首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The paper deals with a selection of the climatological baseline, GCM validity and construction of the climate change scenarios for an impact assessment in the Czech territory. The period of 1961–1990 has been selected as the climatological baseline. The corresponding database includes more than 50 monthly mean temperature and precipitation series, and 16 time series of daily meteorological data that contain also the solar radiation data. The 1× CO2 outputs produced by four GCMs, provided by the CSMT (GISS, GFD30, GFD01, and CCCM), were compared with observed temperature and precipitation conditions in western and central Europe with a particular attention devoted to the Czech territory. The GCM ability to simulate annual cycles of temperature, precipitation and radiation was thoroughly examined. The GISS and CCCM were selected as a basis for constructing climate change scenarios as they simulated reasonably the observed patterns. According to the GISS variant, 2× CO2 climate assumes a higher winter and lower summer warming, and an increase in annual precipitation amounts. A dangerous combination of the summer temperature increase and declining precipitation amounts is a specific feature of the CCCM scenario. An incremental scenario for temperature and precipitation is based on the combination of prescribed changes in both annual means and annual courses.  相似文献   

2.
The Xin'anjiang Model is used as the basic model to develop a monthly grid-based macroscalehydrological model for the assessment of the effects of climate change on water resources.Themonthly discharge from 1953 through 1985 in the Huaihe River Basin is simulated.The sensitivityanalysis on runoff is made under assumed climatic scenarios.There is a good agreement betweenthe observed and simulated runoff.Due to the increase of time interval and decrease ofprecipitation intensity on monthly time scale,there is no monthly runoff in some model girds as themomhly hydrological model is applied to the Huaihe River Basin.Two methods of downscalingmonthly precipitation to daily resolution are validated by running the Xin'anjiang model withmonthly data at a daily time step.and the model outputs are more realistic than the monthlyhydrological model.The metbods of downscaling of monthly precipitation to daily resolution mayprovide an idea in solving the problem of the shortage of daily data.In the research of the climatechange on water resources,the daily hydrological model can be used instead of the monthly one.  相似文献   

3.
We developed calibration models and reconstructed climate for sites in the central and eastern Canadian High Arctic using dendroclimatological and stable isotope analysis techniques on the dwarf-shrub, Cassiope tetragona. Our results may suggest complex temporal and spatial patterns of climate change in the region over the past century. For sites on Bathurst and Devon Islands, we reconstructed fall mean and June–July mean temperature using multiple linear regression analysis that explained 54?% and 40?% of the variance, respectively. The predictor variables included annual growth, annual production of leaves, flower buds and annual δ13C values for the Bathurst Island model, and annual growth and δ13C values for the Devon Island model. Both models revealed warmer than average temperatures throughout the mid-20th century, followed by a cooling trend from the early 1960s and mid-1970s at the Devon and Bathurst Island sites, respectively. Temperatures remained cool until the early 1980s and then increased until 1998/1999 at both sites. Our models are supported by other paleoclimate proxies and the instrumental record from the Canadian Arctic. For sites on Axel Heiberg and Bathurst Islands, we developed models using multivariate regresssion for February and March total precipitation that explained 44?% and 42?% of the variance, respectively. The Axel Heiberg Island model included annual production of flowers and flower buds, as well as annual δ13C values as predictor variables, while the Bathurst Island model only included the annual production of flower buds as a predictor. Both models showed lower than average precipitation from the early to mid-1900s, followed by increasing precipitation from the late 1980s to 1998/1999. Our precipitation models, supported by instrumental and proxy data, suggest a trend of increasing late-winter/early spring precipitation in the late 20th century. The lack of a single detectable climate signal across the study sites suggests local climate, topography, genetic variation and/or ecological conditions may dictate, in part, site responses and result in a heterogeneous climatescape over space and time. Yet, like other arctic paleoclimate proxies, chronology error and temporal discrepancies may complicate our interpretations. However, comparisons with other arctic proxies and the meteorological record suggest our models have also registered a regional climate signal.  相似文献   

4.
Results from high resolution 7-km WRF regional climate model (RCM) simulations are used to analyse changes in the occurrence frequencies of heat waves, of precipitation extremes and of the duration of the winter time freezing period for highly populated urban areas in Central Europe. The projected climate change impact is assessed for 11 urban areas based on climate indices for a future period (2021–2050) compared to a reference period (1971–2000) using the IPCC AR4 A1B Scenario as boundary conditions. These climate indices are calculated from daily maximum, minimum and mean temperatures as well as precipitation amounts. By this, the vulnerability of these areas to future climate conditions is to be investigated. The number of heat waves, as well as the number of single hot days, tropical nights and heavy precipitation events is projected to increase in the near future. In addition, the number of frost days is significantly decreased. Probability density functions of monthly mean summer time temperatures show an increase of the 95th percentile of about 1–3 °C for the future compared with the reference period. The projected increase of cooling and decrease of heating degree days indicate the possible impact on urban energy consumption under future climate conditions.  相似文献   

