首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Until recently, there have been very few tree-ring studies in southeast China due largely to the scarcity of old trees and the complexity of relationships between tree growth and climate in subtropical regions of China. Recent studies on the conifers in southeast China revealed that tree ring-based climate reconstructions are feasible. Here, we describe a reconstruction (AD 1850–2009) of November–February maximum temperatures for Changting, Fujian, southeast China based on tree ring width data of Pinus massiniana which considerably extends the available climatic information. Calibration and verification statistics for the period 1956–2009 show a high level of skill and account for a significant portion of the observed variance (32.9%) irrespective of which period is used to develop or verify the regression model. Split sample validation supports our use of a reconstruction model based on the full period of reliable observational data (1956–2009). Warm periods occurred during 1854–1859, 1868–1880, 1885–1899, 1906–1914, 1920–1943, 1964–1975 and 1994–present; while the periods of AD 1850–1853, 1860–1867, 1881–1884, 1900–1907, 1915–1919, 1944–1963 and 1976–1993 were relatively cold. The climate correlation analyses with gridded temperature dataset and SST revealed that our season temperature reconstruction contains the strong large-scale climate signals. Our results suggest that some warm winters of Changting are coincident with El Ni?o events over the past 150?years. In addition, several severely cold winters coincide with major volcanic eruptions.  相似文献   

2.
Seasonal and annual temperature reconstructions derived from western North American semi-arid site tree-ring chronologies are used to examine the possible spatial response of North American climate to volcanic eruptions within the period 1602 to 1900. Low-latitude eruptions appear to give the strongest response. Cooling of the annual average temperatures in the central and eastern United States is reconstructed to follow volcanic eruptions with warming in the western states. The magnitude and spatial extent of the reconstructed cooling and warming varies seasonally. The warming that occurs in the west is strongest and most extensive in winter while the cooling in the east is most marked in summer. These results are based on reconstructed climate records which contain error terms unrelated to climatic factors. The suggested pattern of response to volcanic forcing is, however, supported by four independent temperature/proxy temperature series within the area of the temperature reconstructions. Additional support is provided by three independent series lying outside the area which suggest that the temperature spatial response may extend to the north beyond the area covered by the tree-ring reconstructions.  相似文献   

3.
Little Ice Age (LIA) austral summer temperature anomalies were derived from palaeoequilibrium line altitudes at 22 cirque glacier sites across the Southern Alps of New Zealand. Modern analog seasons with temperature anomalies akin to the LIA reconstructions were selected, and then applied in a sampling of high-resolution gridded New Zealand climate data and global reanalysis data to generate LIA climate composites at local, regional and hemispheric scales. The composite anomaly patterns assist in improving our understanding of atmospheric circulation contributions to the LIA climate state, allow an interrogation of synoptic type frequency changes for the LIA relative to present, and provide a hemispheric context of the past conditions in New Zealand. An LIA summer temperature anomaly of ?0.56 °C (±0.29 °C) for the Southern Alps based on palaeo-equilibrium lines compares well with local tree-ring reconstructions of austral summer temperature. Reconstructed geopotential height at 1,000 hPa (z1000) suggests enhanced southwesterly flow across New Zealand occurred during the LIA to generate the terrestrial temperature anomalies. The mean atmospheric circulation pattern for summer resulted from a crucial reduction of the ‘HSE’-blocking synoptic type (highs over and to the west of NZ; largely settled conditions) and increases in both the ‘T’- and ‘SW’-trough synoptic types (lows passing over NZ; enhanced southerly and southwesterly flow) relative to normal. Associated land-based temperature and precipitation anomalies suggest both colder- and wetter-than-normal conditions were a pervasive component of the base climate state across New Zealand during the LIA, as were colder-than-normal Tasman Sea surface temperatures. Proxy temperature and circulation evidence were used to corroborate the spatially heterogeneous Southern Hemisphere composite z1000 and sea surface temperature patterns generated in this study. A comparison of the composites to climate mode archetypes suggests LIA summer climate and atmospheric circulation over New Zealand was driven by increased frequency of weak El Niño-Modoki in the tropical Pacific and negative Southern Annular Mode activity.  相似文献   

