首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Since the devastating southern Africa drought of 1991/92 awareness has grown of the potential to better manage climate variability in the region through seasonal climate forecasting and monitoring of El Niño and the Southern Oscillation (ENSO). While other factors besides ENSO affect southern Africa's climate, and climate forecasting for the region is not based exclusively on ENSO, a major El Niño beginning in 1997 captured the attention of policy-makers and the public. Awareness of drought risks associated with the 1997/98 event was greater than during previous El Niños in 1991/92 and 1994/95. Mitigation and planning efforts also began earlier, with drought early warnings widely available and being taken seriously prior to the 1997/98 agricultural season. Actions taken include issuance of guidance to the public, on-going monitoring and preparedness efforts including the development of national preparedness plans in some countries, pre-positioning of food stocks, donor coordination, and greater reliance on the private-sector for meeting regional food needs. Although 1998 regional crop production was slightly below average, a major drought did not materialize. Nonetheless the experience is likely to ultimately strengthen capacity within the region to manage climate variability over the long term.  相似文献   

2.
The NASA/Goddard Institute for Space Studies (GISS) climatemodel is forced with globally observed sea-surfacetemperatures (SST) in five simulations, 1969–1991,with individual runs beginning from altered initialatmospheric conditions. The interannual variability ofmodeled anomalies of the Southern Oscillation Index,mid-tropospheric temperatures, 850 mb zonal winds andOutgoing Longwave Radiation over the tropical PacificOcean, which has the largest SST anomaly forcing, arestrongly correlated with observed trends which reflectENSO cycles. The model's rainfall variability overthree agriculturally intensive regions, two tropicaland one mid-latitude, is investigated in order toevaluate the potential usefulness of GCM predictionsfor agricultural planning. The correct sign ofZimbabwe seasonal precipitation anomalies was hindcastwithin a useful range of consensus only for selectseasons corresponding to extreme ENSO events for whichanomalous circulation patterns were ratherrealistically simulated. The correlation betweenhindcasts of Nordeste monthly precipitation andobservations increases with time smoothing, reaching0.64 for 5-month running means. Consensus betweenindividual runs is directly proportional to theabsolute value of Niño3 SST so that during ElNiño and La Niña years most simulations agreeon the sign of predicted Nordeste rainfall anomalies.We show that during selected seasons the uppertropospheric divergent circulation and near surfacemeridional displacements of the ITCZ are realisticallyrepresented by the ensemble mean of the simulations.This realistic simulation of both the synopticmechanisms and the resulting precipitation changesincreases confidence in the GCM's potential forseasonal climate prediction.  相似文献   

3.
两个典型ENSO季节演变模态及其与我国东部降水的联系   总被引:2,自引:0,他引:2  
宗海锋 《大气科学》2017,41(6):1264-1283
本文根据1950~2014年月平均海温和大气环流资料以及中国160站降水等资料,利用扩展经验正交函数(EEOF)分析、相关分析以及合成分析等方法,分析了太平洋海温季节演变的主导模态,并探讨了各模态与中国东部降水和东亚环流季节变异的关系及其联系的物理过程。结果表明,ENSO(El Ni?o/Southern Oscillation)季节演变存在2个主导模态,包含4种类型:El Ni?o持续型、La Ni?a持续型、La Ni?a转El Ni?o型和El Ni?o转La Ni?a型。发现不同模态和类型的ENSO季节变化过程我国东部降水距平的分布和强度都有明显差异。El Ni?o持续型和El Ni?o转La Ni?a型,冬春季和初夏均处在El Ni?o背景下,降水异常分布存在一定共性,但盛夏和秋季分别受El Ni?o和La Ni?a影响,降水异常分布差异十分明显,前者雨带北跳慢、位置偏南而后者雨带北跳快、位置偏北。La Ni?a持续型和La Ni?a转El Ni?o型也是如此,冬春季和初夏降水异常分布大致相似,但盛夏和秋季分别受La Ni?a和El Ni?o影响,前者雨带北跳快、位置偏北而后者雨带北跳慢、位置偏南。因此,利用ENSO做我国降水的气候预测时,不能只着眼于前期冬季El Ni?o或La Ni?a事件,还应考虑其未来演变所属的可能模态和类型。对他们之间联系的物理过程分析表明,不同ENSO季节演变模态和类型主要通过影响西太平洋副热带高压以及西风带经向型/纬向型环流调整及伴随的低纬暖湿水汽输送以及中高纬冷空气活动变化来影响我国东部降水。其中,西太平洋菲律宾群岛附近异常反气旋(或气旋)、赤道Walker环流和北半球Hadley环流分别是联系ENSO与西太平洋副热带高压活动和东亚西风带经向型/纬向型环流的重要环节。  相似文献   

