首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The climate history of western Spitsbergen, Svalbard is deduced from variations of glaciers during the last 20 000 years. A major depression of the regional equilibrium line altitude (ELA) occurred during the Late Weichselian glacial maximum (18000–13000y ago) when low summer temperatures may have caused year-round snow accumulation on the ground. This rapid expansion of the glaciers also indicates nearby moisture sources, suggesting partly open conditions in the Norwegian Sea during the summers. A rapid glacial retreat around 13 000–12 500 y BP was caused by a sudden warming. During the Younger Dryas the ELA along the extreme western coast of Spitsbergen was not significantly lower than at present. In contrast to Fennoscandia, the British Isles and the Alps, there is no evidence for readvance of local glaciers during Younger Dryas on western Spitsbergen. This difference is attributed to a much dryer climate on Spitsbergen and probably only slight changes in sea surface temperatures. In addition, summer melting in this high arctic area is more sensitive to orbitally increased insolation. Around 10 000 y BP another rapid warming occurred and during early and mid Holocene the summer temperatures were significantly higher than at present. A temperature decline during the late Holocene caused regrowth of the glaciers which reached their maximum Holocene position during the last century.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

2.
This paper presents a new reconstruction of the mean annual temperature obtained from a high altitude pollen sequence in equatorial Africa (3°28S, 29°34E, 2240 m). It has been achieved with an extended modern African reference data set by adding spectra from 228 new sites and using another selection for pollen taxa. The purpose of this paper is to test how the obtained temperature value depends upon the availability of modern analogues. The results are in good agreement with those previously published, reinforcing the validity of the method. The mean standard error is reduced by 0.3°C. The mean temperature for the Holocene appears + 1.4°C warmer than the present and the last glacial maximum (25-18 kyrs BP) cooling is better specified at – 3 ± 1.9° C, a conservative value, more consistent with reconstructed sea surface temperature in the equatorial ocean.Contribution to Clima Locarno - Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

3.
Climatic change evidence and lacustrine varves from maar lakes,Germany   总被引:2,自引:0,他引:2  
Annually laminated, non-glacial lake sediments from Lake Holzmaar (Eifel, western Germany) were investigated using large Merkt thin sections. The absolute age of varve intervals with variations in thickness and composition were correlated to climatic changes recorded by glacier fluctuations in the Alps. Back to 8800 years VT (varve time = varve years before 1950) glacier advances coincide with sedimentation rate minima; prior to 8800 years VT they coincide with sedimentation rate maxima. The early and middle Holocene sediments suggest a periodicity of about 1000 years for cold/warm cycles. A sequence of 512 varve-thickness measurements was subjected to spectral analysis. These provide apparent evidence for a 11-year sun-spot cycle.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program.  相似文献   

4.
Airborne measurements of the emissions from natural fires, fueled by pyrites and organic materials, at the Smoking Hills in the Northwest Territories, show that they are a regionally significant source of SO2 (0.3 kg s–1 or 104 T yr–1) and particles (0.3 kg s–1). It appears likely that the Smoking Hills are a source for some of the dense, lower-level, haze layers that occur in the North American Arctic.  相似文献   

5.
Rates of change of pollen spectra throughout Europe during the last 13 000 years have been calculated. The overall mean rate of change curve shows peaks corresponding to known times of rapid palaeoenvironmental change between 13 000 and 12000y BP, and between 10 000 and 9000 y BP. These peaks are strongest in the north and west of Europe. As in eastern North America (Jacobson et al. 1987), highest rates of change are recorded during the last millennium. At this time the changes of greatest magnitude are in areas of Europe with winter climate conditions strongly influenced by the North Atlantic. It is hypothesized that the overall pattern of Holocene climate change in Europe, and especially the changes of the last millennium, result from changes in the North Atlantic that have most strongly influenced winter conditions in western Europe.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

