首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
对流边界层的大涡模拟研究   总被引:5,自引:0,他引:5  
吴涧  蒋维楣 《气象科学》1999,19(1):33-41
本文建立了一个均匀平坦地面上对流边界层的大涡模式,模式考虑了水汽,采用了考虑浮力和固壁影响订正的一阶闭合。并用所建模式进行了由热扰动发展的对流边界层的模拟及其对地表热状况变化响应的初步探讨性模拟工作。通过模拟认为,模式较好地反映了对流边界层的主要结构。  相似文献   

2.
王蓉  黄倩  岳平 《干旱气象》2019,37(1):48-56
利用敦煌干旱区野外加密观测资料,结合大涡模式模拟研究模式水平分辨率对边界层对流、夹卷过程及示踪物垂直传输的影响。结果表明:模式水平分辨率越高,模拟的边界层对流泡个数越多,尺度越小,且对流强度越强;提高模式水平分辨率,夹卷层位温方差增大,水平速度方差减小,垂直速度方差增大,且上升冷气流对夹卷层热通量的贡献最大。模式水平分辨率越高,垂直速度、位温及示踪物绝对质量浓度概率密度函数分布变化范围相对越广,且模拟的细微变化特征越清晰。另外,提高模式水平分辨率,模拟的示踪物空间分布特征更加细致,示踪物传输高度也较高。综合考虑到分辨率越高在模拟过程中产生的噪音越大且计算时间越久等问题,认为采用200 m水平分辨率时,模式既能较好地模拟出边界层对流的平均结构,又能模拟出边界层湍流的较细微分布特征,是较为理想的选择。  相似文献   

3.
对流边界层发展受覆盖逆温影响的大涡模拟研究   总被引:2,自引:2,他引:0  
万静  孙鉴泞 《气象科学》2010,30(5):715-723
本文运用大涡模拟方法研究了存在覆盖逆温时对流边界层顶部的夹卷过程特征,并通过敏感性试验着重分析了在此情况之下的夹卷速度参数化问题,以及风切变的作用。模拟结果表明,初始覆盖逆温改变了夹卷层的结构特征,使得夹卷层结构参数明显增大,风切变使这一效应略有增强,以往关于夹卷速度的参数化方案不再适用。分析研究表明,在有覆盖逆温的情况下,夹卷层结构参数是控制夹卷速度的关键因子,应该将夹卷层结构参数作为变量引入夹卷速度参数化方案,该方案能够很好地预报出受覆盖逆温影响的对流边界层的发展过程。  相似文献   

4.
本文将大涡模拟应用于城市对流边界层(CBL)湍流结构和流场特征的研究,在大涡模式中,拖曳系数取与建筑物高度及建筑物高度标准差有关的表达式以考虑次网格建筑物对风速和湍流动能(TKE)的面积平均影响.模拟结果表明,由于城市建筑物对气流的拖曳作用,使建筑物冠层及整个CBL内风速大幅度减小,城市冠层内部风速减小尤为明显,在夹卷层内,风速有一明显的跃变.在边界层中部对流运动已经发展成为较强的热泡,城市建筑物的动力学效应使热泡的水平尺度增大,CBL内平均上升气流速度和下沉气流速度减小,同时使CBL中上升气流所占比例比平坦地面增大.城市建筑物使CBL低层热通量、动量通量、速度方差和位温方差明显增大,但对近地层高度以上的湍流量影响不大.  相似文献   

5.
实验速度场测量技术及对流边界层特征研究   总被引:3,自引:0,他引:3  
在对流槽中对对流边界层(CBL)温度场实验研究的基础上,进一步尝试通过实验技术测量速度场并分析研究CBL中的速度场特征。在应用PIV测量技术时选用铝粉作示踪粒子。实验证明了在混合层中速度分布明显具有对流边界层热泡特性;混合层顶部的速度分布很好地反应出夹卷层的结构特征;湍流速度特征量的垂直分布合理,与野外实测结果和类似的对流槽实验结果接近;误差分析表明示踪粒子的跟随性良好,粒子速度的测量结果能真实地反应流体的运动特征,从而得证了分析结果的可靠性。  相似文献   

