首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The dependence on atmospheric stability of flow characteristics adjacent to a very rough surface was investigated in a larch forest in Japan. Micrometeorological measurements of three-dimensional wind velocity and air temperature were taken at two heights above the forest, namely 1.7 and 1.2 times the mean canopy height h. Under near-neutral and stable conditions, the observed turbulence statistics suggest that the flow was likely to be that of the atmospheric surface layer (ASL) at 1.7h, and of the roughness sublayer (RSL) at 1.2h. However, in turbulence spectra, canopy-induced large coherent motions appeared clearly at both heights. Even under strongly stable conditions, the large-scale motions were retained at 1.2h, whereas they were overwhelmed by small-scale motions at 1.7h. This phenomenon was probably due to the enhanced contribution of the ASL turbulence associated with nocturnal decay of the RSL depth, because the small-scale motions appeared at frequencies close to the peak frequencies of well-known ASL spectra. This result supports the relatively recent concept that canopy flow is a superimposition of coherent motions and the ASL turbulence. The large-scale motions were retained in temperature spectra over a wider region of stability compared to streamwise wind spectra, suggesting that a canopy effect extended higher up for temperature than wind. The streamwise spacing of dominant eddies according to the plane mixing-layer analogy was only valid in a narrow range at near neutral, and it was stabilised at nearly half its value under stable conditions.  相似文献   

2.
The fundamental properties of turbulent flow around a perfectly staggered wind farm are investigated in a wind tunnel. The wind farm consisted of a series of 10 rows by 2–3 columns of miniature wind turbines spaced 5 and 4 rotor diameters in the streamwise and spanwise directions respectively. It was placed in a boundary-layer flow developed over a smooth surface under thermally neutral conditions. Cross-wire anemometry was used to obtain high resolution measurements of streamwise and vertical velocity components at various locations within and above the wind farm. The results show that the staggered configuration is more efficient in terms of momentum transfer from the background flow to the turbines compared to the case of an aligned wind turbine array under similar turbine separations in the streamwise and spanwise directions. This leads to improved power output of the overall wind farm. A simplified analysis suggests that the difference in power output between the two configurations is on the order of 10%. The maximum levels of turbulence intensity in the staggered wind farm were found to be very similar to that observed in the wake of a single wind turbine, differing substantially with that observed in an aligned configuration with similar spacing. The dramatic changes in momentum and turbulence characteristics in the two configurations show the importance of turbine layout in engineering design. Lateral homogenization of the turbulence statistics above the wind farm allows for the development of simple parametrizations for the adjustment of flow properties, similar to the case of a surface roughness transition. The development of an internal boundary layer was observed at the upper edge of the wind farm within which the flow statistics are affected by the superposition of the ambient flow and the flow disturbance induced by the wind turbines. The adjustment of the flow in this layer is much slower in the staggered situation (with respect to its aligned counterpart), implying a change in the momentum/power available at turbine locations. Additionally, power spectra of the streamwise and vertical velocity components indicate that the signature of each turbine-tip vortex structure persists to locations deep within the wind farm.  相似文献   

3.
The new Forest-Land-Atmosphere ModEl called FLAME is presented. The first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993) is applied to study the interactions between a forested land-surface and the atmospheric boundary layer (ABL). The transilient scheme is used for unequal vertical grid spacing and includes the effects of drag, wake turbulence, and interference to vertical mixing by plant elements. Radiation transfer within the vegetation and the equations for the energy balance at the leaf surface have been taken from Norman (1979). Among others, the model predicts profiles of air temperature, humidity and wind velocity within the ABL, sensible and latent heat fluxes from the soil and the vegetation, the stomata and aerodynamic resistances, as well as profiles of temperature and water content in the soil. Preliminary studies carried out for a cloud free day and idealized initial conditions are presented. The canopy height is 30 m within a vertical domain of 3 km. The model is able to capture some of the effects usually observed within and above forested areas, including the relative wind speed maximum in the trunk space and the counter gradient-fluxes in the lower part of the plant stand. Of special interest is the determination of the location and magnitude of the turbulent mixing between model layers, which permits one to identify the effects of large eddies transporting momentum and scalar quantities into the canopy. A comparison between model simulations and field measurements will be presented in a future paper.  相似文献   

