首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We describe the long-term stability and mean climatology of oceanic circulations simulated by version 2 of the Flexible Global Ocean-Atmosphere-Land System model(FGOALS-s2).Driven by pre-industrial forcing,the integration of FGOALS-s2 was found to have remained stable,with no obvious climate drift over 600 model years.The linear trends of sea SST and sea surface salinity(SSS) were 0.04°C(100yr)-1 and 0.01 psu(100yr)-1,respectively.The simulations of oceanic temperatures,wind-driven circulation and thermohaline circulation in FGOALS-s2 were found to be comparable with observations,and have been substantially improved over previous FGOALS-s versions(1.0 and 1.1).However,significant SST biases(exceeding 3°C) were found around strong western boundary currents,in the East China Sea,the Sea of Japan and the Barents Sea.Along the eastern coasts in the Pacific and Atlantic Ocean,a warm bias(>3°C) was mainly due to overestimation of net surface shortwave radiation and weak oceanic upwelling.The difference of SST biases in the North Atlantic and Pacific was partly due to the errors of meridional heat transport.For SSS,biases exceeding 1.5 psu were located in the Arctic Ocean and around the Gulf Stream.In the tropics,freshwater biases dominated and were mainly caused by the excess of precipitation.Regarding the vertical dimension,the maximal biases of temperature and salinity were located north of 65°N at depths of greater than 600 m,and their values exceeded 4°C and 2 psu,respectively.  相似文献   

2.
Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System model: Grid-point Version 2 (FGOALS-g2) are analyzed and compared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the southeastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between the SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.  相似文献   

3.
南亚夏季风的变化决定着印度半岛的旱涝状况,气候系统模式则是研究南亚夏季风变化规律的重要工具。本文基于观测和JRA55再分析资料,系统评估了FGOALS-g3模式模拟的南亚夏季风气候态和年际变率,并重点关注FGOALS-g3与FGOALS-g2以及是否考虑海气相互作用的模拟差异。结果表明,由于局地海温模拟的变化,相比于FGOALS-g2,FGOALS-g3模拟的南亚夏季风在气候态热带印度洋信风和El Ni?o期间沃克环流下沉支上有明显改进。同时,由于对流层系统性冷偏差持续存在并且中心位于副热带300 hPa附近,造成气候态上经向温度梯度减弱,使季风环流减弱,导致FGOALS-g3中陆地季风槽的水汽辐散偏差和降水干偏差仍然存在;在年际变率上,FGOALS-g3模拟的El Ni?o期间赤道西太平洋海温冷异常偏弱,印度洋偶极子偏强,导致印度半岛下沉运动减弱,FGOALS-g3中ENSO—印度降水负相关关系也依然偏弱。研究表明,耦合过程导致的气候态海温偏差通过改变环流和水汽输送,有效补偿了大气模式中印度半岛中部和中南半岛的降水湿偏差;在年际变率上,耦合模式由于考虑了海温—降水—云短波辐射的负反馈过程,能够减小大气模式模拟偏差的强度,但印太暖池区海温模拟偏差导致沃克环流下沉支偏西,使得印度半岛的降水响应出现更大的湿偏差。  相似文献   

4.
A new coupled atmosphere–ocean–sea ice model has been developed, named the Bergen Climate Model (BCM). It consists of the atmospheric model ARPEGE/IFS, together with a global version of the ocean model MICOM including a dynamic–thermodynamic sea ice model. The coupling between the two models uses the OASIS software package. The new model concept is described, and results from a 300-year control integration is evaluated against observational data. In BCM, both the atmosphere and the ocean components use grids which can be irregular and have non-matching coastlines. Much effort has been put into the development of optimal interpolation schemes between the models, in particular the non-trivial problem of flux conservation in the coastal areas. A flux adjustment technique has been applied to the heat and fresh-water fluxes. There is, however, a weak drift in global mean sea-surface temperature (SST) and sea-surface salinity (SSS) of respectively 0.1 °C and 0.02 psu per century. The model gives a realistic simulation of the radiation balance at the top-of-the-atmosphere, and the net surface fluxes of longwave, shortwave, and turbulent heat fluxes are within observed values. Both global and total zonal means of cloud cover and precipitation are fairly close to observations, and errors are mainly related to the strength and positioning of the Hadley cell. The mean sea-level pressure (SLP) is well simulated, and both the mean state and the interannual standard deviation show realistic features. The SST field is several degrees too cold in the equatorial upwelling area in the Pacific, and about 1 °C too warm along the eastern margins of the oceans, and in the polar regions. The deviation from Levitus salinity is typically 0.1 psu – 0.4 psu, with a tendency for positive anomalies in the Northern Hemisphere, and negative in the Southern Hemisphere. The sea-ice distribution is realistic, but with too thin ice in the Arctic Ocean and too small ice coverage in the Southern Ocean. These model deficiencies have a strong influence on the surface air temperatures in these regions. Horizontal oceanic mass transports are in the lower range of those observed. The strength of the meridional overturning in the Atlantic is 18 Sv. An analysis of the large-scale variability in the model climate reveals realistic El Niño – Southern Oscillation (ENSO) and North Atlantic–Arctic Oscillation (NAO/AO) characteristics in the SLP and surface temperatures, including spatial patterns, frequencies, and strength. While the NAO/AO spectrum is white in SLP and red in temperature, the ENSO spectrum shows an energy maximum near 3 years.  相似文献   

