首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
破碎波高是珊瑚礁地形上波浪演化的重要参数之一,对工程安全和海岸变形具有重要影响。通过二维波浪水槽,对珊瑚礁地形上破碎波高进行试验研究,分析破碎波高随波陡、礁坪水深以及礁前斜坡坡度的变化。研究表明,相对破碎波高随相对礁坪水深的增大而增大,随入射波陡的增大而减小,但礁前斜坡坡度对相对破碎波高的影响并不明显。通过引入相对礁坪水深,将经典的破碎波高计算公式拓展至珊瑚礁地形上破碎波高的计算。该公式计算值与前人的试验值进行对比验证,吻合较好。研究成果可为工程实践和数值模拟提供参考与借鉴。  相似文献   

2.
Existing, easily applicable methods to calculate the depth and height of breaking waves are hampered by two obstacles. First, the breaker depth is usually required to compute its height, and vice versa. Second, the equations take into account either the deepwater height to wavelength ratio or the sea floor slope, but not both. A simple iterative procedure is therefore proposed which incorporates both elements. For fully developed waves breaking over a nearly horizontal bottom, the breaker height and depth are also direct functions of the deepwater wavelength.  相似文献   

3.
南沙群岛珊瑚岛礁众多,大多数岛礁具有向海坡陡峭、外礁坪比较平缓的特征。将南沙群岛岛礁的迎浪向地形概化为陡坡和缓坡组成的双斜坡,采用FUNWAVE-TVD模式数值模拟概化地形上的波浪,根据模拟的破碎波高分析其拍岸浪特征。对拍岸浪数值模拟结果进行比较分析,向海坡的坡度对拍岸浪影响不大,外礁坪上拍岸浪高随地形坡度增大而略有增大;向海坡和外礁坪交界位置(即坡折点)水深对拍岸浪有比较明显的影响,拍岸浪高随坡折点水深增大而减小;拍岸浪高随入射波高和波周期增大而增大。利用大量的拍岸浪数值模拟数据对国内外5种统计模型进行检验,并且基于拍岸浪数值模拟数据建立了3种南沙群岛岛礁拍岸浪统计模型,计算结果显示这些模型适用性较好。  相似文献   

4.
Winyu Rattanapitikon   《Ocean Engineering》2007,34(11-12):1592-1601
This study is undertaken to recalibrate eight existing energy dissipation models and find out the suitable models, which can be used to compute Hrms for a wide range of experimental conditions. The examination shows that the coefficients in the existing models are not the optimal values for a wide range of experimental conditions. Using the new calibrated coefficients, all existing models can be used for computing Hrms and the model of Battjes, J.A., Stive, M.J.F. [1985. Calibration and verification of a dissipation model for random breaking waves. Journal of Geophysical Research 90 (C5), 9159–9167] gives the best predictions. The existing models are also modified by changing the breaker height formulas in the dissipation models. The accuracy of most existing models is improved significantly by using the suitable breaker height formula.  相似文献   

5.
Large Eddy Simulation for Plunge Breaker and Sediment Suspension   总被引:1,自引:1,他引:1  
BAI  Yuchuan 《中国海洋工程》2002,16(2):151-164
Breaking waves are a powerful agent for generating turbulence that plays an important role in many fluid dynamical processes, particularly in the mixing of materials. Breaking waves can dislodge sediment and throw it into suspension, which will then be carried by wave-induced steady current and tidal flow. In order to investigate sediment suspension by breaking waves, a numerical model based on large-eddy-simulation (LES) is developed. This numerical model can be used to simulate wave breaking and sediment suspension. The model consists of a free-surface model using the surface marker method combined with a two-dimensional model that solves the flow equations. The turbulence and the turbulent diffusion are described by a large-eddy-simulation (LES) method where the large turbulence features are simulated by solving the flow equations, and a subgrid model represents the small-scale turbulence that is not resolved by the flow model. A dynamic eddy viscosity subgrid scale stress model has been used for the  相似文献   