4.
Seven different tree-ring parameters (tree-ring width, earlywood width, latewood width, maximum density, minimum density, mean earlywood density, and mean latewood density) were obtained from Qinghai spruce (Picea crassifolia) at one chronology site in the Hexi Corridor, China. The chronologies were analyzed individually and then compared with each other. Growth–climate response analyses showed that the tree-ring width and maximum latewood density (MXD) are mainly influenced by warm season temperature variability. Based on the relationships derived from the climate response analysis, the MXD chronology was used to reconstruct the May–August maximum temperature for the period 1775–2008 A.D., and it explained the 38.1% of the total temperature variance. It shows cooling in the late 1700s to early 1800s and warming in the twentieth century. Spatial climate correlation analyses with gridded land surface data revealed that our warm season temperature reconstruction contains a strong large-scale temperature signal for north China. Comparison with regional and Northern Hemisphere reconstructions revealed similar low-frequency change to longer-term variability. Several cold years coincide with major volcanic eruptions.  相似文献   

5.
We present new tree-ring width, δ13C, and δ18O chronologies from the Koksu site (49°N, 86° E, 2,200 m asl), situated in the Russian Altai. A strong temperature signal is recorded in the tree-ring width (June-July) and stable isotope (July-August) chronologies, a July precipitation signal captured by the stable isotope data. To investigate the nature of common climatic patterns, our new chronologies are compared with previously published tree-ring and stable isotope data from other sites in the Altai region. The temperature signal preserved in the conifer trees is strongly expressed at local and regional scales for all studied sites, resulting in even stronger temperature and precipitation signals in combined average chronologies compared to separate chronologies. This enables the reconstruction of June-July and July-August temperatures for the last 200 years using tree-ring and stable carbon isotopes. A July precipitation reconstruction based on oxygen isotopic variability recorded in tree-rings can potentially improve the understanding of hydrological changes and the occurrence of extreme events in the Russian Altai.  相似文献   

6.
The instrumental temperature record is of insufficient length to fully express the natural variability of past temperature. High elevation tree-ring widths from Great Basin bristlecone pine (Pinus longaeva) are a particularly useful proxy to infer temperatures prior to the instrumental record in that the tree-rings are annually dated and extend for millennia. From ring-width measurements integrated with past treeline elevation data we infer decadal- to millennial-scale temperature variability over the past 4,500 years for the Great Basin, USA. We find that twentieth century treeline advances are greater than in at least 4,000 years. There is also evidence for substantial volcanic forcing of climate in the preindustrial record and considerable covariation between high elevation tree-ring widths and temperature estimates from an atmosphere–ocean general circulation model over much of the last millennium. A long-term temperature decline of ~?1.1 °C since the mid-Holocene underlies substantial volcanic forcing of climate in the preindustrial record.  相似文献   

7.
A new set of tree-ring records from the Andes of northern Patagonia, Argentina (41° S) was used to evaluate recent (i.e., last 250 years) regional trends in tree growth at upper treeline. Fifteen tree-ring chronologies from 1200 to 1750 m elevation were developed for Nothofagus pumilio, the dominant subalpine species. Samples were collected along three elevational transects located along the steep west-to-east precipitation gradient from the main Cordillera (mean annual precipitation >4000 mm) to an eastern outlier of the Andes (mean annual precipitation >2000 mm). Ring-width variation in higher elevation tree-ring records from the main Cordillera is mainly related to changes in temperature and precipitation during spring and summer. However, the response to climatic variation is also influenced by local site factors of elevation and exposure. Based on the relationships between Nothofagus growth and climate, we reconstructed changes in snow cover duration in late spring and variations in mean annual temperature since A.D. 1750. Abrupt interannual changes in the mean annual temperature reconstruction are associated with strong to very strong El Niño-Southern Oscillation events. At upper treeline, tree growth since 1977 has been anomalously high. A sharp rise in global average tropospheric temperatures has been recorded since the mid-1970s in response to an enhanced tropical hydrologic cycle due to an increase in temperature of the tropical Pacific. Temperatures in northern Patagonia have been anomalously high throughout the 1980s, which is consistent with positive temperature anomalies in the tropical Pacific and along the western coast of the Americas at c.a. 40° S latitude. Our 250-year temperature reconstruction indicates that although the persistently high temperatures of the 1980s are uncommon during this period, they are not unprecedented. Tropical climatic episodes similar to that observed during the 1980s may have occurred in the recent past under pre-industrial carbon dioxide levels.  相似文献   