4.
This study examines the variability of annual-mean precipitation in eight AOGCMs and in observations using empirical orthogonal functions (EOFs). The leading mode of precipitation variability in both models and observations is centered around the low-latitude western Pacific Ocean and Indian Ocean, and is associated with the El Niño-Southern Oscillation (ENSO). The spatial pattern R 2 correlations between model and observed EOF1 range from 0.12 to 0.61. In the observations, the Southern Oscillation Index (SOI) is highly correlated (R 2 = 0.82) with the amplitude of precipitation EOF1, while model R 2 correlations range from 0.17 to 0.83. If grid points near to those used to compute the standard SOI are used to compute alternative SO indices, the correlation with the amplitude of EOF1 ranges from 0.40 to 0.90 when based on the index that maximizes the correlation. Spatial fields of the variation between local precipitation and the SOI or the North Atlantic Oscillation Index are also computed for each model and compared with the observed fields. The model fields have many important similarities with the observed fields.  相似文献   

5.
The focus of this study is to document the possible role of the southern subtropical Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Composite analyses of sea surface temperature (SST) fields prior to El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Australian summer monsoon (AUSM), tropical Indian Ocean dipole (TIOD) and Maritime Continent rainfall (MCR) indices reveal the southeast Indian Ocean (SEIO) SSTs during late boreal winter as the unique common SST precursor of these various phenomena after the 1976–1977 regime shift. Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean dipole events, recently studied by Behera and Yamagata (Geophys Res Lett 28:327–330, 2001). A wavelet analysis of a February–March SEIO SST time series shows significant spectral peaks at 2 and 4–8 years time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to February–March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly persistent and affect the westward translation of the Mascarene high from austral to boreal summer, inducing a weakening (strengthening) of the whole ISM circulation through a modulation of the local Hadley cell during late boreal summer. At the same time, these subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between Australia and Sumatra during boreal spring and early summer. These positive feedbacks explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind anomalies along the west coast of Sumatra and westerly wind anomalies over the western Pacific, which are well-known key factors for the evolution of positive TIOD and El Niño events, respectively. A correlation analysis supports these results and shows that SEIO SSTs in February–March has higher predictive skill than other well-established ENSO predictors for forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies exert a fundamental influence on the transitions of the whole monsoon-ENSO system during recent decades.  相似文献   

6.
Observations indicated that for the El Niño/Southern Oscillation (ENSO) there have been eastward displacements of the zonal wind stress (WS) anomalies and surface heat flux (short wave heat flux and latent heat flux) anomalies during El Niño episodes in the 1981–1995 regime relative to the earlier regime of 1961–1975 (without corresponding displacements during La Niña episodes). Our numerical experiments with the Zebiak–Cane coupled model generally reproduced such displacements when the model climatological fields were replaced by the observed climatologies [of sea surface temperature (SST), surface WS and surface wind atmospheric divergence] and simulated climatologies (of oceanic surface layer currents and associated upwelling) for the 1981–1995 regime. Sensitivity tests indicated that the background atmospheric state played a much more important role than the background ocean state in producing the displacements, which enhanced the asymmetry between El Niño and La Niña in the later regime. The later regime climatology state resulted in the eastward shifts in the ENSO system (WS and SST) only during El Niño, through the eastward shift of the atmosphere convergence heating rate in the coupled model. The ENSO period and ENSO predictability were also enhanced in the coupled model under the later regime climatology. That the change in the mean state of the tropical Pacific atmosphere and ocean after the mid 1970s could have produced the observed changes in ENSO properties is consistent with our findings.  相似文献   