6.
This paper evaluates evidence for seasonal loess deposits in peri-Alpine Lake Constance at the end of the last Glacial (Oldest Dryas chronozone). The usefulness of such lacustrine deposits for palaeoclimatic interpretations is discussed. The sedimentology of laminated couplets comprising yellow and grey silts has been investigated to test the hypothesis that the couplets are varves (i.e. annual rhythmites) comprising alternations of loess and glacial silt and clay. The laminae are mostly less than 1 mm thick and include from bottom to top: (1) a matrix of well-sorted, non-graded fine yellow silt with sand-size intraclasts, (2) coarsening-upward grey silt with a cap of fining-upward silt to clay. The latter is typical for varves in modern proglacial lakes and reflects summer and winter deposits (silt and clay, respectively). We propose that the lack of grading and the matrix supported fabric is indicative of aeolian transport and therefore interpret the yellow laminae as loess deposits. Volcanic glass intraclasts in the loess layers are probably derived from volcanic terrain to the west of the lake, indicating an easterly palaeowind direction. Deposition of loess in the lake occurred regularly at the beginning of each annual cycle, suggesting that the palaeowinds were associated with winter and/or spring conditions. Two transport scenarios are suggested to explain the sand grains scattered in this deep-water lacustrine record. 1. The grains may have been transported as bedload over the annual winter ice-cover of the lake under moderate wind strengths, frozen into the ice, and released for deposition during spring melt. 2. The sand grains were blown directly out onto the lake water by very strong winds during spring. The first scenario is contrary to the general view that loess was transported during summer, and that loess deposits thus reflect summer conditions only. Loess input to the lake shows a transitional decrease after ca. 14.3 kyr BP and cessation at ca. 14 kyr BP, probably as a result of a change of wind behaviour, increased humidity and/or vegetational changes during the Oldest Dryas in central Europe.This paper was presented at Clima Locarno 90, the International Conference on Past and Present Climate Dynamics: Reconstruction of Rates of Change, held in Locarno, Switzerland, September 24 to 28, 1991, supported by a grant from the Swiss Academy of Sciences. It was convened jointly by the Swiss National Climate Program - ProClim, the Swiss Committee for the IGBP, the Swiss COL, the Swiss SCOPE Committee, and the Swiss CCA. Guest editor for the papers published following the conference is Dr. K. Kelts (see also Climate Dynamics 6:3/4, Jan. 1992)  相似文献   

7.
Summary The total ozone decline during the past twenty years, especially strong during the winter-spring season poleward from 50° N, is well established with known average trends of 5–7% per decade. This study presents a number of additional characteristics such as ozone-mass deficiency (O3MD) from the pre- 1976 base average, and areal extent with negative deviations greater than2 and3. Gridded satellite data combined with ground-based total ozone maps, permit calculations of daily and regional ozone deficiencies from the anthropogenically undisturbed average ozone levels of the 1960s and early 1970s. Then the quantity of the O3MD and the changes in surface area, with deficiencies larger than-10 and-15% are integrated for the 1 January to 15 April period for each of the last 20 years, and compared. In addition, the polar vortex extent during the last 10 years is determined using the PV at 475°K. The quantity of the O3MD within the sunlit part of the vortex is shown to contribute from15 to 35% of the overall ozone deficiency within the-10% contours over the area 35–90°N. The ozone deficiency, integrated for the first 105 days of each year, has increased dramatically from 2,800Mt in the early 1980s to7,800Mt in the 1990s, exceeded 12,000Mt in the winter-springs of 1993 and 1995. The latter quantity is comparable with the average O3MD over the same Southern latitudes in the last ten austral springs. During the 1990s over the 35–90° latitudes the average ozone deficiency in the Southern hemisphere belt is less than over the Northern hemisphere belt by40%. It is known that the main ozone decline is observed in the lower stratosphere and the ozone loss over the Arctic is very sensitive to decreasing stratospheric temperatures; negative 50hPa monthly anomalies greater than 4°C have occurred during 7 of the springs in the last decade, thus possibly facilitating doubling the area with negative ozone deviations greater than-10% in the 1990s to5,000.106km2 and nearly tripling the O3MD as stated above. The changes in total eddy heat fluxes as a proxy indicator of the long wave perturbations are positively correlated with the ozone deficiency in the 45–75°N. The strong anticorrelation between the ozone deficiency in the region>55° N. versus the 35–50° N belt is discussed in relation to possible transport of air masses with low ozone from the sub-tropics, which in some years are the dominant reason for the observed ozone deficiency.With 11 Figures  相似文献   

