空中水汽、水凝物时空分布进行评估。对广东省整体而言,2018年水汽降水效率为5.1%,水凝物降水效率为89.6%,水汽和水凝物都为净输出。从空间分布来看,水汽总量自西南向东北逐渐减少,水凝物总量高值区在粤西云雾山、天露山及粤东莲花山的南坡,云水资源总量从北部山区向沿海地区逐渐减小,水凝物降水效率从沿海地区向北部山区逐渐减小。从时间变化来看,水汽总量在夏季最大,水凝物总量在8月下半月和9月上半月最大,云水资源总量非汛期高于汛期;水汽和云水资源的变化月内尺度大于天气尺度,水凝物的变化天气尺度大于月内尺度。  相似文献   

2.
应用2000~2011年NCEP/NCAR再分析逐日6h 1 1资料,分析了新疆天山山区对流层不同层次空中水汽输送特征,结果表明:(1)天山山区地面~100 hPa每年平均有11504.1×108t水汽输入,11337.0×108t水汽输出,水汽净收支为167.1×108t,其中西、北边界为输入,东、南边界为输出,对流层中层水汽输送量最大,低层次之,高层最小。天山山区水汽总输入量占全新疆水汽输入量的44.1%。(2)各季节中夏季水汽输送量最大,春季、秋季相当,冬季最小,西边界、北边界均为水汽输入边界,东边界、南边界均为水汽输出边界,对流层中层水汽输入量最大。  相似文献   

3.
利用欧洲中期数值预报中心(ECMWF)发布的第5代全球大气再分析资料(ERA5),结合中国气象局人工影响天气中心发布的CWR-MEM方案云水资源监测评估方法,对广西区域2009—2018年云水资源进行评估研究,结果表明:广西年均云水资源总量约5107.8×10~8 t,其中年均空中留存云水总量约1422.2×10~8 t,云水以区域内生成为主,年均约净输出197.1×10~8 t云水资源。广西云水资源存在明显的季节变化特征,呈单峰分布,夏季6月最高,冬季2月最低,空中留存云水无明显季节变化。广西云水水平分布总体呈东北部高,向西和向南逐渐降低的分布特征。广西秋、冬和春季云水主要分布在低层925~600hPa,是以液相水滴构成的暖性层状云云水为主,夏季云水则主要分布在中层600~400hPa,是以过冷液水滴和冰相粒子构成的混合态云水为主,低层云水显著减少。  相似文献   

4.
北京冬季降雪云系存在丰富的可开发利用的云水资源。出于人工增雪研究和充分开发云水资源的需要,文中对北京2019年11月29日发生的年度首场降雪进行了观测,对其资料做了分析和中尺度数值模拟,研究了降雪过程的宏观特征、水凝物输送及降雪的微物理机制。结果表明:影响本次北京降雪的是稳定性层状冷云云系,水凝物主要从北京区域的西边界和南边界输送到区域内,而从东边界和北边界流出,具有西向和南向分量的湿气流是降雪云系水物质的输送通道。降雪云中的水凝物基本全为冰晶和雪,有少量的云水,整层云系都含有非常丰富的水汽并且贯穿整个降雪时段。在冰面过饱和环境中,水汽凝华(Prds)是雪的主要增长过程;其次是云冰增长成雪(Prci)和云冰聚合成雪(Prai)的过程。  相似文献   

5.
文章利用NCEp再分析、小时降水量、探空、地面观测以及卫星资料等,从水汽、云水两方面,探究空中水物质及降水效率评估方法,分析了内蒙古自治区不同区域不同天气系统降水效率。5—9月各天气过程平均水汽初值为27mm,过程中水汽总输入量是水汽初值的36.7%,水汽降水效率为7.5%。各天气系统平均水物质总量为10mm左右,其中,水凝物初值较小,为2mm,水汽的凝结量为水凝物初值的4倍左右,过程水凝物降水效率大约为41%。全区降水效率较低,有较大的增雨潜力。  相似文献   