4.
We have analyzed eddy covariance data collected within open canopy to investigate the influence of non-flat terrain and wind direction shear on the canopy turbulence. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree at this site. A variety of turbulent statistics were examined as a function of wind direction in near-neutral conditions. Heterogeneous surface characteristics results in significant differences in measured turbulent statistics. Upwind trees on the flat and up-sloping terrains yield typical features of canopy turbulence while upwind elevated surface with trees yields significant wind direction shear, reduced u and w skewness, and negligible correlation between u and w. The directional dependence of turbulence statistics is due that strong wind blows more horizontally rather than following terrain, and hence combination of slope related momentum flux and canopy eddy motion decreases the magnitude of Sk w and r uw for the downslope flow while it enhances them for the upslope flow. Significant v skewness to the west indicates intermittent downdraft of northerly wind, possibly due to lateral shear of wind in the presence of significant wind direction shear. The effects of wind direction shear on turbulent statistics were also examined. The results showed that correlation coefficient between lateral velocities and vertical velocity show significant dependence on wind direction shear through change of lateral wind shear. Quadrant analysis shows increased outward interaction and reduced role of sweep motion for longitudinal momentum flux for the downslope flow. Multi-resolution analysis indicates that uw correlation shows peak at larger averaging time for the upslope flow than for the downslope flow, indicating that large eddy plays an active role in momentum transfer for the upslope flow. On the other hand, downslope flow shows larger velocity variances than other flows despite similar wind speed. These results suggest that non-flatness of terrain significantly influences on canopy-atmosphere exchange.  相似文献   

5.
A three-level model system for the prediction of local flows in mountainous terrain is described. The system is based upon an operational weather prediction model with a horizontal grid spacing of about 10 km. The large-scale flow is transformed to a more detailed terrain, first by a mesoscale model with grid spacing of about 1 km, and then by a local-scale model with a grid spacing of about 0.2 km. The weather prediction model is hydrostatic, while the two other models are non-hydrostatic. As a case study the model system has been applied to estimate wind and turbulence over Várnes airport, Norway, where data on turbulent flight conditions were provided near the runway. The actual case was chosen due to previous experiences, which indicate that south-easterly winds may cause severe turbulence in a region close to the airport. Local terrain induced turbulence seems to be the main reason for these effects. The predicted local flow in the actual region is characterized by narrow secondary vortices along the flow, and large turbulent intensity associated with these vortices. A similar pattern is indicated by the sparse observations, although there seems to be a difference in mean wind direction between data and predictions. Due to fairly coarse data for sea surface temperature, errors could be induced in the turbulence damping via the Richardson number. An adjustment for this data problem improved the predictions.  相似文献   

6.
Neutrally buoyant atmospheric surface-layer flow over a thin vertical wall has been studied using a turbulence closure scheme designed specifically to address flow problems containing high shears. The turbulent flow model consists of a general solution of the time averaged, steady state, twodimensional Navier-Stokes equations, where theE- turbulence model has been used to close the system of equations. Model output compares favorably with measurements made in both a full-scale field study and in an atmospheric wind tunnel. In the simulation of flow over a solid wall, two recirculation eddies are produced. The smallest eddy is located windward of the wall with a separation point located atx/h=–0.8, and the largest is located in the lee of the wall atx/h=5.8. Immediately downwind of the wall top, the turbulent kinetic energy, the energy dissipation rate, and the momentum flux all reach a local maximum. These peak values generally maintain their height positionz/h=1.0, but decrease progressively downwind. The turbulent viscosity is strongly modified under the influence of the wall, with a local maximum forming in the lee of the wall top, and a local minimum forming at a heightz/h=2.0 above the lee recirculation eddy. The surface momentum flux reduction due to the presence of the wall begins atx/h=–10.0. Minimum zero fluxes occur at the surface separation points, and a local peak in momentum flux is produced at the centers of each recirculation eddy. Downwind of the wall, the modeled surface flux reaches an equilibrium at roughlyx/h=30.0.  相似文献   