7.
Historical ENSO teleconnections in the eastern hemisphere   总被引:2,自引:0,他引:2  
Examination of instrumental data collected over the last one hundred years or so shows that rainfall fluctuations in various parts of the eastern hemisphere are associated with the El Niño-Southern Oscillation (ENSO) phenomenon. Using proxy rainfall data-sets from Indonesia, Africa, North China; and a chronology of droughts from India, we investigate the occurrence of ENSO-related floods and droughts over the last five hundred years. The aim of this work is to examine the stability of the pattern of ENSO teleconnections over this longer period, noting any changes in ENSO behaviour which may be relevant in estimating its future behaviour, such as its response to climate change due to the enhanced greenhouse effect.Comparisons of the various data sets with each other and with El Niño chronology from South America, showed statistically significant evidence of teleconnections characteristic of ENSO back to around 1750. Prior to that time, relationships characteristic of ENSO were weak or absent. The disappearance of the ENSO signal in the early period is considered to be most likely due to the poorer quality of the data at that time. From the 18th Century onwards, chronologies of ENSO and anti-ENSO events are given and compared with similar chronologies in the literature.  相似文献   

8.
In this study, statistical techniques are employed to decompose climate signals around southern Africa into the dominant temporal frequencies, with the aim of modelling and predicting area-averaged rainfall. In the rainfall time series over the period 1900–1999, the annual cycle accounts for 83% of variance. Residual spectral energy cascades from biennial (42%) to interannual (20%) to decadal bands (3%). Regional climate signals are revealed through a multi-taper singular value decomposition analysis of sea surface temperature and sea level pressure fields over the Atlantic and Indian Oceans, in conjunction with southern Africa rainfall. Rossby wave action in the South Indian Ocean dominates the biennial scale variability. El Niño-Southern Oscillation (ENSO) and related Indian Ocean dipole patterns are important for interannual variability. Significant sea temperature and pressure fluctuations occurring 6–12 months prior to rainfall contribute biennial and interannual indices to a multi-variate model that demonstrates useful predictive skill.  相似文献   

9.
Summary Two lines of research into climate change and El Niño/Southern Oscillation (ENSO) converge on the conclusion that changes in ENSO statistics occur as a response to global climate (temperature) fluctuations. One approach focuses on the statistics of temperature fluctuations interpreted within the framework of random walks. The second is based on the discovery of correlation between the recurrence frequency of El Niño and temperature change, while developing physical arguments to explain several phenomena associated with changes in El Niño frequency. Consideration of both perspectives leads to greater confidence in, and guidance for, the physical interpretation of the relationship between ENSO and global climate change. Topics considered include global dynamics of ENSO, ENSO triggers, and climate prediction and predictability.Revised November 14, 2002; accepted November 28, 2002 Published online: June 12, 2003  相似文献   

10.
Summary This study investigates the impacts of five recent ENSO events on southern Africa, the associated circulation anomalies and the ability of an atmospheric general circulation model (UKMO HadAM3) to represent these impacts when forced by observed sea-surface temperature (SST). It is found that the model is most successful for the 1997/8 El Niño but does less well for the 1991/2 and 2002/3 El Niños and the 1995/6 and 1999/00 La Niña events. Diagnostics from the model and NCEP re-analyses suggest that modulations to the Angola low, an important centre of tropical convection over southern Africa during austral summer, are often important for influencing the rainfall impacts of ENSO over subtropical southern Africa. Since the model has difficulty in adequately representing this regional circulation feature and its variability, it has problems in capturing ENSO rainfall impacts over southern Africa. During 1997/8, modulations to the Angola low were weak and Indian Ocean SST forcing strong and the model is relatively successful. The implications of these results for dynamical model based seasonal forecasting of the region are discussed.Current affiliation: CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, India.  相似文献   