5.
Observations as well as most climate model simulations are generally in accord with the hypothesis that the hydrologic cycle should intensify and become highly volatile with the greenhouse-gas-induced climate change, although uncertainties of these projections as well as the spatial and seasonal variability of the changes are much larger than for temperature extremes. In this study, we examine scenarios of changes in extreme precipitation events in 24 future climate runs of ten regional climate models, focusing on a specific area of the Czech Republic (central Europe) where complex orography and an interaction of other factors governing the occurrence of heavy precipitation events result in patterns that cannot be captured by global models. The peaks-over-threshold analysis with increasing threshold censoring is applied to estimate multi-year return levels of daily rainfall amounts. Uncertainties in scenarios of changes for the late 21st century related to the inter-model and within-ensemble variability and the use of the SRES-A2 and SRES-B2 greenhouse gas emission scenarios are evaluated. The results show that heavy precipitation events are likely to increase in severity in winter and (with less agreement among models) also in summer. The inter-model and intra-model variability and related uncertainties in the pattern and magnitude of the change is large, but the scenarios tend to agree with precipitation trends recently observed in the area, which may strengthen their credibility. In most scenario runs, the projected change in extreme precipitation in summer is of the opposite sign than a change in mean seasonal totals, the latter pointing towards generally drier conditions in summer. A combination of enhanced heavy precipitation amounts and reduced water infiltration capabilities of a dry soil may severely increase peak river discharges and flood-related risks in this region.  相似文献   

6.
STUDIES ON CLIMATE CHANGE IN CHINA IN RECENT 45 YEARS   总被引:6,自引:0,他引:6       下载免费PDF全文
Based on the data of monthly mean air temperature and precipitation from about 400 stationsin 1951—1995.and the data of maximum and minimum air temperatures,relative humidity,totalcloud cover and low-cloud cover,sunshine duration,evaporation,wind speed,snow-covered daysand depth,and soil temperatures in 8 layers from 0 m down to 3.2 m from 200 odd stations in 1961—1995.the climate change and its characteristics in China in recent 45 years have been analyzedand studied comprehensively.This paper,as the first part of the work.has analyzed the climatechange and regularities of such meteorological elements as mean air temperature,maximum andminimum air temperatures,precipitation,relative humidity and sunshine duration.The possiblemechanism on climate change in China and the climate change and regularities of othermeteorological elements will be discussed in another paper as the second part.  相似文献   

7.
利用哈尔滨站1881—2010年的月平均气温、1909—2010年的月总降水量和1961—2010年哈尔滨所辖区、县(市)月平均气温、月总降水量资料,采用线性趋势分析方法,计算了哈尔滨市气温、降水变化速率,分析了哈尔滨市气候变化特征;阐述了气候变化对哈尔滨市的影响。结果表明:近50 a,除巴彦7月气温略呈下降趋势外,哈尔滨市各区、县(市)各月、季、年平均气温均呈升高趋势。哈尔滨各区、县(市)各月、季、年总降水量变化趋势不一致。近130 a,哈尔滨市年、季平均气温均呈明显的上升趋势,20世纪80年代开始明显增温,21世纪开始增温尤为显著。近百年来,哈尔滨市年、季总降水量均呈减少趋势。气候变化对哈尔滨市农业、能源等方面的影响有利有弊,但对于水资源、人体健康和交通等有较大的负面影响。  相似文献   