6.
北京一次积层混合云系结构和水分收支的数值模拟分析   总被引:3,自引:2,他引:1  
陶玥  李军霞  党娟  李宏宇  孙晶 《大气科学》2015,39(3):445-460
本文利用中国气象科学研究院(CAMS)中尺度云分辨模式对2007年10月的一次积层混合云降水过程进行了数值模拟。利用模拟结果结合实测资料, 研究了积层混合云系的宏微观结构和降水特征, 并分析了云系的水分收支及降水效率。结果表明:积层混合云是导致此次北京降水的主要云型;积层混合云降水分布不均匀, 云系中微物理量的水平和垂直分布都不均匀, 具有混合相云的云物理结构。冷云降水过程占主导地位, 雪的融化对雨水的形成贡献最大。北京区域降水过程的主要水汽源地为黄海海面及蒙古国, 两支气流在陕西北部汇合后的西南气流将水汽输送到华北地区, 北京区域以外, 水汽和水凝物主要从西边界和南边界输送到域内。北京区域降水主要时段内, 水物质通量在水平方向上为净流入。对北京区域水汽、水凝物和总水物质的水分收支各项的估算表明, 水物质基本达到平衡。北京区域从2007年10月5日20时至6日14时, 总水成物降水效率、凝结率、凝华率及总水凝物降水效率分别为5.6%、4.77%、4.19%、44.9%。  相似文献   

7.
为了利用人工增雨技术合理开发六盘山地区空中水资源,首先需要了解该地区水汽场、地形对当地降水的影响和空中水资源的特征及典型降水过程中云系的降水效率。本文采用欧洲中期天气预报中心(ECMWF)发布的高时空分辨率ERA5再分析数据集和中分辨率成像光谱仪(MODIS)数据,通过统计分析研究了该地区水汽的输送、地形强迫作用下的辐合抬升状况和地形云参量特征,并分别利用WRF模式数值模拟的输出结果和ERA5再分析数据,估算2016~2017年夏季自西向东移经该山区的多次混合降水云系的水凝物降水效率。研究结果表明:位于西北地区东部的六盘山地区具有较为丰沛的大气可降水量和更强的水汽输送。受亚洲季风影响,夏季偏南风向六盘山地区输送了丰沛的水汽,山区成为相对湿度高值区;春、夏、秋季午后山区云量(CF)达70%及以上,夏季云水路径(CWP)和云光学厚度(COT)均明显大于周边地区。在夏季降水过程中,地形引起的动力场对降水有明显的影响,在日降水量5 mm以上强度的过程中,气流遇迎风坡地形产生明显辐合抬升,且辐合抬升越强时降水强度越大。夏季典型降水系统中,山区水凝物降水效率平均约为48.1%,空中还有较大部分的水凝物未能成为降水。因此作为水源涵养地的六盘山地区夏季空中水资源相对丰富而降水量不足,空中水资源具有一定开发空间。  相似文献   

8.
利用NCEP再分析资料、地面观测等资料,探讨了2013年内蒙古中部地区飞机增雨过程云水资源特征,并通过对比分析给出了适合飞机人工增雨作业的空中水汽和水凝物背景特征。结果表明:(1)夏季,单位面积地区上空整层大气水汽含量在30mm以上、云水含量2.0mm以上、小时凝结量在1.0mm以上时有利于实施增雨作业。有利作业过程水汽通量较大,作业区大部为较明显的水汽辐合,准饱和区水平范围较大,垂直方向准饱和区厚度在3.0km以上,云底高度在1.0km左右。(2)对于一次天气过程,水凝物总量为水汽总量的10%左右,源源不断的水汽输入与凝结是过程中水汽和水凝物的主要来源,有利于作业天气过程的水凝物含量明显偏多。文章的结论对内蒙古中部地区飞机人工增雨作业具有参考意义。  相似文献   

