首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Numerical experiments of adjoint variational assimilation have been performed using the knownLorenz system.With the increase of sensitivity of model's initial values,it is more and more difficultto use the adjoint method to get the initial values which are consistent with the dynamics of the fore-cast model.Under some circumstances the algorithm completely fails.This shows that four-dimen-sional assimilation is related to the limit of predictability.On the other hand.with the increase ofmodel equation's error,the result of variational assimilation may become worse and worse so that theprediction has no meaning.But if the model parameters are corrected when variational assimilation ismade,the forecast results can be greatly improved based on Lorenz model.  相似文献   

2.
In this study, the Dynamical-Statistical-Analog Ensemble Forecast model (DSAEF_LTP model) for landfalling tropical cyclone (LTC) precipitation was employed to simulate the precipitation of 10 LTCs that occurred Pover China in 2018. With adding parameter‘similarity region scheme’(SRS) values and introducing TC intensity into the generalized initial value (GIV), four groups of precipitation simulation experiments were designed to verify the forecasting ability of the improved model for more TC samples. Results show that the simulation ability of the DSAEF_LTP model can be optimized regardless of whether adding SRS values only, or introducing TC intensity into GIV, while the experiment with both the two improvements shows a more prominent advantage in simulating the heavier precipitation of LTCs. Compared with four NWP models (i.e., ECMWF, GFS, GRAPES and SMS-WARMS), the overall forecasting performance of the DSAEF_LTP model achieves a better result in simulating precipitation at the thresholds over 250 mm and performs slightly better than NWP models at the thresholds over 100 mm.  相似文献   

3.
In this study, we attempted to improve the nowcasting of GRAPES model by adjusting the model initial field through modifying the cloud water, rain water and vapor as well as revising vapor-following rain water. The results show that the model nowcasting is improved when only the cloud water and rain water are adjusted or all of the cloud water, rain water and vapor are adjusted in the initial field. The forecasting of the former (latter) approach during 0-3 (0-6) hours is significantly improved. Furthermore, for the forecast for 0-3 hours, the latter approach is better than the former. Compared with the forecasting results for which the vapor of the model initial field is adjusted by the background vapor with those by the revised vapor, the nowcasting of the revised vapor is much better than that of background vapor. Analysis of the reasons indicated that when the vapor is adjusted in the model initial field, especially when the saturated vapor is considered, the forecasting of the vapor field is significantly affected. The changed vapor field influences the circulation, which in turn improves the model forecasting of radar reflectivity and rainfall.  相似文献   

4.
A numerical experiment of an asynchronous coupled ocean-atmosphere model has been described in this paper.Atwo-layer global atmosphere general circulation model(OSU/IAP-AGCM)and a two-layer North Pacific Oceangeneral circulation model(NPOGCM)developed by Liu et al.(1992)are used in numerical experiment.The sea surfacetemperature anomaly(SSTA)corresponding to the meander of the Kuroshio is treated as the initial perturbation in thePacific Ocean and the abnormal phenomena caused by the disturbance and the interaction between atmosphere andocean,have been studied.The numerical experiment showed that the SST anomaly in the North Pacific could induce a new 30—60 dayoscillation through the coupling between atmosphere and ocean and the interaction between the meander of theKuroshio and atmosphere circulation is a positive feedback process.  相似文献   

5.
Using the mesoscale model MM5, the development of initial condition uncertainties at different scales and amplitudes and their influences on the mesoscale predictability of the "0185" Shanghai heavy precipitation event are investigated. It is found that different initial conditions obtained from different globe model analyses lead to large variations in the simulated location and strength of the heavy precipitation, and the scales and amplitudes of the initial condition perturbations significantly influence the model error growth. The power spectrum evolution of the difference total energy (DTE) between a control simulation and a sensitivity experiment indicates that the error growth saturates after 12 h, which is the predictable time limit of the heavy precipitation event. The power spectrum evolution of the accumulated precipitation difference between the control and sensitivity simulations suggests a loss of the mesoscale predictability for precipitation systems of scales smaller than 300 kin, i.e., the predictable space for the heavy precipitation event is beyond 300 km. The results also show that the initial uncertainties at larger scales and amplitudes generally result in larger forecast divergence than the uncertainties at smaller scales and amplitudes. The predictable forecasting time and space can be expanded (e.g., from 12 to 15 h, and from beyond 300 kin to beyond 200 km) under properly prescribed initial perturbations at smaller scales and amplitudes.  相似文献   

