首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated two methods to estimate evapotranspiration (ETo) from minimal weather records (daily maximum and minimum temperatures) in Mexico: a modified reduced set FAO-Penman-Monteith method (Allen et al. 1998, Rome, Italy) and the Hargreaves and Samani (Appl Eng Agric 1(2): 96–99, 1985) method. In the reduced set method, the FAO-Penman-Monteith equation was applied with vapor pressure and radiation estimated from temperature data using two new models (see first and second articles in this series): mean temperature as the average of maximum and minimum temperature corrected for a constant bias and constant wind speed. The Hargreaves-Samani method combines two empirical relationships: one between diurnal temperature range ΔT and shortwave radiation Rs, and another one between average temperature and the ratio ETo/Rs: both relationships were evaluated and calibrated for Mexico. After performing a sensitivity analysis to evaluate the impact of different approximations on the estimation of Rs and ETo, several model combinations were tested to predict ETo from daily maximum and minimum temperature alone. The quality of fit of these models was evaluated on 786 weather stations covering most of the territory of Mexico. The best method was found to be a combination of the FAO-Penman-Monteith reduced set equation with the new radiation estimation and vapor pressure model. As an alternative, a recalibration of the Hargreaves-Samani equation is proposed.  相似文献   

2.
Results of field measurements of the swell-induced undulation of the wind speed taken from a Black Sea platform are presented. The wind speed and its fluctuations were measured at several heights between 1.3 and 21 m above the mean sea level under various wind and swell conditions. Parameters of the swell-induced undulations were derived from cross spectra of the wind-speed fluctuations and the sea-surface displacement. As found, the phase and the amplitude of the wind speed undulation in the layer from k p z = 0.1 to k p z = 3 (k p is the swell wavenumber) are in good agreement with the theory of inviscid shear flow over a wavy surface. The main feature of the vertical profile of the swell-induced undulation is the exponential attenuation of its amplitude with height typical for the potential flow over the fast running waves. At the lowest levels the potential undulations are significantly distorted by the wind-speed variations caused by the vertical displacements of the shear airflow relative to a fixed sensor. No direct impact of swell on the mean properties of the turbulent boundary layer at k p z > 0.1 is revealed. In particular, the mean wind-speed profile and spectra of the horizontal velocity in the inertial subrange obey Monin-Obukhov similarity theory.  相似文献   

3.
Urbanization has led to a significant urban heat island (UHI) effect in Beijing in recent years. At the same time, air pollution caused by a large number of fine particles significantly influences the atmospheric environment, urban climate, and human health. The distribution of fine particulate matter (PM2.5) concentration and its relationship with the UHI effect in the Beijing area are analyzed based on station-observed hourly data from 2012 to 2016. We conclude that, (1) in the last five years, the surface concentrations of PM2.5 averaged for urban and rural sites in and around Beijing are 63.2 and 40.7 µg m?3, respectively, with significant differences between urban and rural sites (ΔPM2.5) at the seasonal, monthly and daily scales observed; (2) there is a large correlation between ΔPM2.5 and the UHI intensity defined as the differences in the mean (ΔTave), minimum (ΔTmin), and maximum (ΔTmax) temperatures between urban and rural sites. The correlation between ΔPM2.5 and ΔTminTmax) is the highest (lowest); (3) a Granger causality analysis further shows that ΔPM2.5 and ΔTmin are most correlated for a lag of 1–2 days, while the correlation between ΔPM2.5 and ΔTave is lower; there is no causal relationship between ΔPM2.5 and ΔTmax; (4) a case analysis shows that downwards shortwave radiation at the surface decreases with an increase in PM2.5 concentration, leading to a weaker UHI intensity during the daytime. During the night, the outgoing longwave radiation from the surface decreases due to the presence of daytime pollutants, the net effect of which is a slower cooling rate during the night in cities than in the suburbs, leading to a larger ΔTmin.  相似文献   

4.
TL-moments approach has been used in an analysis to identify the best-fitting distributions to represent the annual series of maximum streamflow data over seven stations in Johor, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: Three-parameter lognormal (LN3) and Pearson Type III (P3) distribution. The main objective of this study is to derive the TL-moments (t 1,0), t 1?=?1,2,3,4 methods for LN3 and P3 distributions. The performance of TL-moments (t 1,0), t 1?=?1,2,3,4 was compared with L-moments through Monte Carlo simulation and streamflow data over a station in Johor, Malaysia. The absolute error is used to test the influence of TL-moments methods on estimated probability distribution functions. From the cases in this study, the results show that TL-moments with four trimmed smallest values from the conceptual sample (TL-moments [4, 0]) of LN3 distribution was the most appropriate in most of the stations of the annual maximum streamflow series in Johor, Malaysia.  相似文献   