5.
The baseline performance of the latest version (version 2) of an intermediate resolution, stand-alone climate oceanic general circulation model, called LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Climate system Ocean Model (LICOM), has been evaluated against the observation by using the main metrics from Griffies et al. in 2009. In general, the errors of LICOM2 in the water properties and in the circulation are comparable with the models of Coordinated Ocean-ice Reference Experiments (COREs). Some common biases are still evident in the present version, such as the cold bias in the eastern Pacific cold tongue, the warm biases off the east coast of the basins, the weak poleward heat transport in the Atlantic, and the relatively large biases in the Arctic Ocean. A unique systematic bias occurs in LICOM2 over the Southern Ocean, compared with CORE models. It seems that this bias may be related to the sea ice process around the Antarctic continent.  相似文献   

6.
黄昕  周天军  吴波  陈晓龙 《大气科学》2019,43(2):437-455
本文通过与观测和再分析资料的对比,评估了LASG/IAP发展的气候系统模式FGOALS的两个版本FGOALS-g2和FGOALS-s2对南亚夏季风的气候态和年际变率的模拟能力,并使用水汽收支方程诊断,研究了造成降水模拟偏差的原因。结果表明,两个模式夏季气候态降水均在陆地季风槽内偏少,印度半岛附近海域偏多,在降水年循环中表现为夏季北侧辐合带北推范围不足。FGOALS-g2中赤道印度洋"东西型"海温偏差导致模拟的东赤道印度洋海上辐合带偏弱,而FGOALS-s2中印度洋"南北型"海温偏差导致模拟的海上辐合带偏向西南。水汽收支分析表明,两个模式中气候态夏季风降水的模拟偏差主要来自于整层积分的水汽通量,尤其是垂直动力平流项的模拟偏差。一方面,夏季阿拉伯海和孟加拉湾的海温偏冷而赤道西印度洋海温偏暖,造成向印度半岛的水汽输送偏少;另一方面,对流层温度偏冷,冷中心位于印度半岛北部对流层上层,同时季风槽内总云量偏少,云长波辐射效应偏弱,对流层经向温度梯度偏弱以及大气湿静力稳定度偏强引起的下沉异常造成陆地季风槽内降水偏少。在年际变率上,观测中南亚夏季风环流和降水指数与Ni?o3.4指数存在负相关关系,但FGOALS两个版本模式均存在较大偏差。两个模式中与ENSO暖事件相关的沃克环流异常下沉支和对应的负降水异常西移至赤道以南的热带中西印度洋,沿赤道非对称的加热异常令两个模式中越赤道环流季风增强,导致印度半岛南部产生正降水异常。ENSO相关的沃克环流异常下沉支及其对应的负降水异常偏西与两个模式对热带南印度洋气候态降水的模拟偏差有关。研究结果表明,若要提高FGOALS两个版本模式对南亚夏季风气候态模拟技巧,需减小耦合模式对印度洋海温、对流层温度及云的模拟偏差;若要提高南亚夏季风和ENSO相关性模拟技巧需要提高模式对热带印度洋气候态降水以及与ENSO相关的环流异常的模拟能力。  相似文献   