8.
This study analyses the length and onset of the four seasons based on the annual climatic cycle of maximum and minimum temperatures. Previous studies focused over climatically homogeneous mid-high latitude areas, employing fixed temperature thresholds (related to climatic features such as freezing point) that can be inadequate when different climate conditions are present. We propose a method related to the daily minimum and maximum temperature 25th and 75th point-dependent climatic percentiles. It is applied to an ensemble of regional climate models (RCMs) of 25-km horizontal resolution over the peninsular Spain and Balearic Islands, where a large variety of climatic regimes, from alpine to semi-desertic conditions, are present. First, baseline climate (1961–2000) ERA40-forced RCM simulations are successfully compared with the Spain02 daily observational database, following astronomical season length (around 90 days). This result confirms the validity of the proposed method and capability of the RCMs to describe the seasonal features. Future climate global climate model-forced RCMs (2071–2100) compared with present climate (1961–1990) simulations indicate the disappearance of winter season, a summer enlargement (onset and end) and a slight spring and autumn increase.  相似文献   

9.
Recently a divergence between tree-ring parameters from temperature-limited environments and temperature records has been observed worldwide but comprehensive explanations are still lacking. From a dendroclimatic analysis performed on a high-altitude tree-ring network of Pinus cembra (L.) in the Central Italian Alps we found that site aspect influences non-stationary growth-climate relationships over time. A general increasing divergence between ring width and the summer temperature record (J–A) has been observed especially for chronologies from SW-facing slopes, whereas chronologies from N-facing sites showed stable relationships over time. The monthly analysis revealed that the decrease in sensitivity was mostly accounted for by the changes in the relationships with June temperature (decreasing correlations especially for S- and W-facing site chronologies), whereas trees from N-facing sites showed an increasing sensitivity to July temperatures. Our data suggest that at high altitudes, low temperatures at the beginning of the growing season no longer limit growth. We also found that our temperature-sensitive trees did not linearly respond in radial growth to the extreme heat event of summer 2003, and formed an annual ring of average width, resulting in a strong divergence from the temperature record. Our findings underline the importance of site ecology for tree-ring based climate reconstructions using temperature-sensitive ring-width chronologies, and may help in solving the ‘divergence problem’.  相似文献   

10.
Development of long tree-ring records is an important task in paleoclimate studies. Here we presented a five-century long reconstruction of summer (June to August) temperature based on a tree ring-width chronology of Picea brachytyla var. complanata originating from the Hengduan Mountains of China. Climate-growth response analysis showed that summer temperature was the main climatic factor limiting tree-ring growth in the study area. The reconstructed summer temperature accounted for 47.6% of the variance in actual temperature during their common period A.D. 1958–2002. Analysis of the temperature reconstruction showed that major warm periods occurred in the A.D. 1710s–1750s, 1850s, 1920s–1950s and 1990s to present, whereas cold intervals occurred in the A.D. 1630s–1680s, 1790s–1800s, 1860s–1880s and 1950s–1980s, respectively. The low-frequency variation of the reconstruction agreed fairly well with tree-ring reconstructed temperature from nearby regions and with records of glacier fluctuations in the surrounding high mountains, suggesting that our reconstructed summer temperature was reliable, and could aid in the evaluation of regional climate variability.  相似文献   