5.
Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.  相似文献   

6.
Trend analysis of rainfall time series for Sindh river basin in India   总被引:1,自引:1,他引:0  
The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström’s turbidity coefficient (β), Ångström’s wavelength exponent (α), aerosol single scattering albedo (ωo), forward scatterance (Fc) and average surface albedo (ρg), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51′ 27″ S, 43° 13′ 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water (uw) and ozone concentration (uo) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström’s wavelength exponent α were compared with Ångström’s parameter (440–870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström’s turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December–February) in the MARJ.  相似文献   

7.
Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p < 0.001), presenting adjusted R 2 between 0.69 and 0.90. Center-Southern Brazil is mainly hit by frosts from mid-fall (April) to mid-spring (October). The period from November to March is considered as frost-free, being very rare a frost day within that period. Monthly F MET and F AGR presented significant sigmoidal relationships with T MN (p < 0.0001), with adjusted R 2 above of 0.82. The residuals of the frost day models were random, which means that the sigmoidal models performed quite well for interpreting the frost day variability throughout the study area. The highlands of Santa Catarina, Rio Grande do Sul, São Paulo, and Minas Gerais had in average more than 25 and 13 frosts per year, respectively, for F MET and F AGR. The F MET and F AGR maps developed in this study for Center-Southern Brazil is a useful tool for farmers, foresters, and researchers, since they contribute to reduce frost spatial and temporal uncertainty, helping in planning project for strategic purposes. Furthermore, the monthly F MET and F AGR maps for this Brazilian region are the first zoning of these variables for the country.  相似文献   

8.
Spatial and temporal characteristics of temperature extremes have been investigated in Huang-Huai-Hai (HHH) region based on the daily series of temperature observations from 162 meteorological stations. A total of 11 indices were used to assess the changes of temperature pattern. Linear trend analyses revealed that the daily maximum temperature (TXx) increased at α = 0.05 level with a magnitude of 0.15 °C per decade on the regional scale during the period of 1961–2014. More pronounced warming trend of the daily minimum temperature (TNn) was detected at a rate of 0.49 °C per decade (α = 0.01 level). Consequently, a decreasing trend of the temperature range of TXx and TNn (extreme temperature range) was observed. The frequency of hot days (TXf90) and annual average of warm events (warm spell duration indicator, WSDI) showed significant increasing trends, while that of cold nights (TNf10) and cold events (cold spell duration indicator, CSDI) showed opposite behaviors. Both warm winter (W-W) and hot summer (H-S) series displayed significant increasing trends at α = 0.01 confidence level. The cold winter (C-W) series showed a decreasing trend at α = 0.01 confidence level, while the cool summer (C-S) series showed a nonsignificant decreasing trend that is not passing the 90% confidence level (α = 0.1). Abrupt increments of warm­related extremes (TXx, TXf90, WSDI) have been detected since 1990s, and a steadily decreasing trend of cold related extremes (TNf10, CSDI) was found since 1970s. Ten hot summers out of 11 and nine warm winters out of 10 occurred after 1990s. Altitude has a large impact on spatial pattern of extreme temperature indices, and the urban heat island effect also has an impact on amplitude of variation in extreme temperature. Trend magnitudes are significantly larger at sites with high altitudes for warm­related indices (TXx, TXf90, WSDI), while those involving cold-related indices (TNn, TNf10) are remarkably larger for stations with low altitudes.  相似文献   