6.
边界层对流对示踪物抬升和传输影响的大涡模拟研究   总被引:3,自引:1,他引:2  
利用"西北干旱区陆气相互作用野外观测实验"加密观测期间敦煌站的实测资料以及大涡模式, 通过一系列改变地表热通量和风切变的敏感性数值试验, 分析了地表热通量和风切变对边界层对流的强度、形式, 以及对对流边界层结构和发展的影响。模拟结果显示风切变一定, 增大地表热通量时, 由于近地层湍流运动增强, 向上输送的热量也较多, 使对流边界层变暖增厚, 而且边界层对流的强度明显增强, 对流泡发展的高度也较高。当地表热通量一定, 增大风切变时, 由于风切变使夹卷作用增强, 将逆温层中的暖空气向下卷入混合层中, 使对流边界层增暖增厚, 但是对流泡容易破碎, 对流的强度也较弱。另外通过在模式近地层释放绝对浓度为100的被动示踪物方法, 用最小二乘法定量地分析了地表热通量和风切变分别与示踪物抬升效率和传输高度的关系。分析结果表明, 风切变小于10.5×10-3 s-1时, 增大地表热通量加强了上层动量的下传, 使示踪物的抬升效率也线性增大;地表热通量小于462.5 W m-2时, 增大风切变减弱了边界层对流的强度, 从而使示踪物的抬升效率减弱。当风切变一定时, 示踪物的平均传输高度随地表热通量增加而增大, 而地表热通量一定, 只有风切变大于临界值时, 示踪物平均传输高度才随风切变的增加而增大, 而临界风速的大小由地表热通量决定。  相似文献   

7.
2015年11月25日黄海上空冷空气爆发,中国北部发生暴雪,西北东南向云街在黄海上空大面积密集分布。为研究垂直热输运的网格大小依赖性是否会对黄海对流云街数值模拟产生影响,本文利用WRF模式,分别采用考虑网格大小依赖性的边界层(PBL)参数化方案和基于非局部K理论闭合的YSU PBL方案对该个例进行数值模拟。结果表明两方案均能较好地再现云街出现区域和盛行风向。由于考虑网格大小依赖性的PBL方案模拟水平滚涡对流和次级环流的能力更强,所模拟的水平垂直速度强度更大,云水混合比更高,促进更多的云得以发展;同时其稳定性参数ζ更小,模拟的水平滚涡对流强度更大。  相似文献   

8.
为研究黄河源区边界层湍流特征及其对物质和能量输送的影响,本文首次采用大涡模拟的方法,对比分析了黄河源区两种不同下垫面上(鄂陵湖和湖边草地)对流边界层(CBL)中精细的湍流结构特征。使用资料为2012年夏季黄河源区鄂陵湖流域野外观测实验的GPS探空资料、涡动相关观测资料。分析表明,模拟的黄河源区草地和湖上CBL的平均结构与实测结果吻合较好,但草地和湖上CBL的湍流结构特征差异较明显。模拟结果显示,草地CBL内湍能收支、湍流特征量的时空分布和湍涡结构特征均与陆地上热力驱动CBL的研究结果一致;湖上CBL顶部存在明显的对流卷特征,且夹卷层的湍流强度比草地的强,而草地近地面湍强则更大。通过改变水平分辨率的模拟试验,发现两个不同下垫面上模拟结果对模式分辨率的敏感性不同,湖面CBL的模拟要选择较高的水平分辨率(50~100 m),以提高近湖面和夹卷层对湍流动能和湍流通量模拟的精度,也充分模拟出各种尺度的波对湍流通量的累积贡献。考虑到计算时间等影响,模拟草地边界层精细的湍流结构时建议选择网格距为100~200 m。  相似文献   

9.
卢萍  郑琴  宇如聪  穆穆 《大气科学》2004,28(1):112-124
晴天充分混合的对流边界层(CBL)中常采用相对简单的零阶近似平板模式.在该模式中,通常假设边界层顶的夹卷通量与地面通量有着固定的线性关系作为其闭合条件,即/(wθ)h=-A/(wθ)s.由于受观测资料的限制,参数A通常是由大涡模拟(LES)的方法得到,并利用有限的观测资料加以验证.作者基于ARM(Atmospheric RadiationMeasurement Program)观测资料,利用最优化参数算法,确定该闭合参数,使得对流混合层模式能最大可能地再现实际边界层的发展过程.首次尝试了最优参数算法在确定真实物理过程参数中的应用.模拟结果分析表明,在观测资料足够多的情况下,最优化方法应是确定该闭合参数的行之有效的方法.  相似文献   