11.
Two independent calibrated and verified climate reconstructions from ecologically contrasting tree-ring sites in the southern Colorado Plateau, U.S.A. reveal decadal-scale climatic trends during the past two millennia. Combining precisely dated annual mean-maximum temperature and October through July precipitation reconstructions yields an unparalleled record of climatic variability. The approach allows for the identification of thirty extreme wet periods and thirty-five extreme dry periods in the 1,425-year precipitation reconstruction and 30 extreme cool periods and 26 extreme warm periods in 2,262-year temperature reconstruction. In addition, the reconstructions were integrated to identify intervals when conditions were extreme in both climatic variables (cool/dry, cool/wet, warm/dry, warm/wet). Noteworthy in the reconstructions are the post-1976 warm/wet period, unprecedented in the 1,425-year record both in amplitude and duration, anomalous and prolonged late 20th century warmth, that while never exceeded, was nearly equaled in magnitude for brief intervals in the past, and substantial decadal-scale variability within the Medieval Warm Period and Little Ice Age intervals.  相似文献   

12.
This study aims to evaluate soil climate quantitatively under present and projected climatic conditions across Central Europe (12.1°–18.9° E and 46.8°–51.1° N) and the U.S. Central Plains (90°–104° W and 37°–49° N), with a special focus on soil temperature, hydric regime, drought risk and potential productivity (assessed as a period suitable for crop growth). The analysis was completed for the baselines (1961–1990 for Europe and 1985–2005 for the U.S.) and time horizons of 2025, 2050 and 2100 based on the outputs of three global circulation models using two levels of climate sensitivity. The results indicate that the soil climate (soil temperature and hydric soil regimes) will change dramatically in both regions, with significant consequences for soil genesis. However, the predicted changes of the pathways are very uncertain because of the range of future climate systems predicted by climate models. Nevertheless, our findings suggest that the risk of unfavourable dry years will increase, resulting in greater risk of soil erosion and lower productivity. The projected increase in the variability of dry and wet events combined with the uncertainty (particularly in the U.S.) poses a challenge for selecting the most appropriate adaptation strategies and for setting adequate policies. The results also suggest that the soil resources are likely be under increased pressure from changes in climate.  相似文献   

13.
Maximum latewood density and δ 13C discrimination of Interior Alaska white spruce were used to reconstruct summer (May through August) temperature at Fairbanks for the period 1800–1996, one of the first high-resolution reconstructions for this region. This combination of latewood density and δ 13C discrimination explains 59.9% of the variance in summer temperature during the period of record 1906–1996. The 200-yr. reconstruction is characterized by 7 decadal-scale regimes. Regime changes are indicated at 1816, 1834, 1879, 1916, 1937, and 1974, are abrupt, and appear to be the result of synoptic scale climate changes. The mean of summer temperature for the period of reconstruction (1800–1996) was 13.49 °C. During the period of instrument record (1903–1996) the mean of summer temperature was 13.31 °C for both the reconstruction and the recorded data. The coldest interval was 1916–1937 (12.62 ° C) and the warmest was 1974–1996 (14.23 °C) for the recorded data. The reconstruction differs from records of northern hemisphere temperatures over this period, especially because of Interior Alaska warm periods reconstructed from 1834 to 1851 (14.24 °C) and from 1862 to 1879 (14.19 °C) and because of the cool period in the early part of the 20th century (1917–1974). We show additional tree ring data that support our reconstruction of these warm periods. Alternate hypotheses involving autogenic effect of tree growth on the site, altered tree sensitivity, or novel combinations of temperature and precipitation were explored and while they cannot be ruled out as contributors to the anomalously warm 19th century reconstruction, they were not supported by available data. White spruce radial growth is highly correlated with reconstructed summer temperature, and temperature appears to be a reliable index of carbon uptake in this system.  相似文献   