7.
Warm sea-surface temperature (SST) biases in the southeastern tropical Atlantic (SETA), which is defined by a region from 5°E to the west coast of southern Africa and from 10°S to 30°S, are a common problem in many current and previous generation climate models. The Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble provides a useful framework to tackle the complex issues concerning causes of the SST bias. In this study, we tested a number of previously proposed mechanisms responsible for the SETA SST bias and found the following results. First, the multi-model ensemble mean shows a positive shortwave radiation bias of ~20 W m?2, consistent with models’ deficiency in simulating low-level clouds. This shortwave radiation error, however, is overwhelmed by larger errors in the simulated surface turbulent heat and longwave radiation fluxes, resulting in excessive heat loss from the ocean. The result holds for atmosphere-only model simulations from the same multi-model ensemble, where the effect of SST biases on surface heat fluxes is removed, and is not sensitive to whether the analysis region is chosen to coincide with the maximum warm SST bias along the coast or with the main SETA stratocumulus deck away from the coast. This combined with the fact that there is no statistically significant relationship between simulated SST biases and surface heat flux biases among CMIP5 models suggests that the shortwave radiation bias caused by poorly simulated low-level clouds is not the leading cause of the warm SST bias. Second, the majority of CMIP5 models underestimate upwelling strength along the Benguela coast, which is linked to the unrealistically weak alongshore wind stress simulated by the models. However, a correlation analysis between the model simulated vertical velocities and SST biases does not reveal a statistically significant relationship between the two, suggesting that the deficient coastal upwelling in the models is not simply related to the warm SST bias via vertical heat advection. Third, SETA SST biases in CMIP5 models are correlated with surface and subsurface ocean temperature biases in the equatorial region, suggesting that the equatorial temperature bias remotely contributes to the SETA SST bias. Finally, we found that all CMIP5 models simulate a southward displaced Angola–Benguela front (ABF), which in many models is more than 10° south of its observed location. Furthermore, SETA SST biases are most significantly correlated with ABF latitude, which suggests that the inability of CMIP5 models to accurately simulate the ABF is a leading cause of the SETA SST bias. This is supported by simulations with the oceanic component of one of the CMIP5 models, which is forced with observationally derived surface fluxes. The results show that even with the observationally derived surface atmospheric forcing, the ocean model generates a significant warm SST bias near the ABF, underlining the important role of ocean dynamics in SETA SST bias problem. Further model simulations were conducted to address the impact of the SETA SST biases. The results indicate a significant remote influence of the SETA SST bias on global model simulations of tropical climate, underscoring the importance and urgency to reduce the SETA SST bias in global climate models.  相似文献   

8.
The Geophysical Fluid Dynamics Laboratory has developed an ensemble coupled data assimilation (ECDA) system based on the fully coupled climate model, CM2.1, in order to provide reanalyzed coupled initial conditions that are balanced with the climate prediction model. Here, we conduct a comprehensive assessment for the oceanic variability from the latest version of the ECDA analyzed for 51 years, 1960–2010. Meridional oceanic heat transport, net ocean surface heat flux, wind stress, sea surface height, top 300 m heat content, tropical temperature, salinity and currents are compared with various in situ observations and reanalyses by employing similar configurations with the assessment of the NCEP’s climate forecast system reanalysis (Xue et al. in Clim Dyn 37(11):2511–2539, 2011). Results show that the ECDA agrees well with observations in both climatology and variability for 51 years. For the simulation of the Tropical Atlantic Ocean and global salinity variability, the ECDA shows a good performance compared to existing reanalyses. The ECDA also shows no significant drift in the deep ocean temperature and salinity. While systematic model biases are mostly corrected with the coupled data assimilation, some biases (e.g., strong trade winds, weak westerly winds and warm SST in the southern oceans, subsurface temperature and salinity biases along the equatorial western Pacific boundary, overestimating the mixed layer depth around the subpolar Atlantic and high-latitude southern oceans in the winter seasons) are not completely eliminated. Mean biases such as strong South Equatorial Current, weak Equatorial Under Current, and weak Atlantic overturning transport are generated during the assimilation procedure, but their variabilities are well simulated. In terms of climate variability, the ECDA provides good simulations of the dominant oceanic signals associated with El Nino and Southern Oscillation, Indian Ocean Dipole, Pacific Decadal Oscillation, and Atlantic Meridional Overturning Circulation during the whole analyzed period, 1960–2010.  相似文献   