10.
周竞南  齐瑛 《气象科学》1991,11(2):130-143
本文建立了二阶矩闭合的大气边界层数值模式,并模拟了Wangara资料第33天09:00—18:00时对流边界层的发展过程。计算结果与实测资料比较吻合,同时利用该模式研究了高阶矩模式模拟对流边界层的可行性,结果指出:二阶矩方程中的湍流扩散项对模拟对流边界层内的挟卷和反梯度现象起主要作用。而局地时间变化项仅影响对流边界层内的边界湍流扩散项。因此,假如处理好二阶矩方程中的湍流扩散项,高阶矩模式和大涡模式一样可以很好地模拟对流边界层的发生、发展。  相似文献   

11.
Based on the measurement of the velocity field in the convective boundary layer (CBL) in a convection water tank with the particle image velocimetry (PIV) technique, this paper studies the characteristics of the CBL turbulent velocity in a modified convection tank. The experiment results show that the velocity distribution in the mixed layer clearly possesses the characteristics of the CBL thermals, and the turbulent eddies can be seen obviously. The comparison of the vertical distribution of the turbulent velocity variables indicates that the modeling in the new tank is better than in the old one. The experiment data show that the thermal's motion in the entrainment zone sometimes fluctuates obviously due to the intermittence of turbulence. Analyses show that this fluctuation can influence the agreement of the measurement data with the parameterization scheme, in which the convective Richardson number is used to characterize the entrainment zone depth. The normalized square velocity wi^2/w*^2. at the top of the mixed layer seems to be time-dependent, and has a decreasing trend during the experiments. This implies that the vertical turbulent velocity at the top of the mixed layer may not be proportional to the convective velocity (w*).  相似文献   

12.
It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the invalidity of parcel theory. However, evidence shows that the convective Richardson number Ri^* might be an improper characteristic scaling parameter for the entrainment process. An attempt to use an innovative parameter to parameterize the entrainment-zone thickness has been made in this paper.Based on the examination of the data of water-tank experiments and atmospheric measurements, it is found that the total lapse rate of potential temperature across the entrainment zone is proportional to that of the capping inversion layer. Inserting this relationship into the so-called parcel theory, it thus gives a new parameterization scheme for the depth of the entrainment zone. This scheme includes the lapse rate of the capping inversion layer that plays an important role in the entrainment process. Its physical representation is reasonable. The new scheme gives a better ordering of the data measured in both watertank and atmosphere as compared with the traditional method using Ri^*. These indicate that the parcel theory can describe the entrainment process suitably and that the new parameter is better than Ri^*.  相似文献   

13.
Six state-of-the-art large-eddy simulation codes were compared in Fedorovich et al. (Preprints, 16th American Meteorological Society Symposium on Boundary Layers and Turbulence, 2004b) for three airflow configurations in order to better understand the effect of wind shear on entrainment dynamics in the convective boundary layer CBL). One such code was the University of Oklahoma large-eddy simulation (LES) code, which at the time employed a second-order leapfrog time-advancement scheme with the Asselin filter. In subsequent years, the code has been updated to use a third-order Runge–Kutta (RK3) time-advancement scheme. This study investigates what effect the upgrade from the leapfrog scheme to RK3 scheme has on turbulence statistics in the CBL differently affected by mean wind shear, also in relation to predictions by other LES codes that participated in the considered comparison exercise. In addition, the effect of changing the Courant number within the RK3 scheme is investigated by invoking the turbulence spectral analysis. Results indicate that low-order flow statistics obtained with the RK3 scheme generally match their counterparts from simulations with the leapfrog scheme rather closely. CBL growth rates due to entrainment in the shear-free case were also similar using both timestepping schemes. It was found, however, that care should be given to the choice of the Courant number value when running LES with the RK3 scheme in the sheared CBL setting. The advantages of the largest possible (based on the stability criterion) Courant number were negated by degrading the energy distribution across the turbulence spectrum. While mean profiles and low-order turbulence statistics were largely unaffected, the entrainment rate was over-predicted compared to that reported in the original code-comparison study.  相似文献   