9.
邵洋  郑国光 《气象》2007,33(7):22-32
利用ARPS中尺度数值模式对河南省2005年3月20—21日层状云系降水过程中的云水资源特征进行了模拟分析,模式主要计算了水汽收支状况、云中水分的微物理转化和降水效率等。结果表明,充沛的水汽输送为云系的形成和发展提供了有利条件,河南省域的水汽收入主要是水平流入,地表蒸发的贡献相对较小。河南南边界和西边界是此次降水过程水汽的主要水平流入边界,东边界和北边界是水汽的主要水平流出边界,较强的流入高度在2km附近。云系呈明显的垂直分层结构,平均0℃层在2.5km高度附近。6km高度以上的高云为冰云,2.5~6km高度之间的中云为冰水混合云,2.5km以下的低云为水云,符合“播撒-供给”云结构。雪和霰主要在4km高度左右生长,雨水主要在2.5km高度左右的0℃层附近生长。全省小时降水效率和地面小时降水量的时间变化趋势较为一致,但明显滞后于水汽流入率的时间变化。在降水较强时段,河南省域的小时降水效率为20%~30%。降水效率的分布形势与累计降水较为一致,河南南部较高、北部较低。  相似文献   

10.
用1948—2009年NCEP/NCAR月平均再分析资料,分析低纬高原地区对流层不同层次水汽输送特征。结果表明,地面~300 hPa每年从西边界、南边界流入低纬高原的水汽分别有344.0×1010 t和115.0×1010 t,有341.5×1010 t和73.5×1010 t水汽分别从东边界和北边界流出,水汽净流入达44.0×1010 t。水汽净收入主要集中在对流层低层,以西边界的水汽输入最多;但经向上的水汽输送对低纬高原地区的净收入贡献相对较大,并且纬向水汽输送与经向水汽输送量呈反相关。夏季水汽输送净收入占全年的67.5%,其对流层低、中、高层均为水汽净流入。西边界水汽输入呈增加趋势,东边界水汽输出量呈减少趋势,南、北边界水汽输入、输出呈减少趋势,均在1980年代末发生突变,突变后南边界的水汽输入明显减少,北边界的输出呈下降趋势。年净水汽和夏季净水汽呈减少趋势。低纬高原地区水汽净收入在1978年发生突变,突变后水汽呈减少趋势。   相似文献   

11.
使用CMA-GD模式及云分析系统,引入云南C波段多普勒雷达反射率因子资料,对2019年7月9日过程进行模拟试验,分析引入反射率资料对模式初始场和降水过程预报的影响。(1)引入反射率后,云中和底部的云量有所增加。水汽在900~200 hPa有大范围增加,能有效地调整降水区域的水汽分布。对模式顶层温度的调整较大,而对风场的影响较小。(2)引入反射率后,对3 h内降水强度及落区有较大改善,4~6 h的预报有所改善,7 h以后改善不明显。(3)引入反射率资料后,1~4 h大气可降水量增量较明显,5~9 h增量较前4 h明显减小。(4)在河口上空云水和水汽在950~400 hPa增加,霰、云冰和云雪在600~400 hPa增加,雨滴在1 000~500 hPa增加。水凝物增加,有利于河口站降水的发生。   相似文献   

12.
川渝地区空中水资源分布及水汽输送特征   总被引:3,自引:0,他引:3  
利用NCEP/NCAR全球1948~2003年共56年月平均再分析网格点(2.5°×2.5°)资料,计算并分析了川渝地区(100~110°E,25~35°N)空中水资源的逐年变化特征、时空分布、水汽输送特征、水汽收支状况以及大气可降水能力。结果表明:近56年来,川渝地区整层水汽含量总体是略呈下降趋势,但夏冬两季水汽呈上升态势;区域内水汽含量的水平分布表现为以四川盆地东南部至重庆涪陵为湿中心,自东南向西北逐渐减少的趋势;水汽输送以西南和东南方向为主;全年水汽收支呈现净输入的状态;秋、夏、春三季皆有较大的可降水量,空中潜在水资源丰富。   相似文献   

13.
夏季云贵高原地区降水特征及云水资源的匹配   总被引:1,自引:1,他引:0  
任冉  单婵  张羽  丁维新  顾源  娄丹 《气象》2017,43(3):315-322
基于云贵高原地区1961—2010年高分辨率(0.5°×0.5°)逐日降水格点资料,分析了云贵高原及东、西两个区域的夏季降水变化特征。并结合欧洲中期天气预报中心(ECMWF)提供的1979—2010年ERA-Interim再分析资料,计算了其夏季水汽输送通量和净水汽收支。结果表明:(1)云贵高原夏季平均降水分布不均匀,存在区域差异:云贵高原西部的中部为降水量低值区,其向南、向西逐渐增加;东部由其东南部向西北部递减的分布形式。(2)将云贵高原分成两个区域,东、西部区域的降水都呈增加的趋势,降水量较高的区域降水增长速度较快。(3)大气中的水汽从云贵高原南边界和西边边界进入,从北边界和东边界流出,全区以净水汽输出为主,输出值与降水的变化都呈增长趋势。其中东部水汽为净输入;西部为净输出,向各区域的水汽输送量逐渐增加与各区降水量呈增长趋势变化同样相一致。(4)影响西部夏季降水的水汽主要源于孟加拉湾北部、南海北部和横断山到四川盆地地区,而东部水汽主要来自南海北部和四川盆地西部。  相似文献   

