首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 106 毫秒
1.
Model calculations and field measurements have shown that when air masses accumulate emissions of hydrocarbons and nitrogen oxides from sources in continental Europe and then move towards Scandinavia without any synoptic scale break-up of the atmospheric boundary layer (e.g. frontal passages), elevated PAN concentrations in southern Norway or Sweden in the range 1–5 ppb may be caused by long-range transport. The model calculations showed that over sea, the persistence of PAN was comparable to that of ozone in an ageing air mass when the temperatures were fairly low (5–10°C). At higher temperatures the thermal decomposition of PAN made the compound less persistent than ozone. Over land, the situation may be different since the ground removal is typically three times more efficient for ozone than for PAN.According to the model, the concentration of PAN did not change very much when an ageing air mass was exposed to moderate emissions of hydrocarbons, nitrogen oxides, or both. The concentration of PAN decreased less than the concentration of ozone when an ageing air mass was exposed to high emissions of nitrogen oxides.  相似文献   

2.
The North China Plain (NCP) has recently faced serious air quality problems as a result of enhanced gas pollutant emissions due to the process of urbanization and rapid economic growth. To explore regional air pollu- tion in the NCP, measurements of surface ozone (O3), nitrogen oxides (NOx), and sulfur dioxide (SO2) were car- ried out from May to November 2013 at a rural site (Xianghe) between the twin megacities of Beijing and Tianjin. The highest hourly ozone average was close to 240 ppbv in May, followed by around 160 ppbv in June and July. High ozone episodes were more notable than in 2005 and were mainly associated with air parcels from the city cluster in the hinterland of the polluted NCP to the southwest of the site. For NOx, an important ozone precur- sor, the concentrations ranged from several ppbv to nearly 180 ppbv in the summer and over 400 ppbv in the fall. The occurrence of high NOx concentrations under calm condi- tions indicated that local emissions were dominant in Xianghe. The double-peak diurnal pattern found in NOx concentrations and NO/NOx ratios was probably shaped by local emissions, photochemical removal, and dilution re- sulting from diurnal variations of surface wind speed and the boundary layer height. A pronounced SO2 daytime peak was noted and attributed to downward mixing from an SO2-rich layer above, while the SO2-polluted air mass transported from possible emission sources, which differed between the non-heating (September and October) and heating (November) periods, was thought to be responsible for night-time high concentrations.  相似文献   

3.
The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10–20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NO x from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.  相似文献   

4.
Three independent methods have been used to sort the ozone, carbonmonoxide, and other radiatively important trace gases measured at Mace Head,Ireland, and thereby distinguish clean air masses transported over the NorthAtlantic from the more polluted air masses which have recently travelledfrom the European continent. Over the period April 1987–June 1995 theNorthern Hemisphere surface ozone baseline concentrations exhibited a meanconcentration of 34.8 ppb, with a small positive trend (+0.19 ppbyr-1), while the corresponding trend in air originating fromthe polluted European areas was negative (–0.39 ppbyr-1). Carbon monoxide measurements from March 1990 toDecember 1994 showed negative trends for both the unpolluted (–0.17ppb yr-1) and polluted data (–13.6 ppbyr-1). Overall the continent of Europe was shown to be a smallnet sink of 2.6 ppb for all occasions when European air was transported tothe North Atlantic.  相似文献   

5.
Detailed studies have been made of the behaviour of gases and radicals involved in the production of oxidants at the Weybourne Atmospheric Observatory in both summertime and wintertime conditions. In June 1995 the range of meteorological conditions experienced varied such that ozone destruction was observed in clean northerly air flows reaching Weybourne down the North Sea from the Arctic, and ozone production was observed in varying degrees in air with different loadings of nitrogen oxides and other precursors. The transition point for ozone destruction to ozone production occurred at a nitric oxide concentration of the order of 50 pptv. Plumes of polluted air from various urban areas in the U.K. were experienced in the June campaign at Weybourne. Quantitative studies of ozone production in a plume from the Birmingham conurbation on 18 June 1995 showed that the measurement of ozone production agreed well with calculated production rates from the product of the nitric oxide and peroxy radical concentrations (r2=0.9). In wintertime conditions (October–November 1994) evidence was also found for oxidant production, defined as the sum of O3+NO2. At this time of year the peroxy radical concentrations (RO2) were much lower than observed in the summertime and the nitric oxide (NO) was much higher. There was still sufficient RO2 during the day, however, for a slow accumulation of oxidant. Confirmatory evidence for this comes from the diurnal co-variance of (O3+NO2) with PAN, an excellent tracer of tropospheric photochemistry. The same type of covariance occurs in summer between PAN and ozone. The results obtained in these series of measurements are pertinent to understanding the measures necessary to control production of regional photochemical air pollution, and to the production of ozone throughout the northern hemisphere in winter.  相似文献   