9.
Long-term variation of rainfall erosivity in Calabria (Southern Italy)   总被引:1,自引:0,他引:1  
The changes in rainfall erosivity have been investigated using the rainfall erosivity factor (R) proposed for USLE by Wischmeier and Smith (R W-S ) and some simplified indexes (the Fournier index modified by Arnoldus, F, a regional index spatial independent, R Fr , and a regional index spatial dependent, R Fs ) estimated by indirect approaches. The analysis has been carried out over 48 rainfall stations located in Calabria (Southern Italy) using data collected in the period 1936–2012 and divided in three sub-periods. The series of the erosivity indexes and of some precipitation variables have been analyzed for evidence of trends using standard methods. The simplified indexes suggested a general underestimation of the rainfall erosivity with respect to R W-S . The mean underestimation ranged between 23 and 54 % for R Fr and from 10 to 15 % for R Fs . Both the sign and the magnitude of the trends were different for the different stations depending on the variable and sub-period considered. In general, the erosivity increased during the period 1936–1955 (1st sub-period) and during the more recent sub-period (1992–2012, 3rd sub-period), whereas it decreased during 1958–1977 (2nd sub-period). The evidence of trends was generally higher for R W-S than for R Fr and R Fs . Focusing on the most recent sub-period (3rd sub-period), all the variables analyzed showed mainly increasing trends but with different magnitude. More particularly, R W-S showed a mean increment of 29 %; F, R Fr and R Fs increased by 11, 15 and 18 %, respectively; the maximum intensity of 0.5-h precipitation increased by 5 %; and the annual precipitation increased by 22 %. Consequently, it remains difficult to define which precipitation variable plays the dominant role in the temporal variation of rainfall erosivity in the region. However, the overall results suggest that the indexes estimated by indirect procedures (F, R Fr , and R Fs ) should be used with caution for climate change analysis, despite they are used for practical purposes considering they are based on easily available information.  相似文献   

10.
Black carbon (BC) particles play a unique and important role in earth’s climate system. BC was measured (in-situ) in the central part of the Indo-Gangetic Plains (IGP) at Varanasi, which is a highly populated and polluted region due to its topography and extensive emission sources. The annual mean BC mass concentration was 8.92 ± 7.0 µg m -3, with 34% of samples exceeding the average value. Seasonally, BC was highest during the post-monsoon and winter periods (approximately 18 µg m -3) and lower in the premonsoon/ monsoon seasons (approximately 6 µg m -3). The highest frequency (approximately 46%) observed for BC mass was in the interval from 5 to 10 µg m -3. However, during the post-monsoon season, the most common values (approximately 23%) were between 20 and 25 µg m -3. The nighttime concentrations of BC were approximately twice as much as the daytime values because of lower boundary layer heights at nighttime. The Ångström exponent was significantly positively correlated (0.55) with ground-level BC concentrations, indicating the impact of BC on the columnar aerosol properties. The estimated mean absorption Ångström exponent was 1.02 ± 0.08 µg m -3, indicating that the major source of BC was from fossil fuel combustion. Significant negative correlations between BC mass and meteorological parameters indicate a pronounced effect of atmospheric dynamics on the BC mass in this region. The highest mean BC mass concentration (18.1 ± 6.9 µg m -3) as a function of wind speed was under calm wind conditions (38% of the time).  相似文献   

11.
A three-dimensional charge–discharge numerical model is used, in a semi-idealized mode, to simulate a thunder-storm cell. Characteristics of the graupel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge–discharge model is available. The results show that the vertical air motion at the lightning initiation sites (Wini) has a cubic polynomial correlation with the maximum updraft of the storm cell (Wcell-max), with the adjusted regression coefficient R2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites (qg-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell (qg-cell-max) and the initiation height (zini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of qg-cell-max and below the upper edge of the graupel region, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of qice (ice crystal mixing ratio) to qg (graupel mixing ratio) illustrates an exponential relationship to qg-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at lightning initiation sites.  相似文献   

12.
We used wind-tunnel experiments to investigate velocity-field adjustment and scalar diffusion behaviour in and above urban canopies located downwind of various roughness elements. Staggered arrays of rectangular blocks of various heights H and plan area ratios λp were used to model the urban canopies. The velocity field in the roughness sublayer (height \({z \lesssim 2H}\)) reached equilibrium at distances proportional to \({\sqrt{L_{\rm c}H}}\) where L c is the canopy-drag length scale determined as a function of λp and the block side length L. A distance of about \({20\sqrt{L_{\rm c}H}}\) was required for adjustment at z = H/2 (in the canopy), and a distance of about \({10\sqrt{L_{\rm c}H}}\) was required at z = 2H (near the top of the roughness sublayer). Diffusion experiments from a ground emission source revealed that differences in upwind roughness conditions had negligible effects on the plume growth near the source (up to a few multiples of L from the source) if the source was located at a fetch F larger than about \({10\sqrt{L_{\rm c}H}}\) from the upwind edge of the canopy. However, at locations farther downwind (more than several multiples of L from the source), upwind conditions had considerable effects on the plume growth. For a representative urban canopy, it was shown that a much larger fetch than required for velocity-field adjustment in the roughness sublayer was necessary to eliminate the effects of upwind conditions on plume widths at 24L downwind from the source.  相似文献   

