首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
基于天气雷达网三维拼图的混合反射率因子生成技术   总被引:6,自引:4,他引:2  
首先基于1:25万的DEM(digital elevation model)数据、雷达站点信息、雷达波束高斯分布模式和标准大气情况下的波束传播路径计算了雷达的波束阻挡率,并把它与雷达实测的反射率因子分布情况进行比较,发现两者具有很好的定性一致性和很强的定量相关性;其次根据设置的波束阻挡率阈值和波束下限(波束底部越过地形的高度)阈值得到不受地形阻挡的最小扫描仰角在同一平面上的投影,即混合扫描仰角,这样计算出来的混合扫描仰角与雷达扫描方式无关,可用于不同扫描方式下的混合扫描反射率因子(没有波束阻挡的最低扫描仰角的反射率因子在同一平面上的投影)的获取;然后根据混合扫描仰角,利用标准大气情况下的雷达测高公式计算等射束高度,把来自雷达网中各雷达的等射束高度进行拼接得到等射束高度拼图,其中在各雷达重叠覆盖区,取最小的等射束高度;最后利用新一代天气雷达网三维拼图反射率因子数据以及等射束高度拼图数据得到天气雷达网的混合反射率因子,以便用于大范围降水估算算法中的降水率的计算.  相似文献   

2.
常德多普勒天气雷达强雹暴三体散射统计分析   总被引:1,自引:1,他引:0  
何炳伟  胡振菊  高伟  陈科 《气象》2018,44(3):455-462
对常德及周边地区10次强雹暴过程中18个风暴单体产生的404次三体散射样本进行统计分析,并对影响三体散射观测的原因进行了详细分析。结果表明:(1)反射率因子强度是能否产生三体散射的关键因素,产生三体散射特征的最小反射率因子强度为58dBz,在此临界值之上,反射率因子强度越强,越易产生三体散射;(2)风暴核回波强度的垂直分布是三体散射出现频数在高度4km左右、仰角1.5°、距离90km左右达到峰值的主要影响因素;(3)三体散射随方位分布在180°~360°出现频数最多,风暴单体移动下风方有径向长度较长的回波区时,导致三体散射特征被覆盖,是影响三体散射观测的根本原因,风暴单体相对雷达位置和移动方向通常决定径向外侧是否有影响三体散射观测的回波;(4)三体散射回波强度与风暴径向外侧弱回波相当或强时,三体散射特征能被识别。  相似文献   

3.
多普勒雷达实时反射率因子垂直廓线观测研究   总被引:3,自引:2,他引:3  
使用2002年6~7月长江中游地区宜昌S波段多普勒雷达在两次大范围混合性强降水过程中部分时段体积扫描强度数据以及周边100km范围内的7个雨量计整理成10min记录一次的雨量资料,分析了实时雷达反射率因子垂直廓线的特征。研究表明:反射率因子垂直廓线可反映出所选区域上空零度层亮带高度位置、回波的垂直变化规律等信息,以此分析降水的类型、云中粒子的发展变化;从雷达连续体扫得到的中、低仰角对应高度上的实时反射率因子垂直廓线的变化规律、PPI图像上对应雨量站点上空的回波变化情况及10min记录一次的地面雨量的变化趋势对比来看,发现三者能很好地统一起来,可用来较细致地分析降水云体的变化,有利于在无地面雨量计的地区分析降水量的大小、确定降水类型、估测降水的发展;对无亮带、反射率因子值较大而且越低仰角值越大的反射率因子垂直廓线的区域,对应地面上常有对流性强降水出现。  相似文献   

4.
利用北京南郊S波段雷达2011—2016年的观测资料,从雷达气候统计的角度,利用不同强度回波发生频率的统计特征及其空间分布特征,对雷达地物杂波和波束遮挡的识别与订正方法进行研究。结果表明:①利用雷达回波出现频率特征,可以很好地识别雷达近中心地物杂波和受地形高度影响的地物杂波特征;同时还可以直观地识别出雷达波束遮挡区域以及遮挡程度。北京南郊雷达地物杂波主要分布在近雷达中心和北京西部、西北部的山前地区,地物杂波主要集中在0.5°仰角和1.5°仰角层上。雷达波束遮挡主要集中在由高大建筑引起遮挡的东南方位向和由于地形引起波束遮挡的西西北方位向,波束遮挡主要集中在0.5°仰角层。②采用局部可变区域平均垂直廓线方法利用高仰角回波订正低仰角回波,能有效订正地物杂波,并保留回波的局部特征。对于波束遮挡区域的回波填补,也能够较好地保持上下层仰角回波之间的连续性,同时兼顾了回波不均性分布等特性。③基于雷达气候特征进行地物杂波识别和波束遮挡识别,无需依照先验知识,相比于传统方法能更好地反映本地雷达回波真实情况,且具有方法简单、可快速复用、本地适用性强等优点。  相似文献   

5.
从雷达数据质量需求出发,在4个方面对CINRAD/SA标定技术进行了研究。1结合雷达回波强度定标原理,分析了目前回波强度定标过程中存在的问题,在此基础上详细制定了回波强度定标测试方法、操作步骤和技术要求,实现了SA雷达回波强度定标方法和操作流程的规范化、标准化,从而消除将人为因素或测试原因引入雷达系统造成定标误差。2对全省雷达波导长度进行实际测量,并修正了各雷达发射支路馈线损耗出厂测试数据;研制了能注入微波信号的专用测试波导,实现台站准确测量出SA雷达收、发支路馈线的实际损耗数值,应用于雷达回波强度定标中。3将太阳作为微波信号源,根据发布的太阳能流密度等数据,结合实际测量接收到的太阳射电功率,来检验全链路雷达接收系统回波强度。4取相邻雷达等距离线(中点)的低仰角同步观测反射率因子数据,开展两部雷达、多部雷达对比观测检验等。从而提高了回波强度定标的客观性和一致性,更好地为组网雷达提供一致性的雷达数据。  相似文献   