14.
Drought patterns across monsoon and temperate Asia over the period 1877–2005 are linked to Indo-Pacific climate variability associated with the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June–August months, spatial drought patterns during El Niño and IOD events are assessed as to their agreement with an instrumental drought index and consistency in the drought response amongst ENSO/IOD events. Spatial characteristics in drought patterns are related to regional climate anomalies over the Indo-Pacific basin, using reanalysis products, including changes in the Asian monsoon systems, zonal Walker circulation, moisture fluxes, and precipitation. A weakening of the monsoon circulation over the Indian subcontinent and Southeast Asia during El Niño events, along with anomalous subsidence over monsoon Asia and reduced moisture flux, is reflected in anomalous drought conditions over India, Southeast Asia and Indonesia. When an IOD event co-occurs with an El Niño, severe drought conditions identified in the MADA for Southeast Asia, Indonesia, eastern China and central Asia are associated with a weakened South Asian monsoon, reduced moisture flux over China, and anomalous divergent flow and subsidence over Indonesia. Insights into the relative influences of Pacific and Indian Ocean variability for Asian monsoon climate on interannual to decadal and longer timescales, as recorded in the MADA, provide a useful tool for assessing long-term changes in the characteristics of Asian monsoon droughts in the context of Indo-Pacific climate variability.  相似文献   

15.
Climate extremes, particularly the droughts sustaining over a prolonged period and affecting extended area (defined as “exceptional drought events”), can have long-lasting effects on economic and social activities. Here we use the Chinese drought/flood proxy data of the past five hundred years to identify the cases of exceptional drought events over eastern China (east of 105°E), and to study their spatial patterns and temporal evolutions. The associated circulations for the contemporary case are analyzed using available meteorological data. Possible linkage of these cases to climatic forcing and natural climate events is also explored. After considering the intensity, duration, and spatial coverage, we identified three exceptional drought events, which occurred in 1586–1589, 1638–1641, and 1965–1966 in chronological order. They were the most severe droughts of last five centuries in eastern China, with more than 40% of affected area and the drought center encountered a significant summer rainfall reduction (about 50% or more). These three droughts all developed first in North China (34–40°N), and then either expanded southward or moved to the Yangtze River Valley (27–34°N) and the northern part of the southeastern coastal area (22–27°N). For the 1965–1966 case, the significant reduction of summer precipitation was caused by a weakening of summer monsoon and an anomalous westward and northward displacement of the western Pacific subtropical high. Our analyses also suggest that these three exceptional drought events might be triggered by large volcanic eruptions and amplified by both volcanic eruptions and El Niño events.  相似文献   

16.
A 680-year ring-width chronology of Sabina przewalskii Kom. was developed for Wulan area of northeastern Qinghai-Tibetan Plateau, China. Response function and correlation analyses showed that spring precipitation (May–June) is the critical limiting factor for tree-ring growth, and temperature in prior November may also play a role in affecting tree-ring growth. Excessive spring precipitation occurred during AD 1380s–1390s, 1410s–1420s, 1520s–1560s and 1938 to present. Dry springs occurred during AD 1430s–1510s, 1640s–1730s and 1780s–1890s most of which generally coincided with cold intervals of the Little Ice Age (LIA) on the plateau, suggesting that the LIA climate on the northeastern Qinghai-Tibetan Plateau might be characterized by three episodes of dry spring and cold autumn. The relatively driest spring and probably coldest autumn occurred in AD 1710s–1720s, 1787–1797, 1815–1824, 1869–1879 and 1891–1895. The extreme drought in AD 1787–1797 might result from little monsoon precipitation due to the failure of Asian monsoon in this period. The tree-ring data produced in this study contribute to the spatial expansion of proxy climate records for the Qinghai-Tibetan Plateau.  相似文献   

17.
位于西昆仑山北坡的叶尔羌河是塔里木河的三大源流之一,该流域山区分布的雪岭云杉为过去气候变化研究提供了理想的载体。本文建立了叶尔羌河流域4个雪岭云杉树轮宽度年表和区域合成年表,探讨了树轮年表对叶城气象站气温、降水等气候要素的响应特征。结果表明雪岭云杉树轮年表具有较高平均敏感度、缺轮率和序列间相关系数,年表的质量较高。区域合成年表与叶城站上年6月至当年5月降水量相关系数为0.393,与当年3—9月平均最低气温相关系数为0.624。一阶差相关分析表明,树轮年表与最低气温的高频变化特征并不一致,二者较高的正相关主要是由于温度升高趋势的贡献。树轮年表与乌恰站上年7月至当年4月降水量相关系数为0.535。西昆仑山北坡雪岭云杉树轮年表与周边对水分敏感的树轮气候记录对比表明,其低频变化趋势以及缺年集中出现的年份均具有较好的一致性。由于气候干旱、下垫面条件恶劣,位于叶尔羌河流域的西昆仑山北坡雪岭云杉树木径向生长的限制因子仍然为水分条件,而非气温。  相似文献   