14.
利用2007—2016年欧洲中期天气预报中心(ECMWF)逐日再分析资料(0.5°×0.5°)和国家气象数据中心24 h累计降水资料,计算分析了成都地区空中水资源的特征,包括可降水量、水汽、实际降水量等,并比较分析了三者之间的关系。结果表明:成都地区为净输入区域,主要水汽输入、输出口分别为西、东边界;成都地区位于强辐合中心附近,四季水汽输送通量较稳定,夏季相对偏小;700 hPa以下为主要的水汽输入层,700 hPa以上为主要的水汽输出层;500 hPa以下的水汽利用率较高,尤其是夏季;水汽输送较强的区域集中在700 hPa以上秋季的西边界和四季的东边界、700 hPa以下夏季的东边界以及500 hPa以上四季的西边界;成都地区可降水量稳定丰富,年平均水汽总输入量也很大,但二者转换为实际降水的量很少。  相似文献   

15.
青海省东北部地区春季空中水资源潜力分析   总被引:11,自引:4,他引:11  
采用动力气象学原理计算了青海高原东北部春季水汽输送、辐合辐散情况 ,利用微波辐射计观测总水汽含量 (V)、液态水 (L)的情况。经计算 ,青海高原东北部大气水汽状况为输入大于输出 ,且有近 83%的水汽影响该地区后移出青海 ,有较大的潜在水资源 ;从液态水含量情况来看 ,尽管水汽含量比平原地区少 ,但液态水含量却比平原地区偏高。另外还计算了 1997年 3月下旬至 5月上旬的云总凝结水和降水效率 ,大气总凝结水量为 2 84× 10 8t,但实际降水量为 34× 10 \+8t,平均降水效率为 0 .12。如果能提高 1%的降水效率 ,则可增加约 2 .5× 10 8t降水 ,且具有较好的人工增雨潜力。  相似文献   

16.
利用1961—2015年中国地面降水日值05°×05°格点数据集(V20)(下称V20格点资料)及同期陕西省内55站逐日降水资料,评估了V20格点资料在陕西地区的适用性,并分析了近年来不同等级降水事件在陕西地区的时空变化特征。结果表明:V20格点降水资料在陕北地区的误差较小,在关中大部较实况降水偏大,在陕南地区较实况偏小;各等级降水在全省呈现出南多北少的分布特征,V20中雨和大雨等级降水空间分布与实况较为一致,V20小雨雨量及雨日大于实况,V20暴雨事件较实况显著偏少;观察不同等级降水的时空变化特征发现,小雨在全省大部呈下降趋势,中雨在陕北北部、关中大部及陕南东部呈增加趋势,在陕北南部及陕南西部等地减少,大雨和暴雨在全省大部增加,V20各等级降水变化幅度小于实况变幅,暴雨事件变化趋势差异最大。  相似文献   

17.
应用微波辐射计反演的地面至10 km高度共58层的相对湿度、水汽密度和云液态水的垂直廓线,以及大气水汽总量、云液态水总量和云底高度数据,再结合小时雨量资料对武汉站不同强度降水进行统计分析,按照降水初始时刻的雨强将武汉站降水分为三类:小时降水量大于等于5 mm的强降水、小时降水量在1~5 mm的中等强度降水和小时降水量在0.1~1 mm的弱降水,统计结果表明:三类降水开始前,大气和近地面湿度均有显著增加;2 km以下有水汽和云液态水的增量中心,且水汽增量中心比云液态水增量中心提前0.5~1 h;降水开始前1.5~1 h,水汽和云液态水的增长速度从缓慢增加突变为迅速增加。强降水开始前7 h最大湿度达到饱和、云底高度下降;低层水汽含量增幅最大,云液态水总量显著高于另两类降水。弱降水开始前,大气与近地面湿度、水汽和云液态水的增加都出现得更早、更稳定,增量中心强度小、位置高,但大值区从降水开始时刻维持到降水开始后5 h,这决定降水能够持续较长时间。  相似文献   

