首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
1985~1990年的TOGA(热带海洋全球大气)计划,在热带西太平洋(123~165°E,10°N~6°S)进行了综合性多学科的联合调查。本文利用“中-美热带西太平洋联合调查”资料,对热带西太平洋上层水体的叶绿素α和亚硝酸盐的垂直分布进行研究。研究结果表明调查海域上层水体普遍存在叶绿素α最大值(SCM)和第一亚硝酸盐最大值(PNM);它们出现的深度分别在50~150m和75~175m之间,该深度与密度跃层及营养盐跃层密切相关。本文也从分析热带西太平洋上层水体温、盐及生态结构出发,探讨了热带西太平洋SCM和PNM的形成机理。  相似文献   

2.
樊安德 《海洋学报》1987,9(6):766-773
在1984-1985年4个不同季节的航次期间,春、夏季在东海陆架近岸区观测到了第一亚硝酸盐最大值(Primary Nitrite Maximum——PNM)现象,其位置与生物(浮游植物)、物理(光)和化学(硝酸盐、铵)参数相关.在两个航次各20多份分了层的水体垂直分布图中,有的站铵浓度低于0.1μg at./1仪器检出限,PNM位于水深10-40m深度范围[光照度为3-25%表层光合作用有效幅照度(Photosynthetically Available Radiation——PAR)],因此,硝酸盐是仅有的有利于亚硝酸盐形成的氮源;有的站铵显示了紧靠PNM上方有较大值的垂直分布图形,这种PNM位于10-70m深度范围(光照度低于3%表层PAR),铵的氧化作用可能是观测到的亚硝酸盐的来源.文章对以硝酸盐为亚硝酸盐形成氮源的生物活化机制进行了探讨.  相似文献   

3.
南黄海冷水域西部溶解氧垂直分布最大值现象的成因分析   总被引:1,自引:2,他引:1  
重点分析了南黄海冷水域西部溶解氧(DO)垂直分布中的最大值现象,并对DO浓度与主要环境因子的相关性进行了研究.结果表明:DO垂直分布最大值现象是调查海域DO分布的显著特征,且与SCM现象相伴生;DO垂直分布的最大值深度和量值具有较为明显的区域差异;温、盐是DO最大值层以上水体中氧含量的主要控制因素;一定强度的温跃层形成之后,DO最大值层出现在跃层的下界附近,且其氧含量受控于跃层厚度和生物化学作用,并与跃层厚度呈正相关;底层较低的DO含量是底层水及沉积物中有机物分解耗氧的结果.同时,还成功解释了DO最大值处与次表层叶绿素最大值层位置不吻合且量值不相关的原因,并提出了"DO净积累效应"的观点,不仅从时间跨度以及动态的角度上对DO最大值的形成机制进行了分析,而且从理论上探讨了DO最大值层氧含量(或来源)的构成,指出自DO最大值层开始产生至观测之时该层之下、真光层以内水体中的生物化学作用(或Chl-a总产出)才与氧最大值密切相关.总体来看,水体层化和生物化学作用明显影响着夏季南黄海冷水域西部DO的垂直分布.  相似文献   

4.
海洋次表层叶绿素最大值的分布和形成机制研究   总被引:5,自引:1,他引:5  
全球海洋生物剖面存在许多显著的共性,次表层叶绿素最大值(Subsurface Chlorophyll Maximum,SCM)就是其中之一。SCM一般出现在浮游植物水华期间稳定海洋水体的近表层或真光层底部附近,此特征最早是由Yentsch[1]描述。他指出,在印度洋相对稳定的水体结构中,物理与生物的耦合作用  相似文献   

5.
热带印度洋上层水温的年循环特征   总被引:1,自引:0,他引:1  
通过分析多年气候月平均的Levitus水温资料,结合多年气候月平均海表面风场资料以及观测的热带印度洋上层海流的分布状况,探讨热带印度洋上层水温的时空分布特征,剖析了热带印度洋混合层深度及印度洋暖水的季节变化规律。分析表明:热带印度洋的海表面温度低值区始终位于大洋的南部,而高值区呈现明显的季节变化,冬季位于赤道附近,在夏季则处于大洋的东北部;在热带印度洋的中西部、赤道偏南海域的次表层终年存在一冷心结构;热带印度洋表面风场的季节变化是影响该海域混合层深度季节性变化的主要因素;印度洋暖水在冬、春季范围较大,与西太平洋暖池相连,而在夏、秋季范围较小,并与西太平洋暖池分开。  相似文献   

6.
本文利用2010—2019年东印度洋海洋学综合科学考察基金委共享航次数据、Argo(array for real-time geostrophic oceanography)和简单海洋再分析数据(simple ocean data assimilation,SODA),研究了赤道东印度洋次表层高盐水(subsurface high salinity water,SHSW)的年际变化,并探讨了其形成机制。仅限于春季的观测资料显示,来自阿拉伯海的高盐水位于东印度洋赤道断面次表层70~130m深度处,且具有显著的年际变化。基于月平均SODA资料的研究结果表明,不同时期SHSW盐度异常的变化趋势存在显著差异,2010—2015年趋势比较稳定,而2016—2019年则呈现出显著的上升趋势。通过对SHSW的回归分析表明,风场和次表层纬向流是控制该高盐水年际变化的主要因子。进一步的分析表明,赤道印度洋的东风异常导致水体向西堆积,产生东向压强梯度力,进而激发出次表层异常东向流,最终引起SHSW盐度异常升高。此动力关联在印度洋偶极子事件中尤为显著,这进一步反映了赤道东印度洋SHSW的年际变化受到印度洋偶...  相似文献   