8.
Our central goal is to determine the importance of including both mean and variability changes in climate change scenarios in an agricultural context. By adapting and applying a stochastic weather generator, we first tested the sensitivity of the CERES-Wheat model to combinations of mean and variability changes of temperature and precipitation for two locations in Kansas. With a 2°C increase in temperature with daily (and interannual) variance doubled, yields were further reduced compared to the mean only change. In contrast, the negative effects of the mean temperature increase were greatly ameliorated by variance decreased by one-half. Changes for precipitation are more complex, since change in variability naturally attends change in mean, and constraining the stochastic generator to mean change only is highly artificial. The crop model is sensitive to precipitation variance increases with increased mean and variance decreases with decreased mean. With increased mean precipitation and a further increase in variability Topeka (where wheat cropping is not very moisture limited) experiences decrease in yield after an initial increase from the 'mean change only case. At Goodland Kansas, a moisture-limited site where summer fallowing is practiced, yields are decreased with decreased precipitation, but are further decreased when variability is further reduced. The range of mean and variability changes to which the crop model is sensitive are within the range of changes found in regional climate modeling (RegCM) experiments for a CO2 doubling (compared to a control run experiment). We then formed two types of climate change scenarios based on the changes in climate found in the control and doubled CO2 experiments over the conterminous U. S. of RegCM: (1) one using only mean monthly changes in temperature, precipitation, and solar radiation; and (2) another that included these mean changes plus changes in daily (and interannual) variability. The scenarios were then applied to the CERES-Wheat model at four locations (Goodland, Topeka, Des Moines, Spokane) in the United States. Contrasting model responses to the two scenarios were found at three of the four sites. At Goodland, and Des Moines mean climate change increased mean yields and decreased yield variability, but the mean plus variance climate change reduced yields to levels closer to their base (unchanged) condition. At Spokane mean climate change increased yields, which were somewhat further increased with climate variability change. Three key aspects that contribute to crop response are identified: the marginality of the current climate for crop growth, the relative size of the mean and variance changes, and timing of these changes. Indices for quantifying uncertainty in the impact assessment were developed based on the nature of the climate scenario formed, and the magnitude of difference between model and observed values of relevant climate variables.  相似文献   

9.
Simulated impacts of global and regional climate change, induced by an enhanced greenhouse effect and by Amazonian deforestation, on the phenology and yield of two grain corn cultivars in Venezuela (CENIAP PB-8 and OBREGON) are reported. Three sites were selected:Turén, Barinas andYaritagua, representing two important agricultural regions in the country. The CERES-Maize model, a mechanistic process-based model, in theDecision Support System for Agrotechnology Transfer (DSSAT) was used for the crop simulations. These simulations assume non-limiting nutrients, no pest damage and no damage from excess water; therefore, the results indicate only the difference between baseline and perturbed climatic conditions, when other conditions remain the same. Four greenhouse-induced global climate change scenarios, covering different sensitivity levels, and one deforestation-induced regional climate change scenario were used. The greenhouse scenarios assume increased air temperature, increased rainfall and decreased incoming solar radiation, as derived from atmospheric GCMs for doubled CO2 conditions. The deforestation scenarios assume increased air temperature, increased incoming solar radiation and decreased rainfall, as predicted by coupled atmosphere-biosphere models for extensive deforestation of a portion of the Amazon basin. Two baseline climate years for each site were selected, one year with average precipitation and another with lower than average rainfall. Scenarios associated with the greenhouse effect cause a decrease in yield of both cultivars at all three sites, while the deforestation scenarios produce small changes. Sensitivity tests revealed the reasons for these responses. Increasing temperatures, especially daily maximum temperatures, reduce yield by reducing the duration of the phenological phases of both cultivars, as expected from CERES-Maize. The reduction of the duration of the kernel filling phase has the largest effect on yield. Increases of precipitation associated with greenhouse warming have no effects on yield, because these sites already have adequate precipitation; however, the crop model used here does not simulate potential negative effects of excess water, which could have important consequences in terms of soil erosion and nutrient leaching. Increases in solar radiation increased yields, according to the non-saturating light response of the photosynthesis rate of a C4 plant like corn, compensating for reduced yields from increased temperatures in deforestation scenarios. In the greenhouse scenarios, reduced insolation (due to increased cloud cover) and increased temperatures combine to reduce yields; a combination of temperature increase with a reduction in solar radiation produces fewer and lighter kernels.A report of thePAN-EARTH Project, Venezuela Case Study.  相似文献   