11.
利用1960—2016年夏季美国国家海洋和大气管理局(NOAA)的月平均降水资料、南方涛动指数SOI以及Niňo3指数资料、NCEP/NCAR再分析资料以及英国哈德莱中心海表温度资料,通过相关分析和回归分析,研究了北半球夏季海洋性大陆区域(Maritime Continent,MC)降水与ENSO联系的年代际变化特征。结果表明:MC地区夏季平均降水与SOI指数的相关自1998年后明显减弱。造成这种现象的原因是:南方涛动指数SOI与海温相关系数在太平洋中部为负的大值中心,且1998年之后海温异常呈中部型。这种SSTA强迫造成1998年后大气视热源异常亦偏于赤道太平洋中部,这有利于通过Gill型响应,使菲律宾以东的对流层低层存在明显的反气旋性环流,辐散增强,从而造成赤道以北降水显著减少,抵消了MC区域内南部地区降水的增加,破坏了原有的SOI为正(负)时MC地区平均降水异常增加(减少)的关系。  相似文献   

12.
Analysis of 149 raingauge series (1946–1988) shows a weak positive correlation between late summer rainfalls (January–March) in tropical southern Africa and the Southern Oscillation Index (SOI). The correlation coefficients have been unstable since World War II. They were close to zero before 1970 and significant thereafter. Before 1970, southern African late summer rainfalls were more specifically correlated with regional patterns of sea surface temperature (SST), mainly over the southwestern Indian Ocean. After 1970, teleconnections with near global SST anomaly patterns, i.e. over the central Pacific and Indian oceans, dominate the regional connections. The increase in the sensitivity of the southern African rainfall to the global SO-related circulation anomalies is simultaneous with the correlation between SOI and more extensive SST anomalies, particularly over the southern Indian Ocean. This feature is part of longer term (decadal), global SST variability, as inferred from statistical analyses. Numerical experiments, using the Météo-France general circulation model ARPEGE-Climat, are performed to test the impact of the observed SST warming in the southern Indian and extratropical oceans during El Niño Southern Oscillation (ENSO) events on southern African rainfall. Simulated results show that ENSO events, which occurred in the relatively cold background of the pre-1970 period in the southern oceans, had a little effect on southern Africa climatic conditions and atmospheric circulation. By contrast, more recent ENSO events, with warmer SST over the southern oceans, lead to a climatic bipolar pattern between continental southern African and the western Indian Ocean, which is characterized by reduced (enhanced) deep convection and rainfall over the subcontinent (the western Indian Ocean). A weaker subtropical high-pressure belt in the southwestern Indian Ocean is also simulated, along with a reduced penetration of the moist southern Indian Ocean trade winds over the southern African plateau. These results are consistent with the strong droughts observed over all southern Africa during ENSO events since 1970.  相似文献   

13.
Summary ?Nepal, lying in the southern periphery of the Tibetan Plateau receives about 80% of the total annual rainfall during summer monsoon (June–September). Rainfall analysis shows that summer monsoon is more active in the southern part of Nepal but in the high Himalayas and Trans-Himalayan region other weather systems like western disturbances are also as effective as monsoon in giving rainfall. The influence of Southern Oscillation (SO) in Nepal monsoon rainfall is found to be very significant. The years with significant negative (positive) Southern Oscillation Index (SOI) have less (more) rainfall in most of the cases during the 32-year period. This relationship is also found to vary with time. The years with deficient rainfall are associated most of the times with negative departure of SOI and the composite chart during these occasions shows about 95% area of Nepal experiencing below normal rainfall. Likewise at the time of positive departure of SOI, most of the region (94%) experienced above normal rainfall. There is a good relation between SOI and rainfall over Nepal during monsoon. The correlation coefficient between Nepal monsoon rainfall and monthly SOI shows a statistically significant in-phase relationship during and after monsoon but poor relation during the months prior to monsoon season. These results suggest that monsoon plays an active and effective role on the interannual variability including SOI. Received December 28, 1999/Revised May 22, 2000  相似文献   