7.
Landscape discontinuities such as forest edges play an important role in determining the characteristics of the atmospheric flow by generating increased turbulence and triggering the formation of coherent tree-scale structures. In a fragmented landscape, consisting of surfaces of different heights and roughness, the multiplicity of edges may lead to complex patterns of flow and turbulence that are potentially difficult to predict. Here, we investigate the effects of different levels of forest fragmentation on the airflow. Five gap spacings (of length approximately 5h, 10h, 15h, 20h, 30h, where h is the canopy height) between forest blocks of length 8.7h, as well as a reference case consisting of a continuous forest after a single edge, were investigated in a wind tunnel. The results reveal a consistent pattern downstream from the first edge of each simulated case, with the streamwise velocity component at tree top increasing and turbulent kinetic energy decreasing as gap size increases, but with overshoots in shear stress and turbulent kinetic energy observed at the forest edges. As the gap spacing increases, the flow appears to change monotonically from a flow over a single edge to a flow over isolated forest blocks. The apparent roughness of the different fragmented configurations also decreases with increasing gap size. No overall enhancement of turbulence is observed at any particular level of fragmentation.  相似文献   

8.
In southern China,cold air is a common weather process during the winter season;it can cause strong wind,sharp temperature decreases,and even the snow or freezing rain events.However,the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data,especially regarding turbulence.In this study,four-layer gradient meteorological observation data and one-layer,10-Hz ultrasonic anemometer-thermometer monitoring data from the northern side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passage over southern China.The results show that,with the passage of a cold air front,the wind speed exhibits low-frequency variations and that the wind systematically descends.During the strong wind period,the wind speed increases with height in the surface layer.Regular gust packets are superimposed on the basic strong wind flow.Before the passage of cold air,the wind gusts exhibit a coherent structure.The wind and turbulent momentum fluxes are small,although the gusty wind momentum flux is slightly larger than the turbulent momentum flux.However,during the invasion of cold air,both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed,and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period.After the cold air invasion,this structure almost disappears.  相似文献   

9.
This is the first of two papers reporting the results of a study of the turbulence regimes and exchange processes within and above an extensive Douglas-fir stand. The experiment was conducted on Vancouver Island during a two-week rainless period in July and August 1990. The experimental site was located on a 5o slope. The stand, which was planted in 1962, and thinned and pruned uniformly in 1988, had a (projected) leaf area index of 5.4 and a heighth=16.7 m. Two eddy correlation units were operated in the daytime to measure the fluctuations in the three velocity components, air temperature and water vapour density, with one mounted permanently at a height of 23.0m (z/h=1.38) and the other at various heights in the stand with two to three 8-hour periods of measurement at each level. Humidity and radiation regimes both above and beneath the overstory and profiles of wind speed and air temperature were also measured. The most important findings are:
  1. A marked secondary maximum in the wind speed profile occurred in the middle of the trunk space (aroundz/h=0.12). The turbulence intensities for the longitudinal and lateral velocity components increased with decreasing height, but the intensity for the vertical velocity component had a maximum atz/h=0.60 (middle of the canopy layer). Magnitudes of the higher order moments (skewness and kurtosis) for the three velocity components were higher in the canopy layer than in the trunk space and above the stand.
  2. There was a 20% reduction in Reynolds stress fromz/h=1.00 to 1.38. Negative Reynolds stress or upward momentum flux perisistently occurred atz/h=0.12 and 0.42 (base of the canopy), and was correlated with negative wind speed gradients at the two heights. The longitudinal pressure gradient due to the land-sea/upslope-downslope circulations was believed to be the main factor responsible for the negative Reynolds stress.
  3. Momentum transfer was highly intermittent. Sweep and ejection events dominated the transfer atz/h=0.60, 1.00 and 1.38, with sweeps playing the more important role of the two atz/h=0.60 and 1.00 and the less important role atz/h=1.38. But interaction events were of greater magnitude than sweep and ejection events atz/h=0.12 and 0.42.
  相似文献   

10.
Canopy turbulence plays an important role in mass and energy exchanges at the canopy-atmosphere interface. Despite extensive studies on canopy turbulence over a flat terrain, less attention has been given to canopy turbulence in a complex terrain. The purpose of this study is to scrutinize characteristics of canopy turbulence in roughness sublayer over a hilly forest terrain. We investigated basic turbulence statistics, conditionally sampled statistics, and turbulence spectrum in terms of different atmospheric stabilities, wind direction and vertical structures of momentum fluxes. Similarly to canopy turbulence over a homogeneous terrain, turbulence statistics showed coherent structure. Both quadrant and spectrum analysis corroborated the role of intermittent and energetic eddies with length scale of the order of canopy height, regardless of wind direction except for shift of peak in vertical wind spectrum to relatively high frequency in the down-valley wind. However, the magnitude of the momentum correlation coefficient in a neutral condition was smaller than typical value over a flat terrain. Further scrutiny manifested that, in the up-valley flow, temperature skewness was larger and the contribution of ejection to both momentum and heat fluxes was larger compared to the downvalley flow, indicating that thermal instability and weaker wind shear in up-valley flow asymmetrically affect turbulent transport within the canopy.  相似文献   