10.
Water Resources Implications of Global Warming: A U.S. Regional Perspective   总被引:8,自引:1,他引:7  
The implications of global warming for the performance of six U.S. water resource systems are evaluated. The six case study sites represent a range of geographic and hydrologic, as well as institutional and social settings. Large, multi-reservoir systems (Columbia River, Missouri River, Apalachicola-Chatahoochee-Flint (ACF) Rivers), small, one or two reservoir systems (Tacoma and Boston) and medium size systems (Savannah River) are represented. The river basins range from mountainous to low relief and semi-humid to semi-arid, and the system operational purposes range from predominantly municipal to broadly multi-purpose. The studies inferred, using a chain of climate downscaling, hydrologic and water resources systems models, the sensitivity of six water resources systems to changes in precipitation, temperature and solar radiation. The climate change scenarios used in this study are based on results from transient climate change experiments performed with coupled ocean-atmosphere General Circulation Models (GCMs) for the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment. An earlier doubled-CO2 scenario from one of the GCMs was also used in the evaluation. The GCM scenarios were transferred to the local level using a simple downscaling approach that scales local weather variables by fixed monthly ratios (for precipitation) and fixed monthly shifts (for temperature). For those river basins where snow plays an important role in the current climate hydrology (Tacoma, Columbia, Missouri and, to a lesser extent, Boston) changes in temperature result in important changes in seasonal streamflow hydrographs. In these systems, spring snowmelt peaks are reduced and winter flows increase, on average. Changes in precipitation are generally reflected in the annual total runoff volumes more than in the seasonal shape of the hydrographs. In the Savannah and ACF systems, where snow plays a minor hydrological role, changes in hydrological response are linked more directly to temperature and precipitation changes. Effects on system performance varied from system to system, from GCM to GCM, and for each system operating objective (such as hydropower production, municipal and industrial supply, flood control, recreation, navigation and instream flow protection). Effects were generally smaller for the transient scenarios than for the doubled CO2 scenario. In terms of streamflow, one of the transient scenarios tended to have increases at most sites, while another tended to have decreases at most sites. The third showed no general consistency over the six sites. Generally, the water resource system performance effects were determined by the hydrologic changes and the amount of buffering provided by the system's storage capacity. The effects of demand growth and other plausible future operational considerations were evaluated as well. For most sites, the effects of these non-climatic effects on future system performance would about equal or exceed the effects of climate change over system planning horizons.  相似文献   

11.
This paper presents probable effects of climate change on soil moisture availability in the Southeast Anatolia Development Project (GAP) region of Turkey. A series of hypothetical climate change scenarios and GCM-generated IPCC Business-as-Usual scenario estimates of temperature and precipitation changes were used to examine implications of climate change for seasonal changes in actual evapotranspiration, soil moisture deficit, and soil moisture surplus in 13 subregions of the GAP. Of particular importance are predicted patterns of enhancement in summer soil moisture deficit that are consistent across the region in all scenarios. Least effect of the projected warming on the soil moisture deficit enhancement is observed with the IPCC estimates. The projected temperature changes would be responsible for a great portion of the enhancement in summer deficits in the GAP region. The increase in precipitation had less effect on depletion rate of soil moisture when the temperatures increase. Particularly southern and southeastern parts of the region will suffer severe moisture shortages during summer. Winter surplus decreased in scenarios with increased temperature and decreased precipitation in most cases. Even when precipitation was not changed, total annual surplus decreased by 4 percent to 43 percent for a 2°C warming and by 8 percent to 91 percent for a 4°C warming. These hydrologic results may have significant implications for water availability in the GAP as the present project evaluations lack climate change analysis. Adaptation strategies – such as changes in crop varieties, applying more advanced dry farming methods, improved water management, developing more efficient irrigation systems, and changes in planting – will be important in limiting adverse effects and taking advantage of beneficial changes in climate.  相似文献   

12.
Summary We use the regional climate model RegCM nested within time-slice atmospheric general circulation model experiments to investigate the possible changes of intense and extreme precipitation over the French Maritime Alps in response to global climate change. This is a region with complex orography where heavy and/or extended precipitation episodes induced catastrophic floods during the last decades. Output from a 30-year simulation of present-day climate (1961–1990) is first analysed and compared with NCEP reanalysed 700 hPa geopotential heights (Z700) and daily precipitation observations from the Alpine Precipitation Climatology (1966–1999). Two simulations under forcing from the A2 and B2 IPCC emission scenarios for the period 2071–2100 are used to investigate projected changes in extreme precipitation for our region of interest. In general, the model overestimates the annual cycle of precipitation. The climate change projections show some increase of precipitation, mostly outside the warm period for the B2 scenario, and some increase in the variability of the annual precipitation totals for the A2 scenario. The model reproduces the main observed patterns of the spatial leading EOFs in the Z700 field over the Atlantic-European domain. The simulated large scale circulation (LSC) variability does not differ significantly from that of the reanalysis data provided the EOFs are computed on the same domain. Two similar clusters of LSC corresponding to heavy precipitation days were identified for both simulated and observed data and their patterns do not change significantly in the climate change scenarios. The analysis of frequency histograms of extreme indices shows that the control simulation systematically underestimates the observed heavy precipitation expressed as the 90th percentile of rainday amounts in all seasons except summer and better reproduces the greatest 5-day precipitation accumulation. The main hydrological changes projected for the Maritime Alps consist of an increase of most intense wet spell precipitation during winters for both scenarios and during autumn for the B2 scenario. Case studies of heavy precipitation events show that the RegCM is capable to reproduce the physical mechanisms responsible for heavy precipitation over our region of interest.  相似文献   