14.
Despite the strong signal of El Niño/Southern Oscillation (ENSO) events on climate in the Indo-Pacific region, models linking ENSO-based climate variability to seasonal rice production and food security in the region have not been well developed or widely used in a policy context. This study successfully measures the connections among sea surface temperature anomalies (SSTAs), rainfall, and rice production in Indonesia during the past three decades. Regression results show particularly strong connections on Java, where 55% of the country's rice is grown. Two-thirds of the interannual variance in rice plantings and 40% of the interannual variance in rice production during the main (wet) season on Java are explained by year-to-year fluctuations in SSTAs measured 4 and 8 months in advance, respectively. These effects are cumulative; during strong El Niño years, production shortfalls in the wet season are not made up later in the crop year. The analysis demonstrates that quantitative predictions of ENSO's effects on rice harvests can provide an additional tool for managing food security in one of the world's most populous and important rice-producing countries.  相似文献   

15.
中国东部夏季风雨带季内变化各模态的环流及海温特征   总被引:1,自引:1,他引:0  
宗海锋  陈烈庭 《大气科学》2013,37(5):1072-1082
本文根据中国气象局国家气候中心提供的中国160站月平均降水量,NCEP/NCAR再分析的850 hPa风场,及NOAA扩展重建的海温场资料,用合成分析和相关分析,研究了1951~2005年间中国夏季风雨带季内变化各模态的西太平洋副高夏季各月活动特点的差异,及其与前期冬季东亚季风和太平洋海温异常的联系,并分析了我国夏季风雨带季内变化各模态与夏季雨型的关系。结果表明,不仅不同模态对应的西太平洋副高自春至夏的两次北跳有明显不同的过程,而且两次北跳还具有相对独立性。第一次北跳主要对6月的雨带特征有重要影响,第二次北跳对7、8两月的雨带分布有决定性意义。太平洋海温异常对我国夏季风雨带季内变化的影响是多态的,在不同季风—ENSO循环的位相有不同的表现。第一模态主要出现在El Ni?o减弱位相,第二模态在La Ni?a发展位相,第三模态在El Ni?o发展位相,第四模态在La Ni?a减弱位相,第五模态ENSO的信号较弱,第六模态在La Ni?a持续位相。此外,不同海洋关键区的海温异常对我国雨带季内变化也有不同的调控作用。黑潮区的海温与6月的雨带活动关系密切,而赤道东太平洋的ENSO循环对7、8两月的雨带有重要影响。对我国夏季风雨带季内变化模态与夏季雨型关系的分析则表明,它们之间存在某些联系,但这并不意味着可以相互取代。  相似文献   

16.
Summary The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed.The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes.The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.With 16 Figures  相似文献   

17.
The potential for the mean climate of the tropical Pacific to shift to more El Niño-like conditions as a result of human induced climate change is subject to a considerable degree of uncertainty. The complexity of the feedback processes, the wide range of responses of different atmosphere–ocean global circulation models (AOGCMs) and difficulties with model simulation of present day El Niño southern oscillation (ENSO), all complicate the picture. By examining the components of the climate-change response that projects onto the model pattern of ENSO variability in 20 AOGCMs submitted to the coupled model inter-comparison project (CMIP), it is shown that large-scale coupled atmosphere–ocean feedbacks associated with the present day ENSO also operate on longer climate-change time scales. By linking the realism of the simulation of present day ENSO variability in the models to their patterns of future mean El Niño-like or La Niña-like climate change, it is found that those models that have the largest ENSO-like climate change also have the poorest simulation of ENSO variability. The most likely scenario (p=0.59) in a model-skill-weighted histogram of CMIP models is for no trend towards either mean El Niño-like or La Niña-like conditions. However, there remains a small probability (p=0.16) for a change to El Niño-like conditions of the order of one standard El Niño per century in the 1% per year CO2 increase scenario.  相似文献   