9.
Based upon the climate feedback-responses analysis method, a quantitative attribution analysis is conducted for the annual-mean surface temperature biases in the Community Earth System Model version 1 (CESM1). Surface temperature biases are decomposed into partial temperature biases associated with model biases in albedo, water vapor, cloud, sensible/latent heat flux, surface dynamics, and atmospheric dynamics. A globally-averaged cold bias of ?1.22 K in CESM1 is largely attributable to albedo bias that accounts for approximately ?0.80 K. Over land, albedo bias contributes ?1.20 K to the averaged cold bias of ?1.45 K. The cold bias over ocean, on the other hand, results from multiple factors including albedo, cloud, oceanic dynamics, and atmospheric dynamics. Bias in the model representation of oceanic dynamics is the primary cause of cold (warm) biases in the Northern (Southern) Hemisphere oceans while surface latent heat flux over oceans always acts to compensate for the overall temperature biases. Albedo bias resulted from the model’s simulation of snow cover and sea ice is the main contributor to temperature biases over high-latitude lands and the Arctic and Antarctic region. Longwave effect of water vapor is responsible for an overall warm (cold) bias in the subtropics (tropics) due to an overestimate (underestimate) of specific humidity in the region. Cloud forcing of temperature biases exhibits large regional variations and the model bias in the simulated ocean mixed layer depth is a key contributor to the partial sea surface temperature biases associated with oceanic dynamics. On a global scale, biases in the model representation of radiative processes account more for surface temperature biases compared to non-radiative, dynamical processes.  相似文献   

10.
In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics.  相似文献   

11.
李恬燕  俞永强 《大气科学》2021,45(6):1345-1365
本文评估了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)研发的全球气候系统模式(FGOALS)的4个版本(FGOALS-g2、s2、g3、f3-L)对赤道太平洋地区的海温、降水气候态和季节循环的模拟能力。本文从海气耦合机制和热量收支的角度对耦合模式结果和相应的大气模式比较计划试验(AMIP)进行了对比分析,探讨了造成这一地区海温和降水模拟偏差的原因。结果显示,上一代模式g2和s2的海表温度均方根误差大于2°C,新一代模式g3和f3-L模拟的均方根误差降低50%,为1°C左右。因为新版本中赤道太平洋地区的净短波辐射平均态误差的减小,海洋上层热量动力输送过程的改善和净短波辐射与海温回归关系改进,赤道太平洋地区海温的平均态,南北温度和降水的不对称性都更加接近观测。f3-L比g3在上述方面改进更多,海温也更加合理。但是新一代版本模拟的降水均没有显著改进,赤道北侧ITCZ的降水偏大4 mm d?1。对流降水带来的凝结潜热释放加强了南北非绝热加热梯度,越赤道南风偏差抵消了一部分因为短波辐射偏大带来的海温偏暖,这说明海温平均态的改善是模拟误差相互抵消的结果。在季节循环的模拟方面也存在类似的现象,f3-L和g3中的海温年循环有所改进但较观测振幅仍旧偏弱。这是因为f3-L和g3模拟的经向风和潜热的年循环振幅比前版本要偏强,误差加大的同时也更大地抵消短波辐射的年循环偏差。g2和s2模拟的海温在赤道东太平洋则存在一个虚假半年循环分量,这主要是由潜热通量半年循环偏差所引起的。  相似文献   

12.
The authors examine the Indian Ocean sea surface temperature(SST) biases simulated by a Flexible Regional Ocean Atmosphere Land System(FROALS) model.The regional coupled model exhibits pronounced cold SST biases in a large portion of the Indian Ocean warm pool.Negative biases in the net surface heat fluxes are evident in the model,leading to the cold biases of the SST.Further analysis indicates that the negative biases in the net surface heat fluxes are mainly contributed by the biases of sensible heat and latent heat flux.Near-surface meteorological variables that could contribute to the SST biases are also examined.It is found that the biases of sensible heat and latent heat flux are caused by the colder and dryer near-surface air in the model.  相似文献   

13.
Richter  Ingo  Tokinaga  Hiroki 《Climate Dynamics》2020,55(9-10):2579-2601

General circulation models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) are examined with respect to their ability to simulate the mean state and variability of the tropical Atlantic and its linkage to the tropical Pacific. While, on average, mean state biases have improved little, relative to the previous intercomparison (CMIP5), there are now a few models with very small biases. In particular the equatorial Atlantic warm SST and westerly wind biases are mostly eliminated in these models. Furthermore, interannual variability in the equatorial and subtropical Atlantic is quite realistic in a number of CMIP6 models, which suggests that they should be useful tools for understanding and predicting variability patterns. The evolution of equatorial Atlantic biases follows the same pattern as in previous model generations, with westerly wind biases during boreal spring preceding warm sea-surface temperature (SST) biases in the east during boreal summer. A substantial portion of the westerly wind bias exists already in atmosphere-only simulations forced with observed SST, suggesting an atmospheric origin. While variability is relatively realistic in many models, SSTs seem less responsive to wind forcing than observed, both on the equator and in the subtropics, possibly due to an excessively deep mixed layer originating in the oceanic component. Thus models with realistic SST amplitude tend to have excessive wind amplitude. The models with the smallest mean state biases all have relatively high resolution but there are also a few low-resolution models that perform similarly well, indicating that resolution is not the only way toward reducing tropical Atlantic biases. The results also show a relatively weak link between mean state biases and the quality of the simulated variability. The linkage to the tropical Pacific shows a wide range of behaviors across models, indicating the need for further model improvement.