18.
This dendroclimatological research is based on two close pine forests (Pinus sylvestris and Pinus uncinata) located at the Northern Iberian System (Spain), and three tree-ring variables (ring widths, δ 13C and δ 18O). The climate-tree growth system was assessed at local and regional scales using three climate datasets. Calibration of tree-ring records with climate showed a diversity of information recorded in the different variables, such as a general response to temperature and precipitation of current growing period, and an important contribution of previous year conditions understood as the use of food reserves. The analysis of the stability of climate-tree growth relationships throughout the twentieth century showed a shift of those climatic variables to which trees responded and results suggested an enhancement of reserve use on current tree growth. The results obtained in this research made clear a physiological adaptation of trees to changing climate. The results provided hints that the recent warming coupled to slight precipitation decay are forcing growth of studied trees to a higher stress status and to a higher climate-growth synchronisation. These instabilities also have implications on future dendroclimatic reconstructions performed with trees growing under changing environments.  相似文献   

19.
Håkan Grudd 《Climate Dynamics》2008,31(7-8):843-857
This paper presents updated tree-ring width (TRW) and maximum density (MXD) from Torneträsk in northern Sweden, now covering the period ad 500–2004. By including data from relatively young trees for the most recent period, a previously noted decline in recent MXD is eliminated. Non-climatological growth trends in the data are removed using Regional Curve Standardization (RCS), thus producing TRW and MXD chronologies with preserved low-frequency variability. The chronologies are calibrated using local and regional instrumental climate records. A bootstrapped response function analysis using regional climate data shows that tree growth is forced by April–August temperatures and that the regression weights for MXD are much stronger than for TRW. The robustness of the reconstruction equation is verified by independent temperature data and shows that 63–64% of the instrumental inter-annual variation is captured by the tree-ring data. This is a significant improvement compared to previously published reconstructions based on tree-ring data from Torneträsk. A divergence phenomenon around ad 1800, expressed as an increase in TRW that is not paralleled by temperature and MXD, is most likely an effect of major changes in the density of the pine population at this northern tree-line site. The bias introduced by this TRW phenomenon is assessed by producing a summer temperature reconstruction based on MXD exclusively. The new data show generally higher temperature estimates than previous reconstructions based on Torneträsk tree-ring data. The late-twentieth century, however, is not exceptionally warm in the new record: On decadal-to-centennial timescales, periods around ad 750, 1000, 1400, and 1750 were equally warm, or warmer. The 200-year long warm period centered on ad 1000 was significantly warmer than the late-twentieth century (< 0.05) and is supported by other local and regional paleoclimate data. The new tree-ring evidence from Torneträsk suggests that this “Medieval Warm Period” in northern Fennoscandia was much warmer than previously recognized.  相似文献   

20.
Dry fogs spawned by large volcanic eruptions cool the climate by partially blocking incident sunlight and perturbing atmospheric circulation patterns. The climatic and epidemiological consequences of seven intense volcanic dry fogs of the past 21 centuries, detected in Europe and the Middle East, are investigated by using historical reports, supplemented by tree-ring data and polar-ice acidity measurements. The signal-to-noise ratio in the historical data is very high. In four cases, the first winter following the eruption was exceptionally cold. The eruptions preceding these frigid first winters are known, or strongly suspected, to have occurred at high northern latitudes. Two of the other dry fogs are linked unambiguously to tropical eruptions, after each of which the first winter was comparatively mild. The following few years tended to be cooler on the average in all six of the instances that can be checked. Famine and disease pandemics ensued, with the epidemics in all cases reaching the Mediterranean area within 1 to 5 years after the eruptions. In at least five cases, the contagion responsible for the mass mortality was probably plague.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号