13.
Cambodia is one of the most vulnerable countries to climate change impacts such as floods and droughts. Study of future climate change and drought conditions in the upper Siem Reap River catchment is vital because this river plays a crucial role in maintaining the Angkor Temple Complex and livelihood of the local population since 12th century. The resolution of climate data from Global Circulation Models (GCM) is too coarse to employ effectively at the watershed scale, and therefore downscaling of the dataset is required. Artificial neural network (ANN) and Statistical Downscaling Model (SDSM) models were applied in this study to downscale precipitation and temperatures from three Representative Concentration Pathways (RCP 2.6, RCP 4.5 and RCP 8.5 scenarios) from Global Climate Model data of the Canadian Earth System Model (CanESM2) on a daily and monthly basis. The Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were adopted to develop criteria for dry and wet conditions in the catchment. Trend detection of climate parameters and drought indices were assessed using the Mann-Kendall test. It was observed that the ANN and SDSM models performed well in downscaling monthly precipitation and temperature, as well as daily temperature, but not daily precipitation. Every scenario indicated that there would be significant warming and decreasing precipitation which contribute to mild drought. The results of this study provide valuable information for decision makers since climate change may potentially impact future water supply of the Angkor Temple Complex (a World Heritage Site).  相似文献   

14.
A monthly water balance (WB) model was developed for the Yukon River Basin (YRB). The WB model was calibrated using mean monthly values of precipitation and temperature derived from the Precipitation-elevation Regression on Independent Slopes Model (PRISM) data set and by comparing estimated mean monthly runoff with runoff measured at Pilot Station, Alaska. The calibration procedure used the Shuffled Complex Evolution global search. Potential hydrologic effects of climate change were assessed for the YRB by imposing changes in precipitation and temperature derived from selected Inter-governmental Panel for Climate Change (IPCC) climate simulations. Scenarios from five general circulation model (GCM) simulations were used to provide a range of potential changes. Results from the scenarios indicate an increase in annual runoff in the twenty-first century for the YRB with simulated increases in precipitation having the greatest effect on increases in runoff. Simulated increases in temperature were found to alter the timing of snow accumulation and melt.  相似文献   

15.
1881-2010年哈尔滨市气候变化及其影响   总被引:2,自引:0,他引:2       下载免费PDF全文
利用哈尔滨本站1881-2010年的月平均气温、1909-2010年的月总降水量和1961-2010年哈尔滨所辖区、县(市)月平均气温、月总降水量资料,采用线性趋势分析方法,计算了哈尔滨市气温、降水变化速率,分析了哈尔滨市气候变化特征;阐述了气候变化对哈尔滨市的影响。结果表明:近50a,除巴彦7月气温略呈下降趋势外,哈尔滨各区、县(市)各月、季、年平均气温均呈升高趋势。哈尔滨各区、县(市)各月、季、年总降水量变化趋势不一致。近130a,哈尔滨市年、季平均气温均呈明显的上升趋势,20世纪80年代开始明显增温,21世纪开始增温尤为显著。近百年来,哈尔滨市年、季总降水量均呈减少趋势。气候变化对哈尔滨市农业、能源等方面的影响有利有弊,但对于水资源、人体健康和交通等方面有较大的负面影响。  相似文献   

16.
基于1961~2000年辽宁53个测站40 a逐年的月气温距平和月降水距平百分率资料,根据EOF(经验正交函数)展开的空间特征向量分布特征,将前3个主要特征向量时间系数作为预报量,将500 hPa高度场的高度距平、地转涡度作为预报因子,利用多元统计回归分析,建立了一套定点、定量预测辽宁各月气温与降水量的数学模型。利用该模型对2001~2005年辽宁53个测站的月气温距平和月降水距平百分率进行逐月预报试验。结果表明:对气温和降水量的趋势预报的评分均比较好,有87%以上的月气温距平预测结果的评分超过66.0分,各月的平均Ps评分均高于66.0分,年平均为75.5分或以上,总平均为83.1分;有70%的月降水距平百分率预测结果的Ps评分超过60.0分,各月的平均Ps评分都高于53.0分,年平均为58.0分以上,总平均为66.5分。但对异常气候的预测效果不明显。  相似文献   