  相似文献   

14.
The authors investigate the relationship between bias in simulated sea surface temperature (SST) in the equatorial eastern Pacific cold tongue during the boreal spring as simulated by an oceanic general circulation model (OGCM) and minimal wind mixing (MWM) at the surface. The cold bias of simulated SST is greatest during the boreal spring, at approximately 3°C. A sensitivity experiment reducing MWM by one order of magnitude greatly alleviates cold biases, especially in March-April. The decrease in bias is primarily due to weakened vertical mixing, which preserves heat in the uppermost layer and results in warmer simulated SST. The reduction in vertical mixing also leads to a weak westward current in the upper layer, which further contributes to warmer SST estimates. These findings imply that there are large uncertainties about simple model parameters such as MWM at the oceanic surface.  相似文献   

15.
This study documents simulated oceanic circulations and sea ice by the coupled climate system model FGOALS-f3-L developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, under historical forcing from phase 6 of the Coupled Model Intercomparison Project (CMIP6). FGOALS-f3-L reproduces the fundamental features of global oceanic circulations, such as sea surface temperature (SST), sea surface salinity (SSS), mixed layer depth (MLD), vertical temperature and salinity, and meridional overturning circulations. There are notable improvements compared with the previous version, FGOALS-s2, such as a reduction in warm SST biases near the western and eastern boundaries of oceans and salty SSS biases in the tropical western Atlantic and eastern boundaries, and a mitigation of deep MLD biases at high latitudes. However, several obvious biases remain. The most significant biases include cold SST biases in the northwestern Pacific (over 4°C), freshwater SSS biases and deep MLD biases in the subtropics, and temperature and salinity biases in deep ocean at high latitudes. The simulated sea ice shows a reasonable distribution but stronger seasonal cycle than observed. The spatial patterns of sea ice are more realistic in FGOALS-f3-L than its previous version because the latitude–longitude grid is replaced with a tripolar grid in the ocean and sea ice model. The most significant biases are the overestimated sea ice and underestimated SSS in the Labrador Sea and Barents Sea, which are related to the shallower MLD and weaker vertical mixing.  相似文献   

16.
本文分析了中国科学院大气物理研究所年代际气候预测系统IAP DecPreS的海洋同化试验(简称EnOI-IAU试验)在西北太平洋地区的海表面温度(SST)年循环的模拟技巧,并通过对比IAP DecPreS系统自由耦合历史气候模拟试验结果,在包含海气耦合过程的框架下讨论了耦合模式中西北太平洋夏季SST模拟差异,及其对亚洲季风区夏季季风降水模拟的影响。结果表明,EnOI-IAU试验较好地模拟出了西北太平洋各个季节的SST空间分布,并显著减小了原存在于历史气候模拟试验中持续全年的SST冷偏差。混合层热收支诊断分析表明,包含同化过程在内的海洋过程的模拟差异对西北太平洋海温的模拟提升有重要贡献。夏季,EnOI-IAU试验模拟的印度季风伴随的低层西风较观测偏东、偏强,且高估了赤道西太平洋区域的降水量值、低估了印度洋区域的降水量值。水汽收支分析显示,气旋式环流异常造成的水汽辐合异常是造成亚洲季风区降水模拟差异的主要原因。研究表明,较之历史模拟试验,EnOI-IAU试验中夏季西北太平洋地区SST增暖造成局地对流增强,进而使得局地产生异常上升运动,水汽辐合增强,造成西北太平洋地区降水模拟偏多,激发出低层西风异常及赤道外气旋式环流异常。该低层西风异常导致了北印度洋地区低层辐散异常,减小了原存在于历史试验中印度洋地区的正降水偏差。西北太平洋气旋式环流异常一方面增强了印度夏季风伴随的低层西风,使得更多的水汽从阿拉伯海输送到西太平洋暖池区域,增强了该区域的降水量;另一方面,该气旋式环流异常减小了历史模拟试验中中国南部区域偏强的低层风速,进而提升了模式对东亚低层西南风的模拟能力。  相似文献   