13.
A new method for calculating evaporation is proposed, using the Penman–Monteith (P-M) model with remote sensing. This paper achieved the effective estimation to daily evapotranspiration in the Ziya river catchment by using the P-M model based on MODIS remote sensing leaf area index and respectively estimated plant transpiration and soil evaporation by using coefficient of soil evaporation. This model divided catchment into seven different sub-regions which are prairie, meadow, grass, shrub, broad-leaved forest, cultivated vegetation, and coniferous forest through thoroughly considering the vegetation diversity. Furthermore, optimizing and calibrating parameters based on each sub-region and analyzing spatio-temporal variation rules of the model main parameters which are coefficient of soil evaporation f and maximum stomatal conductance g sx . The results indicate that f and g sx calibrated by model are basically consistent with measured data and have obvious spatio-temporal distribution characteristics. The monthly average evapotranspiration value of simulation is 37.96 mm/mon which is close to the measured value with 33.66 mm/mon and the relative error of simulation results in each subregion are within 11 %, which illustrates that simulated values and measured values fit well and the precision of model is high. In addition, plant transpiration and soil evaporation account for about 84.64 and 15.36 % respectively in total evapotranspiration, which means the difference between values of them is large. What is more, this model can effectively estimate the green water resources in basin and provide effective technological support for water resources estimation.  相似文献   

14.
A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate \(\epsilon \), the length scale of energy-containing eddies \(\mathcal {L}\), a turbulence anisotropy parameter \(\varGamma \), the Richardson number Ri, and the normalized rate of destruction of temperature variance \(\eta _\theta \equiv \epsilon _\theta /\epsilon \). Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin–Obukhov similarity theory, where z is the height above the Earth’s surface, and L is the Obukhov length corresponding to \(\{Ri,\eta _\theta \}\). Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale \(\sim \) 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.  相似文献   

15.
A dynamic recycling model (DRM) with an analytical moisture trajectory tracking method, together with Japan Meteorological Agency 25-year reanalysis data, is used to study the regional precipitation recycling process across China, by calculating the regional recycling ratio (ρ r ) at the daily time scale during 1979–2010. The distribution of ρ r shows that, in western China, especially the Tibetan Plateau and its surrounding areas, precipitation is strongly dependent on the recycling process associated with regional evaporation. In Southeast China, however, the contribution from the recycling processes is much smaller due to the influence of the summer monsoon. A precipitation threshold value of about 4 mm/day is obtained from detailed analysis of both extreme and all-range ρ r years. According to this threshold, China is classified into three types of sub-regions: low-precipitation sub-regions (mainly in the northwest), high-precipitation sub-regions (mainly in the south), and medium-precipitation sub-regions (mainly in the northeast). It is found that ρ r correlates positively with precipitation, as well as convective precipitation (P CP) and large-scale precipitation (P LP) in the low-precipitation sub-regions. However, negative ρ r ?~?P LP correlations are found in the high-precipitation sub-regions and nonsignificant correlations exist in the medium-precipitation sub-regions. As P CP is mainly locally generated due to mid-latitude mesoscale systems and the cumulus parameterization used in producing the reanalysis, the recycling ratio positively correlates to the ratio P CP/P LP in almost all sub-regions, particularly in the Tibetan Plateau and its surrounding areas. The correlation between radiation flux and ρ r suggests more net radiation supports more evaporation and higher ρ r , especially in the high-precipitation sub-regions. The influence of clouds on shortwave radiation is crucial, since evaporation is suppressed when the amount of cloudiness increases, especially in the high-precipitation sub-regions. Together with the consideration of soil moisture, it can be inferred that limited soil moisture inhibits evaporation in the low-precipitation sub-regions, while the energy or radiation is the dominant factor controlling evaporation in the high-precipitation sub-regions.  相似文献   

16.
The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually \(H > 0.5\), which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley–Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (\(H_p\)), and (2) with the classical rescaled range introduced by Hurst (\(H_R\)). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, \(H_R\) is larger than \(H_p\) for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley–Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.  相似文献   