6.
7.
During the BERLIOZ field phase on 20 July 1998 a 40 km wide ozone-plume 30 to 70 km north of Berlin in the lee of the city was detected. The ozone mixing ratio inside the plume was app. 15 ppb higher than outside, mainly caused by high ozone precursor emissions in Berlin, resulting in a net chemical ozone production of 6.5 ppb h–1, which overcompensates ozone advection of –3.6 ppb h–1 andturbulent diffusion of –1.1 ppb h–1. That means, although moreozone leaves the control volume far in the lee of Berlin than enters it at the leeside cityborder and although turbulent diffusion causes a loss of ozone in the leeside control volume the chemical production inside the volume leads to a net ozone increase. Using a semi-Lagrangian mass budget method to estimate the net ozone production, 5.0 ppb h–1 are calculated for theplume. This means a fraction of about 20% of ozone in the plume is producedby local emissions, therefore called `home made' by the Berlin emissions. For the same area KAMM/DRAIS simulations using an observation based initialisation, results in a net production rate between 4.0 and 6.5 ppbh–1, while the threefold nested EURAD model gives 6.0 ppbh–1. The process analysis indicates in many cases goodagreement (10% or better) between measurements and simulations not only in the ozone concentrations but also with respect to the physical and chemical processes governing the total change. Remaining differences are caused by different resolution in time and space of the models and measurements as well as by errors in the emission calculation.The upwind-downwind differences in PAN concentrations are partly similar to those of ozone, because in the BERLIOZ case they are governed mainly by photochemical production. While in the stable boundary layer at night and windward of Berlin 0.1 to 0.3 ppb are detected, in the centre of the plume at noon concentrations between 0.75 ppb and 1.0 ppb are measured. The O3/PAN ratio is about 80 to 120 and thus due to the relatively lowPAN concentrations significantly higher than found in previous studies. The low PAN formation on 20 July, was mainly restricted by the moderate nonmethane hydrocarbon levels, whereas high PAN concentrations of 3.0 ppb on 21 July, are caused by local production in the boundary layer and by large scale advection aloft.  相似文献   

8.
The fluxes of ozone and NOx out of the atmospheric boundary layer (ABL) over Europe are calculated in a mesoscale chemical transport model (MCT) and compared with the net chemical production or destruction of ozone and the emissions of precursors within the ABL for two 10 days' periods which had quite different synoptic situations and levels of photochemical activity (1–10 July 1991 (JUL91) and 26 October–4 November 1994 (ON94)). Over the European continent, about 8% of the NOx emissions were brought from the ABL to the free troposphere as NOx, while about 15% of the NOx emissions were brought to the free troposphere as NOy–NOx, i.e. as PAN or HNO3. The convection dominates over the synoptic scale vertical advection as a transport mechanism both for NOx and NOy out of the boundary layer in the summertime high pressure situation (JUL91), while in the fall situation (ON94) the convective part was calculated to be the smallest. NOx was almost completely transformed to NOy–NOx or removed within the ABL. Also for NOy the major part of the atmospheric cycle is confined to the ABL both for JUL91 and ON94. The vertical transport time out of the ABL is of the order of 100h both for the total model domain and over the European continent. The net convective exchange of ozone from the ABL is not a dominant process for the amount of ozone in the ABL averaged over 10 days and the whole domain, but convection reduces the maximum ozone concentration in episodes significantly. The ozone producing efficiency of NOx is calculated to increase with height to typically 15–20 in the upper half of the troposphere from around 5 in the ABL, but in the middle free troposphere the concentration of NOx is often too low to cause net chemical formation of ozone there.  相似文献   

9.
Several years of continuous measurements of surfaceozone at Norwegian monitoring sites are studied in aclimatological way. The monitoring sites are at rurallocations extending from 58°N, a few hundredkilometers from the European continent and into theArctic at 79°N. The ozone observations are sorted intoclasses of integrated NOx emissions along 96 h backtrajectories. The average seasonal cycles of ozone areestimated for each class separately. The differencesindicate the change from the background air due toanthropogenic emissions. The average seasonal cycle ofozone in the cleanest air masses showed a maximum inspring and a minimum during summer and autumn at allsites, but the spring maximum was more pronounced atthe southernmost locations. Polluted air masses showedan ozone deficit during winter and a surplus duringsummer. The deviation from the background was clearlylinked to the integrated NOx emission along thetrajectories. In summer the calculations indicate thatthe number of ozone molecules formed per NOx moleculedrops with increasing emissions. The average seasonalcycle of ozone at Birkenes for different transportsectors indicate that the most pronounced ozoneformation takes place in air masses from E-Europe/Russia.  相似文献   

10.
The ozone concentration near the earth's surface has been measured at some stations in the GDR for more than 30 yr using the wet chemical method. Even at rural stations the ozone data show a significant linear increase by about 1–3% yr–1. The ozone increase being stronger in summer than in winter is assumed to be due to photochemical ozone production from increasing anthropogenic emissions of trace gases that are transported over long distances. A weaker ozone increase by only about 0.2% per year was observed in the free troposphere (5.5 km) from balloon-soundings at Lindenberg within the period 1975–1984. If the ozone trends continue, the ozone concentration near the surface and its seasonal amplitude will have doubled around the turn of the century as compared to the mid-fifties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号