18.
Summary  One of the major forcings for the interannual variability of the Asian Summer Monsoon is the Sea Surface Temperature (SST) distribution in the tropical Pacific Ocean. El Ni?o years are characterized by a negative Southern Oscillation Index (SOI) and decreased monsoon rainfall over India leading to drought conditions. On the other hand, La Nina years are characterized by a positive SOI and generally good monsoon conditions over India. The monsoon ENSO relation is not a consistent one. The monsoons of 1991 and 1994 are good examples. The spring SOI was the same (−1.3) during both years. However, the All India Summer Monsoon Rainfall (AISMR) was 91.4% of normal in 1991 and 110% in 1994. Though the SOI was same during the spring of both years, the spatial distribution of SSTs was different. In the present study, the impacts of different SST distributions in the tropical Pacific Ocean, on the monsoons of 1991 and 1994 have been examined, to assess the UKMO-unified model’s sensitivity of SST. It is observed that the simulated monsoon was much stronger in 1994 than in 1991, in terms of precipitation and circulation. The wind and the Outgoing Long-wave Radiation (OLR) simulated by the model are compared with NCEP/NCAR reanalyses data, while precipitation is compared with Xie-Arkin merged rainfall data. Received November 26, 1998  相似文献   

19.
Summary The influence of ENSO on intraseasonal variability over the Tanzanian coast during the short (OND) and long (MAM) rainy seasons is examined. In particular, variability in the rainfall onset, peak and end dates as well as dry spells are considered. In general, El Niño appears to be associated with above average rainfall while La Niña is associated with below average rainfall over the northern Tanzanian coast during OND, and to lesser extent MAM. Over the southern coast, the ENSO impacts are less coherent and this region appears to be a transition zone between the opposite signed impacts over equatorial East and southern Africa. The increased north coast rainfall during El Niño years is generally due to a longer than normal rainfall season associated with early onset while reduced rainfall during La Niña years tends to be associated with a late onset, and thus a shorter than average rainfall season. Wet conditions during El Niño years were associated with enhanced convection and low-level easterly anomalies over the equatorial western Indian Ocean implying enhanced advection of moisture from the Indian Ocean while the reverse is true for La Niña years. Hovmöller plots for OLR and zonal wind at 850 hPa and 200 hPa show eastward, westward propagating and stationary features over the Indian Ocean. It was observed that the propagating features were absent during strong El Niño years. Based on the Hovmöller results, it is observed that the convective oscillations over the Tanzanian coast have some of the characteristic features of intraseasonal oscillations occurring elsewhere in the tropics.  相似文献   

20.
Summary El Ni?o/Southern Oscillation (ENSO) is known to cause world-wide weather anomalies. It influences the Indian Monsoon Rainfall (IMR) also. But due to large spatial and temporal variability of monsoon rains, it becomes difficult to state any single uniform relationship between the ENSO and IMR that holds good over different subdivisions of India, though the general type of relationship between all India monsoon rainfall and ENSO is known since long. The selection of the most suitable ENSO index to correlate with the IMR is another problem. The purpose of the present study is twofold, namely, to examine the relationship between the ENSO and IMR for entire monsoon season by using an ENSO index which represents the ENSO phenomenon in a comprehensive way, namely, the Multivariate ENSO Index (MEI) and to establish the relationships between MEI and IMR for every meteorological subdivision of India for each monsoon month; i.e. June, July, August and September. A comparison of MEI/IMR correlations has been made with Southern Oscillation Index (SOI)/IMR correlations. The result may find applications in the long range forecasting of IMR on monthly and subdivisional scales, especially over the high monsoon rainfall variability regions of Northwestern and the Peninsular India. Received October 27, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号