8.
Climatic characteristics are affected by various systematic and occasional impacts: besides the changes in the observing system (locations of the stations of the meteorological network, instruments, observing procedures), the possible local-scale and global natural and antropogenic impacts on climatic conditions should be taken into account. Apart from the predictability problems, the phenomenological analysis of the climatic variability and the determination of past persistent climatic anomalies are significant problems, among other aspects, as evidence of the possible anomalous behavior of climate or for climate impact studies. In this paper, a special technique for the identification of such shifts in the observational series is presented. The existence of these significant shorter or longer term changes in the mean characteristics for the properly selected adjoining periods of time is the necessary condition for the formation of any more or less unidirectional climatic trends. Actually, the window technique is based on a complete set of orthogonal functions. The sensitivity of the proposed model on its main parameters is also investigated. This method is applied for hemispheric and Hungarian data series of the mean annual surface temperature.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

9.
Strong climate-related secular trends are apparent in a 52-yr long (1947–1998) uninterrupted series of monthly temperature profiles fromLake Zurich, a large, deep (136 m), temperate lake on the Swiss Plateau. Decadal mean water temperatures have undergone a secular increase at all depths, reflecting the high degree of regional warming that occurred in the European Alpine area during the 20th century. From the 1950s to the 1990s, high warming rates ( 0.24 K per decade) in the uppermost 20 m of the lake (i.e., the epi/metalimnion) combined with lower warming rates ( 0.13 K per decade) below 20 m (i.e., in the hypolimnion), have resulted in a20% increase in thermal stability and a consequent extension of 2–3 weeksin the stratification period. In common with many other parts of the world, 20th-century climate change on the Swiss Plateau has involved a steep secular increase in daily minimum (nighttime) air temperatures, but not in daily maximum (daytime) air temperatures. With respect to both secular change and decadal-scale variability, the temporal structure of the temperature of the surface mixed layer of Lake Zurich faithfully reflects that of the regional daily minimum air temperature, but not that of the daily maximum. The processes responsible for longer-term changes in the temperature structure of the lake therefore act during the night, presumably by suppressing nighttime convective cooling of the surface mixed layer. Application of a one-box heat exchange model suggests that the observed secular changes in thermal structure are due to shifts in the nighttime rate of emission of infrared radiation from the atmosphere and in the nighttime rates of latent and sensible heat exchange at the air-water interface. The increase in hypolimnetic temperatures is mainly a result of the increased prevalence of warm winters in Europe.  相似文献   

10.
Recent variations of the surface temperature of the Earth can be inferred from borehole temperature measurements. Generalized inversion is used to extract the information from the data; the potential of the method is evaluated. Tests were performed with synthetic data to demonstrate the effectiveness of the inversion to recover the gross features of the surface temperature history even when the data are affected by noise and errors. The tests show that it is possible to reconstruct the long term changes in ground temperature during the past 300 years; the resolution decreases with time, in particular if noise and errors must be filtered. Temperature logs, obtained in eastern Canada, and not suspected of being affected by non-climatic factors, have been inverted. The analysis confirms that eastern Canada has experienced warming by 1 to 2°C over the past 100–200 years. The relationship between air and ground temperatures has been examined. In eastern Canada ground temperature follows air temperature closely in summer but stays well above air temperature in winter. The number of days with snow on the ground correlates with the difference between annual mean ground and air temperature.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate-Program  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号