11.
The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.  相似文献   

12.
1998年5月14日至6月22日,在西沙永兴岛近海铁塔上进行了一次海-气通量观测试验,观测期包括了西南季风爆发前、爆发、爆发后风速加强等几个阶段。这次试验获得该年西南季风爆发的天气特征以及由涡度相关法、廓线法计算的动量、感热、潜热通量及湍流强度等一些统计量分布。分析结果表明,观测期湍流强度σu、σv、σw与平均风速之比为0.096、0.066、0.045;在近中性条件下(z/L≈0),各相似函数基本为常数,σu/u*≈3,σv/u*≈2,σw/u*≈1.25;在稳定条件下u、v、w三方向σ/u*近似相等;在稳定与不稳定条件下σt/t*随稳定度参数z/L的变化趋势相似,但符号相反。摩擦速度u*随风速的变化接近于关系式u*=0.029U10+0.006(U10为10m高度30min平均风速),空气动力粗糙度长度z0变化在0.01~0.35mm之间。观测期动量通量变化在0.05~0.30N/m2之间,季风爆发期明显增大;曳力系数CD平均为1.12×10-3,它随平均风速变化可以表示为关系式103CD=0.003U210+0.020U10+0.836或103CD=0.056U10+0.732。感热通量由海洋输向大气,平均值为7.8W/m2,数值在0~15W/m2之间变化,季风爆发后明显增大;潜热通量数值一般变化于50~200W/m2,白天中午数值较高,夜间较低。季风爆发后也明显增大。观测期间鲍恩比(BowenRatio)日平均为0.05左右。  相似文献   

13.
The Weather Research and Forecasting (WRF) model can be used to simulate atmospheric processes ranging from quasi-global to tens of m in scale. Here we employ large-eddy simulation (LES) using the WRF model, with the LES-domain nested within a mesoscale WRF model domain with grid spacing decreasing from 12.15 km (mesoscale) to 0.03 km (LES). We simulate real-world conditions in the convective planetary boundary layer over an area of complex terrain. The WRF-LES model results are evaluated against observations collected during the US Department of Energy-supported Columbia Basin Wind Energy Study. Comparison of the first- and second-order moments, turbulence spectrum, and probability density function of wind speed shows good agreement between the simulations and observations. One key result is to demonstrate that a systematic methodology needs to be applied to select the grid spacing and refinement ratio used between domains, to avoid having a grid resolution that falls in the grey zone and to minimize artefacts in the WRF-LES model solutions. Furthermore, the WRF-LES model variables show large variability in space and time caused by the complex topography in the LES domain. Analyses of WRF-LES model results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day as well as the distance from the inflow boundaries.  相似文献   

14.
Many forest management methods alterstand density uniformly. The effectsof such a change on the wind andturbulence regimes in the forest arecritical to a number of processes governingthe stability of the stand and itsmicroclimate. We measured wind speed andturbulence statistics with a Dantec tri-axialhot-film probe in model forests of variousdensities (31–333 trees m-2), created byremoving whole trees in a regular pattern in awind tunnel, and compared them with similarmeasurements made with propeller anemometers insimilarly thinned plots (156–625 trees ha-1)within a Sitka spruce stand in Scotland. The results agree well, in general, with measurements made inother such studies with diverse canopy types.The systematic variations with density and verticalleaf-area distribution (which differed betweenwind-tunnel and field trees) in our work can explainmuch of the variability shown in scaled profiles ofbasic turbulence statistics reported in theliterature. The wind tunnel and field results are shown to be in good agreement overalldespite the difference in vertical leaf-areadistribution. Within-canopy and isolated-treedrag coefficients in the wind tunnel showthat tree-scale shelter effects increase astree density increases. The measurements indicatethat turbulence in the canopy is dominated bylarge-scale structures with dimensions of the sameorder as the height of the canopy as found inother studies but suggest that inter-tree spacing also modulates the size of these structures. These structures are associated with the sweeps that dominatemomentum exchange in the canopy and it is thisfact that allows the tri-axial probe to operate sowell despite the relatively narrow range of anglesin which the wind vector is correctly measured. Theratio of streamwise periodicity of these structuresto vorticity thickness varies systematically withtree density in the range 2.7–5.1, which spans theexpected range of 3.5–5 found in a laboratorymixing-layer, suggesting that tree spacing imposes another relevant length scale. This test andothers show that the results are in agreement withthe idea that canopy turbulence resembles that of a mixing layer even though they disagree with, and challenge the linear relationship between, streamwise periodicity andshear length scale presented recently in theliterature. The measurements are also in goodoverall agreement with simple drag models presented recently by other researchers.  相似文献   