17.
This study investigates atmospheric conditions’ influence on the mean and extreme characteristics of PM10 concentrations in Poznań during the period 2006–2013. A correlation analysis was carried out to identify the most important meteorological variables influencing the seasonal dynamics of PM10 concentrations. The highest absolute correlation values were obtained for planetary boundary layer height (r = ?0.57), thermal (daily minimum air temperature: r = ?0.51), anemological (average daily wind speed: r = ?0.37), and pluvial (precipitation occurrence: r = ?0.36) conditions, however the highest correlations were observed for temporal autocorrelations (1 day lag: r = 0.70). As regulated by law, extreme events were identified on the basis of daily threshold value i.e. 50 μg m?3. On average, annually there are approximately 71.3 days anywhere in the city when the threshold value is exceeded, 46.6 % of those occur in winter. Additionally, 83.7 % of these cases have been found to be continuous episodes of a few days, with the longest one persisting for 22 days. The analysis of the macro-scale circulation patterns led to the identification of an easy-to-perceive seasonal relations between atmospheric fields that favour the occurrence of high PM10 concentration, as well as synoptic situations contributing to the rapid air quality improvement. The highest PM10 concentrations are a clear reaction to a decrease in air temperature by over 3 °C, with simultaneous lowering of PBL height, mean wind speed (by around 1 m s?1) and changing dominant wind directions from western to eastern sectors. In most cases, such a situation is related to the expansion of a high pressure system over eastern Europe and weakening of the Icelandic Low. Usually, air quality conditions improve along with an intensification of westerlies associated with the occurrence of low pressure systems over western and central Europe. Opposite relations are distinguishable in summer, when air quality deterioration is related to the inflow of tropical air masses originating over the Sahara desert.  相似文献   

18.
Wintertime cold air outbreaks along a non-frozen sea channel or a long lake can become destructive if the related bands of heavy snowfall hit onto land. The forcing for such bands is studied with a 2D numerical model set across an east–west sea channel at 60oN (‘Gulf of Finland’), varying the basic geostrophic wind V g. Without any V g opposite coastal land breezes emerge with convergence. This results in a quasi-steady rising motion w max ~ 7.5 cm/s at 600 m in the middle of the gulf, which can force a snow band. During weak V g, the rising motion is reduced but least so for winds from 60o to 80o (~ENE), when modest alongshore bands could exist near the downstream (Estonian) coast. During V g of 4–6 m/s from any direction, the land breezes and rising motions are reduced more effectively, so snow bands are not expected during moderate basic flow. In contrast, during a strong V g of 20–25 m/s from 110o to 120o (~ESE) the land breeze perturbations are intense with w max up to 15–18 cm/s. The induced alongshore bands of heavy snowfall are located in these cases at the sea but quite close to the downstream (Finnish) coast. They can suddenly make a landfall if the basic wind turns clockwise.  相似文献   

19.
Aerodynamic Roughness Length of Fresh Snow   总被引:1,自引:1,他引:0  
This study presents the results from a series of wind-tunnel experiments designed to investigate the aerodynamic roughness length z 0 of fresh snow under no-drift conditions. A two-component hot-film anemometer was employed to obtain vertical profiles of velocity statistics in a zero pressure gradient turbulent boundary layer for flow over naturally deposited snow surfaces. The roughness of these snow surfaces was measured by means of digital photography to capture characteristic length scales that can be related to z 0. Our results show that, under aerodynamically rough conditions, the mean value of the roughness length for fresh snow is \({\langle{z}_{0}\rangle= 0.24}\) mm with a standard deviation σ(z 0) = 0.05 mm. In this study, we show that variations in z 0 are associated with variations in the roughness geometry. The roughness measurements suggest that the estimated values of z 0 are consistent with the presence of irregular roughness structures that develop during snowfalls that mimic ballistic deposition processes.  相似文献   

20.
We examined the changes in streamflow on the northern slopes of the Tianshan Mountains in northern Xinjiang, China, over two time scales: the past 500 years, based on dendrochronology data; and the past 50 years, based on streamflow data from hydrological stations. The method of artificial neural networks built from the data of the 50-year period was used to reconstruct the streamflow of the 500-year period. The results indicate that streamflow has undergone seven high-flow periods and four low-flow periods during the past 500 years. To identify possible transition points in the streamflow, we applied the Mann–Kendall and running T tests to the 50- and 500-year periods, respectively. During the past 500 years, streamflow has changed significantly from low to high flow about three to four times, and from high to low flow about three to five times. Over the recent 50 years, there have been three phases of variation in river runoff, and the most distinct transition of streamflow occurred in 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号