14.
The validity of a spectral cumulus parameterization (spectral scheme) for simulating a diurnal cycle of precipitation over the Maritime Continent (MC) was examined using a regional atmospheric model. The impacts of entrainment parameterization and each type of convective closure, i.e., non-equilibrium (or equilibrium) closure for deep convection, mid-level, and shallow convective closures, were also examined. When vertically variable entrainment and appropriate convective closures were employed, the model adequately simulated a diurnal cycle of precipitation over both land and ocean as compared to the observation. Analysis regarding the entrainment parameterization revealed that variable entrainment parameterization was needed not only for simulating better mean patterns of precipitation, but also for more realistic phases of diurnal cycles. The impacts of convective closures appeared in the differences in the precipitation amplitude. Analysis on diurnal cycles of convective properties and tendencies revealed that the cycles between boundary layer forcing and convective heating determined convection strength and were affected by each type of convective closure. It can be concluded that the spectral scheme with appropriate convective closures is able to simulate a realistic diurnal cycle over the MC.  相似文献   

15.
In this note, two different approaches are used to estimate the entrainment-flux to surface-flux ratio for a sheared convective boundary layer (CBL); both are derived under the framework of the first-order jump model (FOM). That suggested by Sun and Wang (SW approach) has the advantage that there is no empirical constant included, though the dynamics are described in an implicit manner. The second, which was proposed by Kim et al. and Pino et al. (KP approach), explicitly characterizes the dynamics of the sheared entrainment, but uncertainties are induced through the empirical constants. Their performances in parameterizing the CBL growth rate are compared and discussed, and a new value of the parameter A 3 in the KP approach is suggested. Large-eddy simulation (LES) data are employed to test both approaches: simulations are conducted for the CBL growing under varying conditions of surface roughness, free-atmospheric stratification, and wind shear, and data used when the turbulence is in steady state. The predicted entrainment rates in each case are tested against the LES data. The results show that the SW approach describes the evolution of the sheared CBL quite well, and the KP approach also reproduces the growth of the CBL reasonably, so long as the value of A 3 is modified to 0.6.  相似文献   

16.
The dimensionless bottom-up and top-down gradient functions in the convective boundary layer (CBL) are evaluated utilizing long-term well-calibrated carbon dioxide mixing ratio and flux measurements from multiple levels of a 447-m tall tower over a forested area in northern Wisconsin, USA. The estimated bottom-up and top-down functions are qualitatively consistent with those from large-eddy simulation (LES) results and theoretical expectations. Newly fitted gradient functions are proposed based on observations for this forested site. The integrated bottom-up function over the lowest 4% of the CBL depth estimated from the tower data is about five times larger than that from LES results for a ‘with-canopy’ case, and is smaller than that from LES results for a ‘no-canopy’ case by a factor of 0.7. We discuss the uncertainty in the evaluated gradient functions due to stability, wind direction, and uncertainty in the entrainment flux and show that while all of these have a significant impact on the gradient functions, none can explain the differences between the modelled and observed functions. The effects of canopy features and atmospheric stability may need to be considered in the gradient function relations.  相似文献   

17.
A laboratory study of scalar diffusion in the convective boundary layer has found results that are consistent with a 1999 large-eddy simulation (LES) study by Jonker, Duynkerke and Cuijpers. For bottom-up and top-down scalars (introduced as ‘infinite’ area sources of passive tracer at the surface and inversion, respectively) the dominant length scale was found to be much larger than the length scale for density fluctuations, the latter being equal to the boundary-layer depth h. The variance of the normalized passive scalar grew continuously with time and its magnitude was about 3–5 times larger for the top-down case than for the bottom-up case. The vertical profiles of the normalized passive scalar variance were found to be approximately constant through the convective boundary layer (CBL) with a value of about 3–8c*2 for bottom-up and 10–50c*2 for top-down diffusion. Finally, there was some evidence of a minimum in the variance and dominant length scale for scalar flux ratios (top-down to bottom-up flux) close to −0.5. All these convection tank results confirm the LES results and support the hypothesis that there is a distinct difference in behaviour between the dynamic and passive variables in the CBL.  相似文献   