15.
Six levels of simultaneously sampled ultrasonic data are used to analyse the turbulence structure within a mixed forest of 13 m height on a steep slope (35°) in an alpine valley. The data set is compared to other studies carried out over forests in more ideal, flat terrain. The analysis is carried out for 30-min mean data, joint probability distributions, length scales and spectral characteristics.Thermally induced upslope winds and cold air drainage lead to a wind speed maximum within the trunk space. Slope winds are superimposed on valley winds and the valley-wind component becomes stronger with increasing height. Slope and valley winds are thus interacting on different spatial and time scales leading to a quite complex pattern in momentum transport that differs significantly from surface-layer characteristics. Directional shear causes lateral momentum transports that are in the same order or even larger than the longitudinal ones. In the canopy, however, a sharp attenuation of turbulence is observed. Skewed distributions of velocity components indicate that intermittent turbulent transport plays an important role in the energy distribution.Even though large-scale pressure fields lead to characteristic features in the turbulent structure that are superimposed on the canopy flow, it is found that many statistical properties typical of both mixing layers and canopy flow are observed in the data set.  相似文献   

16.
The concept of a cold air ‘Parcel’ is introduced for describing the bulk properties of drainage flow. By means of a model based on the momentum and sensible heat transports under calm conditions, the thickness h and velocity u of the Parcel are derived in simple forms. It is shown that h and u correspond to the inversion height and maximum velocity of actual drainage flow. The governing parameters for h and u are the length and vertical drop of the slope, potential temperature difference between the ambient atmosphere and the Parcel, aerodynamic condition of the slope surface expressed by the mean bulk coefficients, and ambient stability. The mean bulk coefficients depend on the roughness lengths for the velocity and potential temperature profiles and are decreasing functions of the slope length. The Parcel Model agrees qualitatively with Manins and Sawford's (1979) model under neutral ambient stratification. But agreement is not so good under stable conditions. The thickness and velocity of drainage flow predicted by the Parcel Model agree with observations on slopes several tens of meters to several hundred kilometers long.  相似文献   

17.
Multiple windbreaks: An aeolean ensemble   总被引:1,自引:0,他引:1  
Near-neutral measurements of the turbulent wind field within and above a sequence of 15 parallel windbreaks on a flat pastoral site are presented. The windbreak fences each had a porosity of 60% and were equally-spaced at 6 times their height (h = 2 m). The following conclusions seem justified for wind directions within 10 ° of the normal to the array:
  1. Above the windbreaks (2h), mean windspeeds first decreased and then increased asymptotically to a value in equilibrium with the new surface roughness. At 0.5h, windspeeds exhibited a slow increase down the entire array.
  2. Reflecting differences in approach flows, the drag on the initial fence was almost twice that on barriers farther downstream. This reduction in momentum extraction per windbreak was associated with an elevation in the zero-plane displacement to a level equal to 0.8h.
  3. At positions well-removed from the initial fences, mean windspeeds were reduced throughout the entire region below shelter height. In this region, the flow became increasingly dominated by downward moving air with velocities much greater than the local average. The zone of reduced turbulence was small, extending only 2h downstream of a barrier at a height of 0.25h. This corresponded with the region excluded from smoke trails released at the top of windbreaks.
  4. An approximate TKE budget mid-way between windbreaks 7 and 8 suggests that shear and wake production peak near z = h and that production is balanced by dissipation and vertical transport components. Advective and inertial interaction terms are negligible at this midway position but are likely to be major sources of TKE closer to the windbreak. Local equilibrium is attained above z = 1.5h implying the existence of a constant-stress layer.
The measurements show the practical difficulty of simultaneously reducing both mean windspeeds and turbulence levels with repeated windbreaks at conventional spacings for horticultural applications.  相似文献   