6.
Limitations in the predictability of quantitative precipitation forecasting (QPF) that arise from initial errors of small amplitude and scale are investigated by means of real-case high-resolution (cloud-resolving) numerical weather prediction (NWP) integrations. The case considered is the hail and wind disaster that occurred in Sichuan on 8 April 2005. A total of three distinct perturbation methods are used. The results suggest that a tiny initial error in the temperature field can amplify and influence the weather in a large domain, changing the 12-h forecasted rainfall by as much as one-third of the original magnitude. Furthermore, the comparison of the perturbation methods indicates that all of the methods pinpoint the same region (the heavy rainfall areas in the control experiment) as suffering from limitations in predictability. This result reveals the important role of nonlinearity in severe convective events.  相似文献   

7.
A neuroid BP-type three-layer mapping model is used for monthly rainfall forecasting in terms of 1946-1985 Nanjing monthly precipitation records as basic sequences and the model has the form i × j = 8 × 3, K = 1; by steadily modifying the weighing coefficient, long-range monthly forecasts for January to December, 1986 are constructed and 1986 month-to-month predictions are made based on, say, the January measurement for February rainfall and so on, with mean absolute error reaching 6,07 and 5,73 mm, respectively. Also, with a different monthly initial value for June through September, 1994, neuroid forecasting is done, indicating the same result of the drought in Nanjing dur-ing the summer, an outcome that is in sharp agreement with the observation.  相似文献   

8.
China’s new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order to study the application of microwave sounding data in numerical prediction of typhoons and to improve typhoon forecasting,we assimilated data directly for numerical forecasting of the track and intensity of the 2009 typhoon Morakot(0908)based on the WRF-3DVar system.Results showed that the initial fields of the numerical model due to direct assimilation of FY-3A microwave sounding data was improved much more than that due to assimilation of conventional observations alone,and the improvement was especially significant over the ocean,which is always without conventional observations.The model initial fields were more reasonable in reflecting the initial situation of typhoon circulation as well as temperature and humidity conditions,and typhoon central position at sea was also adjusted.Through direct 3DVar assimilation of FY-3A microwave data,the regional mesoscale model improves the forecasting of typhoon track.Therefore,the FY-3A microwave data could efficiently improve the numerical prediction of typhoons.  相似文献   

9.
Based on a simple coupled Lorenz model, we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics. Four initial perturbation approaches are used in the ensemble forecasting experiments: the random perturbation(RP), the bred vector(BV), the ensemble transform Kalman filter(ETKF), and the nonlinear local Lyapunov vector(NLLV) methods. Results show that,regardless of the method used, the ensemble ave...  相似文献   

10.
In this paper a nonlinear method of time series analysis-threshold autoregressive (TAR) model in discrete time is used. The TAR procedure consists of four parts: model building, statistical identification, parameter estimation and forecasting.The object of this study is to estimate monthly total precipitation of Shanghai and Beijing by using open loop TAR model. We can see that the trend of forecasting is in agreement with observations.  相似文献   

11.
带随机初值和随机强迫的简单模式的集合预报试验   总被引:1,自引:0,他引:1  
本文用简单的准地转正压涡度方程谱模式作为本文模式的动力框架,考虑到作为模式初始场的气象资料中存在着大量的随机误差,以及模式中物理过程的不完善(例如,没有考虑大气与下垫面的相互作用、辐射等),采用在模式中加入随机强迫项和使用随机初值的蒙特卡洛方法,建立了一个统计动力相结合的模式,并用此模式做了1983年1月500hPa月平均高度场的数值预报试验。试验结果表明:同时考虑随机强迫和随机初值的模式预报效果优于纯动力模式、随机初值模式和随机强迫模式的预报效果。  相似文献   

12.
近年来我国极端灾害性天气频发,造成了重大人员伤亡和财产损失,随着防灾减灾工作的推进,龙卷等中小尺度强对流灾害性天气的预警预报工作的关注度正逐步提升。现有龙卷检测算法基于对新一代天气雷达基数据在多个仰角和体积扫描中进行阈值判断得到龙卷涡旋特征TVS,在自适应协同观测背景下表现为自适应策略同步较慢,预警预报准确率不高,提前预警时间短。使用机器学习算法结合龙卷在雷达反射率、径向速度和速度谱宽的多重特征能有效提高龙卷识别的准确率和预警时间,能提高组网雷达的协同观测能力。基于随机森林的龙卷检测算法(TDA-RF),使用CINRAD雷达历史龙卷数据作为训练集,通过随机森林算法对训练集进行分类学习得到龙卷预测模型,使用预测模型对实时雷达数据进行龙卷检测。试验结果表明,TDA-RF算法能有效识别不同强度的龙卷,较TVS龙卷检测算法能给出龙卷区域的分类概率值,无需对龙卷特征时空连续性进行判断;TDA-RF算法对多个特征进行综合判断具有较好的抗干扰能力,使基于组网雷达的龙卷预警时间最高可达18分钟。  相似文献   