17.
X-C Zhang 《Climatic change》2007,84(3-4):337-363
Spatial downscaling of climate change scenarios can be a significant source of uncertainty in simulating climatic impacts on soil erosion, hydrology, and crop production. The objective of this study is to compare responses of simulated soil erosion, surface hydrology, and wheat and maize yields to two (implicit and explicit) spatial downscaling methods used to downscale the A2a, B2a, and GGa1 climate change scenarios projected by the Hadley Centre’s global climate model (HadCM3). The explicit method, in contrast to the implicit method, explicitly considers spatial differences of climate scenarios and variability during downscaling. Monthly projections of precipitation and temperature during 1950–2039 were used in the implicit and explicit spatial downscaling. A stochastic weather generator (CLIGEN) was then used to disaggregate monthly values to daily weather series following the spatial downscaling. The Water Erosion Prediction Project (WEPP) model was run for a wheat–wheat–maize rotation under conventional tillage at the 8.7 and 17.6% slopes in southern Loess Plateau of China. Both explicit and implicit methods projected general increases in annual precipitation and temperature during 2010–2039 at the Changwu station. However, relative climate changes downscaled by the explicit method, as compared to the implicit method, appeared more dynamic or variable. Consequently, the responses to climate change, simulated with the explicit method, seemed more dynamic and sensitive. For a 1% increase in precipitation, percent increases in average annual runoff (soil loss) were 3–6 (4–10) times greater with the explicit method than those with the implicit method. Differences in grain yield were also found between the two methods. These contrasting results between the two methods indicate that spatial downscaling of climate change scenarios can be a significant source of uncertainty, and further underscore the importance of proper spatial treatments of climate change scenarios, and especially climate variability, prior to impact simulation. The implicit method, which applies aggregated climate changes at the GCM grid scale directly to a target station, is more appropriate for simulating a first-order regional response of nature resources to climate change. But for the site-specific impact assessments, especially for entities that are heavily influenced by local conditions such as soil loss and crop yield, the explicit method must be used.  相似文献   

18.
Based on RegCM4, a climate model system, we simulated the distribution of the present climate (1961-1990) and the future climate (2010-2099), under emission scenarios of RCPs over the whole Pearl River Basin. From the climate parameters, a set of mean precipitation, wet day frequency, and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21st century. Meanwhile the return values of precipitation intensity with an average return of 5, 10, 20, and 50 years are also used to assess the expected changes in precipitation extremes events in this study. The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5. The annual, spring and winter average precipitation decreases while the summer and autumn average precipitation increases. The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase. The wet day percentiles (q90 and q95) also increase, indicating that precipitation extremes intensity will increase in the future. Meanwhile, the 5-year return value tends to increase by 30%-45% in the basins of Liujiang River, Red Water River, Guihe River and Pearl River Delta region, where the 5-year return value of future climate corresponds to the 8- to 10-year return value of the present climate, and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080s under RCP8.5, which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events.  相似文献   

19.
径流对气候变化的敏感性分析   总被引:2,自引:0,他引:2  
全球变暖愈来愈引起社会各界的关注 ,本文利用月水文模型 ,采取假定气候方案 ,以黄河流域为例 ,分析了径流对气候变化的敏感性。结果表明 ,径流对降水变化的响应较气温变化显著 ;一般情况下 ,半干旱地区径流较半湿润地区对气候变化敏感 ,人类活动的影响可在一定程度上削弱径流对气候变化的敏感性  相似文献   

20.
石家庄市气候变化特征分析   总被引:4,自引:0,他引:4  
赵国石  郝立生 《气象科技》2007,35(6):797-802
利用石家庄市1951~2005年气温、降水资料,采用变率分析、趋势分析、小波变换和Mann-Kendall检验等方法对石家庄近55年的气候变化特征进行了分析。结果表明:①夏季、秋季气温变率小,冬季气温变化幅度最大;②年气温和四季气温线性上升趋势显著,春季、冬季升温最明显,近55年气候变暖主要是春季和冬季气温升高造成的。年降水量和四季降水量不存在线性变化趋势;③四季气温和年气温变化的周期性不明显,而降水量变化存在周期性;④石家庄四季气温和年气温在20世纪80年代末和90年初发生了明显的气候突变,而四季降水量和年降水量变化没有发生明显的气候突变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号