18.
2009年“莫拉克”台风登陆过程阵风特征分析   总被引:3,自引:2,他引:1  
李永平  郑运霞  方平治 《气象学报》2012,70(6):1188-1199
利用上海台风研究所移动观测车获取的“莫拉克”台风登陆过程中超声风、温等观测资料对地面阵风特性进行了诊断分析.结果表明,在风速时间序列中叠加有周期为3-7 min的阵风扰动,显现出明显的相干结构,即沿顺风方向阵风风速峰期有下沉运动,谷期有上升运动;阵风扰动的各向异性特征明显,沿顺风方向的阵风扰动能量最大,其次是沿侧向和垂直方向的扰动能量;沿顺风方向的阵风垂直动量通量向下传播,而沿侧风方向阵风扰动动量垂直通量总体贡献接近于0.阵风扰动沿顺风方向的积分空间尺度和时间尺度最大,沿侧风方向和垂直方向其次,均明显大于湍流的积分空间和时间尺度.此外,阵风扰动的其他特征还包括:感热垂直通量极小;当平均风速较大时阵风风向变化幅度较小,而风速较小时阵风风向变化幅度则较大;动力学分析表明,阵风扰动主要表现出重力内波的一些特性.  相似文献   

19.
The effect of turbulence on boundary-layer resistances to heat and water vapour transfer from leaves inclined to the mean airflow has been studied using heated square plates in a wind tunnel. Heat and water vapour transfer coefficients increased with streamwise turbulence intensity for all angles of inclination of the plates to the mean flow, and the increase was dependent on the ratio of the longitudinal integral length scale to the plate dimension. This dependence on the turbulence length scale probably results from a resonant interaction between the boundary layer on the plate and the turbulence in the approaching mean flow.The paper also presents results of experiments with heated plates having serrated leading edges and/or a transverse ridge on the surface, conducted in an attempt to understand the aerodynamic importance of morphological irregularities on the leaf surface. The irregularities studied here disturbed the boundary layer on the plate, and greatly increased heat transfer when the angle of inclination of the plates to the mean wind was small, but had little effect when the angle of inclination exceeded 40 °.  相似文献   

20.
We examine the unsteady response of a neutral atmospheric boundary layer (ABL) of depth h and friction velocity u * when a uniform surface heat flux is applied abruptly or decreased rapidly over a time scale t<inf>θ</inf> less than about h /(10u *). Standard Monin–Obukhov (MO) relationships are used for the perturbed eddy viscosity profile in terms of the changes to the heat flux and mean shear. Analytical solutions for changes in temperature, mean wind and shear stress profile are obtained for the surface layer, when there are small changes in h /|LMO| over the time scale tMO~|L MO|/(10u*) (where L MO and t MO are the length and time scales, respectively). They show that a maximum in the wind speed profile occurs at the top of the thermal boundary layer for weak surface cooling, i.e. a wind jet, whereas there is a flattening of the profile and no marked maximum for weak surface heating. The modelled profiles are approximately the same as those obtained from the U.K. Met Office Unified Model when operating as a mesoscale model at 12-km horizontal resolution. The theoretical model is modified when strong surface heating is suddenly applied, resulting in a large change in h /|L MO| (>>1), over the time scale t MO. The eddy structure is predicted to change significantly and the addition of convective turbulence increases the shear turbulence at the ground. A low-level wind jet can form, with convective turbulence adding to the mean momentum of the flow. This was verified by our laboratory experiment and direct numerical simulations. Additionally, it is shown that the effects of Coriolis acceleration diminish (rather than as suggested in the literature, amplify) the formation of the wind jets in the situations considered here. Hence, only when the surface heat flux changes over time scales greater than 1/f (where f is the Coriolis parameter) does the ABL adjust monotonically between its equilibrium states. These results are also applicable to the ABL passing over spatially varying surface heat fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号