7.
王腾  高磊  李道季 《海洋与湖沼》2016,47(5):886-897
台风是影响东海最严重的自然灾害之一。本文在现场观测基础上,结合遥感与模型数据,研究了连续两个台风过境对东海北部水环境及初级生产力的影响。研究结果表明:连续两个台风过境情况下,虽然前面台风有助于后续台风对海洋上层进行垂直混合作用,但它对后续台风过后海洋表层温度(SST)的降低以及初级生产力的增加却起到了削弱作用;除了加强垂向混合过程,台风也可以改变海洋上层的平流输运过程,受此影响,部分海区上层温度、盐度以及叶绿素在台风后重新分布;台风对海区次表层叶绿素浓度的改变程度明显高于表层,某些站位次表层叶绿素最大值(SCM)在台风刚过后被破坏,一段时间后SCM又重新出现,而且层内叶绿素浓度远高于台风前水平。  相似文献   

8.
叶绿素a浓度是估算海洋初级生产力的一个重要参数, 在海洋中垂向分布极不均匀, 其分布特征及影响机制是海洋生态学研究的重要基础问题。利用海洋光学观测的高垂向分辨率剖面数据, 系统地研究叶绿素a浓度垂向剖面的时空分布特征及其与海洋动力环境要素的关系, 可为揭示南海典型动力过程的生态环境效应提供重要基础。文章基于2015年夏季黑潮调查航次实测生物光学剖面, 利用676nm处吸收基线高度(aLH(676))与叶绿素a浓度(Chla)之间的关系, 建立了具有较高反演精度的叶绿素a浓度反演算法(Chla=49.96×(aLH(676))0.9339, 决定系数R2=0.87和均方根误差RMSE=0.16mg·m-3); 进一步结合观测期间物理过程, 揭示了叶绿素垂向分布对不同水动力过程的响应特征。研究结果表明, 近岸区域表层叶绿素a浓度变化范围为0.42~1.57mg·m-3, 随着水深增加, 叶绿素a浓度逐渐降低, 在沿岸上升流影响区域, 叶绿素a浓度明显增高, 垂向上相对趋于均一分布; 次表层叶绿素极大值(Subsurface Chlorophyll Maximum, SCM)现象在外海显著存在, 受中尺度过程影响明显, SCM深度在34m到100m之间变化, 在吕宋岛以西海域, 黑潮入侵加速了上层水体的混合, SCM所在水层被显著抬升至34m左右; 在冷涡影响区域, 次表层叶绿素极大值层被抬升, 涡旋中心比涡旋边缘抬升更为显著, 同时SCM的厚度增大。  相似文献   

9.
于2008年2月(冬季)、5月(春季)、8月(夏季)和11月(秋季)对流沙湾进行了4次采样调查,研究分析了流沙湾海水中总有机碳的空间分布和季节变化特征,并探讨了TOC与温度、盐度、pH、叶绿素a和底泥TOC之间的相关关系.结果发现,在2008年度流沙湾海水TOC的浓度为0.992 ~ 5.437 mg/L,平均值为2.414 mg/L,呈现春季>夏季>秋季>冬季的变化趋势,整个流沙湾海域海水TOC的平面分布相对比较均匀,表层稍大于底层.在内外湾分布上,冬、夏季节内湾TOC大于外湾,而春、秋季节外湾大于内湾;在垂直分布上,冬、夏和秋季表层大于底层,而春季底层大于表层;在地域分布上,冬、夏季节从流沙镇一侧海域到西联镇一侧海域逐渐减小,秋季变化趋势相反,春季时,两侧无明显变化.相关关系的分析结果表明,流沙湾海水TOC与温度、pH呈现出正相关关系,与温度的相关关系较为显著,与盐度则呈现不显著的负相关关系;与叶绿素a存在一定的相关关系,在叶绿素a浓度小于2.6μg/L,两者呈现正相关关系,而在叶绿素a浓度大于2.6 μg/L,两者呈现负相关关系;与底泥TOC呈现出了一定的正相关关系.  相似文献   

10.
采用1950年1月至1999年12月SODA海洋上层温度的月平均资料及同期的NCEP月平均风场资料,研究了印度洋表层和次表层热含量年际变化的特征以及与海面风场的关系.通过对热带印度洋海区上层热含量异常的经验正交函数分解,发现表层与次表层热含量主要模态的分布不同,表层热含量主要模态的时、空分布与前人对海表温度(SST)异常的研究结果基本一致,第一模的空间分布为全海盆一致型,春季(夏季) 表层热含量第一模的时间序列与前一年的秋季(冬季)Ni(n)o3区SST异常的时间序列有密切的关系;第二模的空间分布为东西偶极子型,并在秋季与4-8个月前的Ni(n)o3区SST异常有密切的关系;次表层热含量异常第一模为东西偶极子型,冬季热带太平洋异常通过影响印度洋的海面风导致的海洋动力调整,进而影响印度洋次年春季次表层热含量东西偶极子型异常; 次表层热含量异常第二模在10°S以北是全海盆一致型,但却与Ni(n)o3区SST异常在统计学上无关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号