6.
地形的起伏使雷达波束受到严重的遮挡,使回波数据质量受到很大干扰。本文使用SRTM任务的DEM数据和谷歌公司的DEM数据分别计算了位于北京南郊的S波段雷达低仰角的波束遮挡率,建立了部分遮挡区域的回波反射率订正关系,并在2018年5月19日北京一次大范围层状云降水过程中,对波束遮挡订正前后的雷达定量估测雨量与地面3个雨量计观测结果进行了定性与定量化对比分析。结果表明:①波束遮挡订正有助于改善反射率因子的空间连续性。波束遮挡订正后的仰角0.5°的反射率与1.5°的反射率之间的差值整体呈现缩小特征,符合层状云降水垂直廓线特点。②09:00—11:00,相比波束遮挡订正前的雷达定量估测雨量(QPE),波束订正后的QPE准确性得到改善,使用分级标准误差与归一化平均偏差评价波束遮挡订正前后QPE与雨量计实测值之间的误差,波束订正后的反射率估测雨量与雨量计实测雨量一致性更好。  相似文献   

7.
双多普勒雷达风场反演误差和资料的质量控制   总被引:15,自引:12,他引:15       下载免费PDF全文
提出了用双多普勒雷达观测资料进行回波强度、径向速度和方位定位的质量控制方法,以及利用概率分布法订正配对的双多普勒雷达回波强度的方法。以2001年973“中国暴雨”外场试验期间获取的双多普勒雷达观测资料为例,比较了合肥、马鞍山和宜昌、荆州的两对双多普勒雷达同步观测的回波强度、径向速度和方位的改变对观测数据对比的影响;分析了这两对双多普勒雷达径向速度测量误差引起的风场反演的误差。结果表明:两对双多普勒雷达观测的回波强度和径向速度的空间位置和变化趋势比较一致,合肥与马鞍山雷达的回波强度有一定差异,径向速度也有1~2 m/s的差异。风场反演的误差与风场的方向、大小、空间位置等有关。在两个径向速度夹角在40°~140°范围内,共面上的风场的反演误差在1~2倍的雷达探测径向速度的误差范围内。  相似文献   

8.
任意基线雷达反射率因子垂直剖面生成算法   总被引:2,自引:1,他引:1       下载免费PDF全文
该文提出了一种基于雷达体扫资料的任意基线雷达反射率因子垂直剖面的生成算法。在计算雷达反射率因子垂直剖面上的格点在雷达极坐标中的仰角、方位和斜距位置后, 采用径向、方位上的最近邻居和垂直方向的线性内插相结合的客观分析方法得到格点上的反射率因子分析值。在垂直线性内插时分别用dBZ值和Z值 (单位: mm6/m3) 进行插值。结果表明:用该方法得到的雷达反射率因子垂直剖面从回波强度和空间位置来看都是合理的; 当采用垂直线性内插时, 用dBZ值插值比用Z值插值得到的雷达反射率因子垂直剖面在空间分布上更连续, 反射率因子分析值总体上更接近观测值; 低仰角的插值效果比高仰角的好。  相似文献   

9.
新一代天气雷达网资料的三维格点化及拼图方法研究   总被引:31,自引:6,他引:31  
肖艳姣  刘黎平 《气象学报》2006,64(5):647-657
文中研究了几种把球坐标系下的雷达网反射率体扫资料插值到统一的笛卡尔坐标系下的经纬度网格上以及用多个雷达的反射率网格资料进行三维拼图的方法,并对多个雷达同步观测的反射率因子的空间一致性、系统误差以及雷达等距离线上回波的水平和垂直结构进行了分析。结果发现:在雷达资料格点化过程中,径向和方位上的最近邻居法和垂直方向的线性内插法的结合(NVI方法)是一种有效的雷达资料分析方法,它既能得到空间比较连续的反射率分析场,同时也较好地保留了体扫资料中原有的反射率结构特征;广州雷达和梅州雷达同步观测的空间一致性比较好;在多个雷达资料合成拼图的过程中,距离指数权重平均法能提供空间连续的三维反射率拼图数据,拼图也减轻了由雷达波束几何学引起的各种问题。  相似文献   

10.
利用TRMM卫星资料对河南一次强飑线过程的闪电活动分析   总被引:1,自引:0,他引:1  
选取一次飑线过程的3次TRMM卫星同步轨道观测数据,分析了飑线中闪电与雷达回波的关系,结果表明:81%的闪电发生在7km高度雷达回波大于35dBz的像素附近。闪电绝大部分发生在对流降水区,占总闪电数的94%。发生闪电的对流单体其7km最大雷达反射率一般大于35dBz,6km与9km最大雷达反射率因子之差在15dBz以下,其数量占到总数的85.7%。对流单体雷达反射率中值廓线能够较好地表示单体闪电频数。  相似文献   

11.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

12.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

13.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

14.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

15.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

16.
17.
<正>With the support of specialized funds for national science institutions,the Guangzhou Institute of Tropical and Marine Meteorology,China Meteorological Administration set up in October 2008 an experiment base for marine meteorology and a number of observation systems for the coastal boundary layer,air-sea flux,marine environmental elements,and basic meteorological elements at Bohe town,Maoming city,Guangdong province,in the northern part of the South China Sea.  相似文献   

18.
《大气和海洋科学快报》2014,7(6):F0003-F0003
AIMS AND SCOPE
Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

19.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

20.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号