18.
Following the parameterization of sheared entrainment obtained in the companion paper, Liu et al. (2016), the present study aims to further investigate the characteristics of entrainment, and develop a simple model for predicting the growth rate of a well-developed and sheared CBL. The relative stratification, defined as the ratio of the stratification in the free atmosphere to that in the entrainment zone, is found to be a function of entrainment flux ratio (A e). This leads to a simple expression of the entrainment rate, in which A e needs to be parameterized. According to the results in Liu et al. (2016), A e can be simply expressed as the ratio of the convective velocity scale in the sheared CBL to that in the shear-free CBL. The parameterization of the convective velocity scale in the sheared CBL is obtained by analytically solving the bulk model with several assumptions and approximations. Results indicate that the entrainment process is influenced by the dynamic effect, the interaction between mean shear and environmental stratification, and one other term that includes the Coriolis effect. These three parameterizations constitute a simple model for predicting the growth rate of a well-developed and sheared CBL. This model is validated by outputs of LESs, and the results show that it performs satisfactorily. Compared with bulk models, this model does not need to solve a set of equations for the CBL. It is more convenient to apply in numerical models.  相似文献   

19.
We used a set of large-eddy simulations to investigate the effect of one-dimensional stripe-like surface heat-flux heterogeneities on mixed-layer top entrainment. The profiles of sensible heat flux and the temporal evolution of the boundary-layer depth revealed decreased entrainment for small heat-flux amplitudes and increased entrainment for large heat-flux amplitudes, compared to the homogeneously-heated mixed layer. For large heat-flux amplitudes the largest entrainment was observed for patch sizes in the order of the boundary-layer depth, while for significantly smaller or larger patch sizes entrainment was similar as in the homogeneous case. In order to understand the underlying physics of this impact, a new approach was developed to infer local information on entrainment by means of the local flux divergence. We found an entrainment maximum over the centre of the stronger heated surface patch, where thermal energy is accumulated by the secondary circulation (SC) that was induced by the surface heterogeneity. Furthermore, we observed an entrainment maximum over the less heated patch as well, which we suppose is to be linked to the SC-induced horizontal flow convergence at the top of the convective boundary layer (CBL). For small heat-flux amplitudes a counteracting effect dominates that decreases entrainment, which we suppose is the horizontal advection of cold air in the lower, and warm air in the upper, CBL by the SC, stabilizing the CBL and thus weakening thermal convection. Moreover, we found that a mean wind can reduce the heterogeneity-induced impact on entrainment. If the flow is aligned perpendicular to the border between the differentially-heated patches, the SC and thus its impact on entrainment vanishes due to increased horizontal mixing, even for moderate wind speeds. However, if the flow is directed parallel to the border between the differentially-heated patches, the SC and thus its impact on entrainment persists.  相似文献   

20.
风切变对边界层对流影响的大涡模拟研究   总被引:5,自引:0,他引:5  
黄倩  王蓉  田文寿  左洪超  张强 《气象学报》2014,72(1):100-115
利用"西北干旱区陆-气相互作用野外观测实验"加密观测期间在敦煌站的观测资料以及大涡模式,模拟了对流边界层的发展,以及示踪物从混合层向残留层传输的时空变化。模拟的对流边界层的结构及演变特征与实测结果基本一致。进一步通过有风切变和无风切变的敏感性数值试验,研究了风切变对垂直速度、位温和示踪物浓度的水平分布以及示踪物传输高度的影响。研究结果表明,在有风切变的试验中(甚至风切变仅存在于近地层中),对流边界层的增长加强,而且示踪物被传输的高度也较高。与浮力驱动的对流边界层相比,由浮力和风切变共同驱动的边界层中上升气流较弱而下沉气流较强,但前者的上升气流与下沉气流的分布在垂直方向上更为倾斜。由于夹卷作用的增强,浮力和风切变共同驱动的对流边界层较浮力驱动的对流边界层暖。在夹卷层,浮力和风切变共同驱动的边界层对流的上升气流和下沉气流都比浮力驱动的边界层对流中的强,而且垂直速度的概率密度函数分布也较对称,其位温和示踪物浓度的概率密度函数分布也比浮力驱动的边界层中的平直。对湍流动能收支的分析也表明风切变对湍流动能有重要影响,尤其对夹卷层中的湍流动能切变产生项影响较大。示踪物浓度的概率密度函数垂直分布显示,浮力驱动的边界层中示踪物浓度随高度变化较小,而浮力和风切变共同驱动的边界层中示踪物浓度随高度递减,但是示踪物传输的高度比较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号