13.
俞小鼎 《高原气象》1998,17(3):310-316
北欧有限区域模式HIRLAM被应用于中国的暴雨个例以探讨初值形成方法对有限区域模式定量降水数值预报的影响,对两种初值形成方案进行了对比,一种是由HIRLAM自己的数值同化系统提供初值,另一种是直接内插ECMWF全球模式的相应分析场,与这两种方案对应的数值试验分别是控制试验(CONL)和对比试验(COMP),将CONL和COMP的降水预报与观测值比较,结果表明:(1)当为COMP提供初值的ECMWF  相似文献   

14.
南京市SO2污染浓度时空分布特征及统计预报方法的研究   总被引:1,自引:2,他引:1  
张静  吕军  王啸华  曾明剑  程婷 《气象科学》2006,26(4):422-426
本文根据南京市六个空气污染浓度监测站的2001年6月至2005年7月的SO2污染浓度监测资料分析南京市SO2污染浓度的时空分布变化特征,结果为6个站浓度值有明显的季节变化特征,且在冬季容易出现南北相反的分布特征。针对目前常用的回归预报方法在选取气象要素时没有考虑其互相之间的相关性的缺点,本文提出了一种建立在EOF展开基础上的首先使预报因子正交化,再与逐步回归方程结合并且资料逐日更新的变系数的新型统计预报模型,经过实际预报检验,预报准确率比较高,有很好的应用效果。  相似文献   

15.
快速更新循环同化预报系统的汛期试验与分析   总被引:14,自引:6,他引:8       下载免费PDF全文
为了支持短时临近预报,利用新一代数值预报技术,结合高时空分辨的新一代探测所提供的观测信息,开发了基于快速更新循环同化的数值预报系统。基于GRAPES预报模式及其三维变分,开发了逐时循环同化,包括雷达、卫星、飞机、常规地面和探空等观测资料的同化模块,并采用nudging技术,引入雷达回波,订正模式的初始云水、雨水等信息,实现快速更新预报。多种测试和汛期连续试验表明,系统运行稳定可靠。逐时同化场合理,与实况基本一致。通过1个月的滚动预报综合分析和个例预报分析均表明,预报稳定有效,与观测分布基本一致,初步具备开展短时临近预报的能力。  相似文献   

16.
ECMWF集合预报产品在广西暴雨预报中的释用   总被引:2,自引:1,他引:2       下载免费PDF全文
基于最大相关最小冗余度算法和随机森林回归算法,该文提出一种对欧洲中期天气预报中心(ECMWF)集合预报产品进行暴雨预报的释用方法。该方法采用最大相关最小冗余度算法,对ECMWF集合预报的51个成员进行筛选,选取若干个与预报对象相关性最大、相互间冗余度最小的成员作为随机森林回归算法的输入因子。利用ECMWF集合预报降水量平均值对建模样本进行分类,使预报模型的建模样本更具有针对性。通过2012年4月—2015年12月的交叉独立样本试验预报和2016年1—9月的业务预报试验的统计结果表明:该释用方法的暴雨预报TS和ETS评分,均比采用ECMWF集合预报产品51个成员降水量预报进行插值后取平均值的释用方法分别提高了0.07和0.05以上,显示了较好的数值预报产品释用效果。  相似文献   

17.
The water-bearing numerical model is undergone all round examinations during the operational forecasting ex-periments from 1994 to 1996. A lot of difficult problems arising from the model’s water-bearing are successfully re-solved in these experiments through developing and using a series of technical measures. The operational forecasting running of the water-bearing numerical model is realized stably and reliably, and satisfactory forecasts are obtained.  相似文献   

18.
Numerical experiments of adjoint variational assimilation have been performed using the known Lorenz system.With the increase of sensitivity of model's initial values,it is more and more difficult to use the adjoint method to get the initial values which are consistent with the dynamics of the forecast model.Under some circumstances the algorithm completely fails.This shows that four-dimensional assimilation is related to the limit of predictability.On the other hand.with the increase of model equation's error,the result of variational assimilation may become worse and worse so that the prediction has no meaning.But if the model parameters are corrected when variational assimilation is made,the forecast results can be greatly improved based on Lorenz model.  相似文献   

19.
Extended range forecasting of 10–30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10–30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10–6–10–2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10–1–2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10–2–10–1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect (m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号