6.
- A large amount of experimental analysis and systematical theoretical calculation has been done by the authors to solve the problem of wave transformation and breaking, considering the effect of both current and topography, but only the wave energy loss due to spilling breaker in the surf zone has been discussed in this paper. Based on test result analysis and calculation with the Stream Function Wave Theory, the wave velocity field at breaking points has been obtained, and it is used to calculate the wave heights after breaking by the VOF (Volume of Fluid) method, in which the governing equations are continuity equation and Navier-Stokes Equation for imcompressible fluids. In the present paper, the improved VOF technique is used to calculate the wave heights of stable regular waves after breaking. Results fit the test data well, which shows that the VOF method is suitable to numerical simulation of regular waves after breaking. Besides, the breaker coefficient B of regular waves in the bore model is a  相似文献   

7.
This study investigates experimentally the breaking wave height of multi-directional random waves passing over an impermeable submerged breakwater. Experiments have been conducted in a three-dimensional wave basin equipped with a multi-directional random wave generator. A special type of wave gauge has been newly devised to record the water surface elevations in the breaker zone as accurately as possible. The records are analyzed to estimate the location and limit of wave breaking. Comparisons have also been made with the results of regular waves. The influence of the incident wave conditions on the breaking wave height normalized by the breakwater dimensions has been investigated. Empirical formulae have been presented to estimate the breaking limit of multi-directional random waves based on the experimental records. The formulae have been tested and found to work well not only for multi-directional random waves, but for regular waves as well.  相似文献   

8.
The paper considers the application of two numerical models to simulate the evolution of steep breaking waves. The first one is a Lagrangian wave model based on equations of motion of an inviscid fluid in Lagrangian coordinates. A method for treating spilling breaking is introduced and includes dissipative suppression of the breaker and correction of crest shape to improve the post breaking behaviour. The model is used to create a Lagrangian numerical wave tank, to reproduce experimental results of wave group evolution. The same set of experiments is modelled using a novel VoF numerical wave tank created using OpenFOAM. Lagrangian numerical results are validated against experiments and VoF computations and good agreement is demonstrated. Differences are observed only for a small region around the breaking crest.  相似文献   

9.
The experimental results have so far shown that when a wave breaks on a vertical wall with an almost vertical front face at the instant of impact that is called perfect breaking or perfect impact, the greatest impact forces are produced on the wall. Therefore, the configuration of breaking waves is important in the design considerations of coastal structures. The present study is concerned with determining the geometrical properties of oscillatory waves that break perfectly on the vertical wall of composite-type breakwaters. The laboratory tests for perfect breaking waves on composite breakwaters are conducted with base slopes of 1/2, 1/4 and 1/6, and with berm widths of 0.00, 0.10, 0.20, 0.30 and 0.40 m. The shape and the dimensions of waves at the instant of perfect breaking on the wall are determined using a video camera. The experimental results for the geometrical properties of the breakers are presented non-dimensionally. Within the range of present experimental conditions, it is found that the dimensionless breaker crest height, hb/dw, and dimensionless breaker height, Hb/dw, decrease; and, dimensionless breaker depth, dw/H0, increases with increasing relative berm width, B/D. The breaker height index, Hb/H0, is almost unaffected by B/D. The deep-water wave steepness and the base slope of the breakwater do not seem to influence the geometrical properties of the breakers at wall systematically.  相似文献   

10.
Based on the Hamiltonian formulation of water waves, using Hamiltonian consistent modelling methods, we derive higher order Hamiltonian equations by Taylor expansions of the potential and the vertical velocity around the still water level. The polynomial expansion in wave height is mixed with pseudo-differential operators that preserve the exact dispersion relation. The consistent approximate equations have inherited the Hamiltonian structure and give exact conservation of the approximate energy. In order to deal with breaking waves, we extend the eddy-viscosity model of Kennedy et al. (2000) to be applicable for fully dispersive equations. As breaking trigger mechanism we use a kinematic criterion based on the quotient of horizontal fluid velocity at the crest and the crest speed. The performance is illustrated by comparing simulations with experimental data for an irregular breaking wave with a peak period of 12 s above deep water and for a bathymetry induced periodic wave plunging breaker over a trapezoidal bar. The comparisons show that the higher order models perform quite well; the extension with the breaking wave mechanism improves the simulations significantly.  相似文献   