17.
This study focuses on analysing the potential impact of the Amazon and Pará Rivers on the salinity, temperature and hydrodynamics of the Western Tropical North Atlantic (WTNA) region between 60.5°–24 °W and 5 °S–16 °N. The Regional Ocean Model System (ROMS) was used to simulate ocean circulation with 0.25° horizontal resolution and 32 vertical levels. Two numerical experiments were performed considering river discharge and river input. Temperature and salinity distributions obtained numerically were compared with Simple Ocean Data Assimilation (SODA) and in situ observations from the Prediction Research Moored Array in the Tropical Atlantic (PIRATA) buoys located at 38 °W8 °N and 38 °W12 °N. Surface currents were compared with Surface Currents from Diagnostic model (SCUD). Once we verified that model results agreed with observations, scenarios with and without river discharges were compared. The difference between both simulations in the Sea Surface Temperature distribution was smaller than 2 °C, whereas the Sea Surface Salinity (SSS) changed by approximately 8 psu in the plume area close to the coast from August to December and reaching SSS differences of approximately 4 psu in the region of the North Equatorial Counter Current (NECC). The surface current velocities are stronger in the experiment with river discharge, mainly in the NECC area from September to December and close to the coast in June to August. The results show that river discharges also cause a phase shift in the zonal currents, anticipating the retroflection of the North Brazil Current by two months and enhancing eastward NECC transport, which is in agreement with observations. The Mixed Layer Depth and Isothermal Layer Depth in the presence of river discharge is 20–50 m shallower over the entire extension of the Amazon plume compared with the situation without continental inflows. As a consequence, stronger Barrier Layers develop in the river plumes, reducing the Oceanic Heat Content in the WTNA.  相似文献   

18.
A scenario of the Mediterranean Sea is performed for the twenty-first century based on an ocean modelling approach. A climate change IPCC-A2 scenario run with an atmosphere regional climate model is used to force a Mediterranean Sea high-resolution ocean model over the 1960–2099 period. For comparison, a control simulation as long as the scenario has also been carried out under present climate fluxes. This control run shows air–sea fluxes in agreement with observations, stable temperature and salinity characteristics and a realistic thermohaline circulation simulating the different intermediate and deep water masses described in the literature. During the scenario, warming and saltening are simulated for the surface (+3.1°C and + 0.48 psu for the Mediterranean Sea at the end of the twenty-first century) and for the deeper layers (+1.5°C and + 0.23 psu on average). These simulated trends are in agreement with observed trends for the Mediterranean Sea over the last decades. In addition, the Mediterranean thermohaline circulation (MTHC) is strongly weakened at the end of the twenty-first century. This behaviour is mainly due to the decrease in surface density and so the decrease in winter deep-water formation. At the end of the twenty-first century, the MTHC weakening can be evaluated as −40% for the intermediate waters and −80% for the deep circulation with respect to present-climate conditions. The characteristics of the Mediterranean Outflow Waters flowing into the Atlantic Ocean are also strongly influenced during the scenario.  相似文献   

19.
August Sea Surface Temperatures (aSSTs) based on fossil diatom assemblages are generated with 2?year average resolution from a 230-year-long sediment core (Rapid 21-12B), from the Reykjanes Ridge in the subpolar North Atlantic. The results indicate a warming trend of ~0.5°C of the surface waters at the Reykjanes Ridge for the last 230?years. Superimposed on this warming trend there is a multidecadal to decadal aSST variability of up to 1°C. The interval from the 1770s to the 1830s represents the coldest period, whereas ~1860?C1880 represents the warmest period during the last 230?years. The last 25?years is characterized by a warming trend showing strong decadal aSST variability with several warm years, but also the coldest years since the 1820s. The time of these cold years in the mid-1970s, -1980s and -1990s correspond with the documented great salinity anomalies (GSA) in the North Atlantic suggesting increased fluxes of cold, low-salinity waters from the Arctic during the last decades. The aSST record and the August North Atlantic Oscillation (aNAO) index show similar multidecadal-scale variability indicating a close coupling between the oceanic and atmospheric patterns. The aSST record shows a negative correlation with the aNAO indicating cold aSST during the positive aNAO trend and vice versa. Results suggest that the wind driven variation in volume fluxes of the North Atlantic surface waters could be the major mechanism behind the observed relationship.  相似文献   

20.
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the “memory” of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号