18.
山东省空中水资源的初步分析   总被引:2,自引:1,他引:1  
利用1997~1999年逐日探空资料和同期水文水资源资料,分析了山东省域空中水汽资源的时空分布特征及地-气系统的水量平衡关系.结果表明:山东省空中水汽资源受天气系统和季节变化的影响明显;静态水汽含量年均值为20.75 mm,动态水汽净输出量全年平均为440.91 mm,并以850 hPa层的水汽净输出为主.水汽净收支率年、季分布具有较强的地域特征.全年的水汽输入量很大,但空中水汽资源转化为地面降水的效率不足5%,而降水转化为水资源的量约为27.31%,空中水汽资源具有很大开发潜力.另外,从大气水量平衡角度分析了山东干旱气候特征的客观必然性,并提出开源增量、增加水资源的对策.  相似文献   

19.
GCE(Goddard Cumulus Ensemble)模式中体现了云与云之间的相互作用,以及云与周围环境、长波辐射及示踪气体等之间的相互作用.模式可通过云中的水凝物等微物理量描述云体的生命史(发展、成熟、消散),并在此基础上通过引入地面降水诊断方程对降水的发展过程进行分析,因而降水过程实际上是云的发展过程的体现.本文所使用的二维云分辨模式(2DCRM)就是GCE模式的二维版本.利用该模式对2008年6月10-15日的华南暴雨过程进行模拟,分析了主要降水时段地面降水收支及热量收支在不同降水发展阶段的特征.模拟结果表明,在降水初始阶段,主要由局地大气增湿和水汽辐合率减小来抑制降水发展;在成熟阶段,局地水汽变化、水汽辐合、地面蒸发和局地水凝物变化均有正的贡献,降水强度达到最大;在衰退阶段,降水强度减小的主要原因是水汽辐合显著减小.在降水性层状云区,降水主要来自于水汽辐合,水汽的主要消耗项是局地水汽增加;在对流云区,降水主要来自于水汽辐合与局地大气变干,水汽的主要消耗过程是水凝物生成并向降水性层状云区输送.初始阶段和衰退阶段的局地大气温度变化率相对较小,成熟阶段区域平均大气冷却达到最强,区域平均大气温度变化率主要受区域平均的热辐散率与区域平均的潜热释放影响.  相似文献   

20.
利用ERA5再分析资料、FY-4A卫星反演云特征参量、地面自动站风和雨量资料,对2020年5月17-19日辽宁东南部一次区域性暴雨、局地大暴雨、伴有短时强降水过程进行详细分析。研究表明:东北冷涡叠加北上强烈发展的气旋是此次过程的天气形势特征,短时强降水出现在冷涡发展接近成熟、气旋强烈发展加深阶段,局地地面辐合型切变线是导致短时强降水的中尺度条件。冷涡东南侧水汽输送通道与来自孟加拉湾热带低压东侧经南海海域由西南低空急流向北输送的水汽通道合并,成为了暴雨产生和维持的必要条件。辽宁中东部的降水产生在冷涡系统的东北部-北部-西北部区域,降水落区与850 hPa风场的相关性最高,降水产生及维持阶段700 hPa以下为辐合区,辐散出现在600~200 hPa,降水强度大于5 mm·h-1的区域上升运动区近似直立地贯穿整个湿层,降水区域上空假相当位温密集区向西北方向倾斜,400 hPa高度之下存在热力不稳定。冷涡发展强盛到成熟阶段,干冷空气的入侵使冷涡云系内部边缘逐渐清晰,形成“逗点状”云系。强降水区呈条带状分布,云顶高度普遍大于9 km,云光学厚度大于60,属于水凝物含量丰富的冷暖混合云;远离冷涡...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号