11.
—An experimental study of regular wave and irregular wave breaking is performed on a gentleslope of 1:200.In the experiment,asymmetry of wave profile is analyzed to determine its effect on wavebreaker indices and to explain the difference between Goda and Nelson about the breaker indices of regu-lar waves on very mild slopes.The study shows that the breaker index of irregular waves is under less influ-ence of bottom slope i,relative water depth d/L_0 and the asymmetry of wave profile than that of regularwaves.The breaker index of regular waves from Goda may be used in the case of irregular waves, whilethe coefficient A should be 0.15.The ratio of irregular wavelength to the length calculated by linear wavetheory is 0.74.Analysis is also made on the waveheight damping coefficient of regular waves after break-ing and on the breaking probability of large irregular waves.  相似文献   

12.
Breaking wave loads on coastal structures depend primarily on the type of wave breaking at the instant of impact. When a wave breaks on a vertical wall with an almost vertical front face called the “perfect breaking”, the greatest impact forces are produced. The correct prediction of impact forces from perfect breaking of waves on seawalls and breakwaters is closely dependent on the accurate determination of their configurations at breaking. The present study is concerned with the determination of the geometrical properties of perfect breaking waves on composite-type breakwaters by employing artificial neural networks. Using a set of laboratory data, the breaker crest height, hb, breaker height, Hb, and water depth in front of the wall, dw, from perfect breaking of waves on composite breakwaters are predicted using the artificial neural network technique and the results are compared with those obtained from linear and multi-linear regression models. The comparisons of the predicted results from the present models with measured data show that the hb, Hb and dw values, which represent the geometry of waves breaking directly on composite breakwaters, can be predicted more accurately by artificial neural networks compared to linear and multi-linear regressions.  相似文献   

13.
Numerical simulations using a full-nonlinear BIM (Boundary Integral Method) potential-theory wave model are carried out to study the internal velocity and acceleration fields of an solitary wave overturning on a reef with vertical face (submerged breakwater) and their relation to breaker type. The simulations make it clear that the jet size normalized by the incident wave height is uniquely governed by the crown height of the reef, while the jet shape is similar and independent of the size. Further, they reveal that the overall internal kinematics of overturning waves is clearly related to the jet size. As the jet size increases and the breaker type changes from spilling to plunging, the kinematics thus become increasingly different from those of steady waves. Water particles with the greatest velocities or accelerations within the wave converge towards the jet. After the breaking, both of the velocities and accelerations almost simultaneously reach extreme values near locations beneath the jet. Some of the extreme values are closely related to the breaker type and can be uniquely determined by substituting the breaker type index into the regression equations suggested here.  相似文献   

14.
Many investigations about the direct measurements of velocities to clarify the internal mechanism of the breaker have been carried out as a result of recent progress in the measuring techniques.This research attempts to clarify the breaking wave transformation system on a slope by an experiment and numerical analysis. In an experiment, the velocities in the surf zone were measured directly using an electromagnetic current meter, and the space distribution characteristic of the vorticity ω = (∂u/∂y − ∂u/∂x) and the skewness γ = (∂u/∂y + ∂u/∂x) were examined. Also, occurrence situations of the vortices at the time of water mass inrush were measured by video tape recorder (VTR) image processing. However, because the breaker is a violent phenomenon that is entrained with plentiful bubbles, the extent to which we can clarify breaker transformation in experiments is limited. Numerical simulations are substituted for experiments as a method to clarify breaker transformation.In numerical analysis, finite amplitude wave analysis based on the potential theory (non-viscous fluid) is possible before wave breaking; however, the analysis must take into account the viscous fluid after breaking. So, we use the Reynolds equations to develop a numerical simulation system of the breaker transformation on a sloping bottom. The numerical energy dissipation model of the breaker was compared to the experimental results, and a modified Simplified Marker and Cell (SMAC) method is presented. The internal characteristics of the breaker transformation are described using application examples.  相似文献   

15.
Experimental Study on the Bed Shear Stress Under Breaking Waves   总被引:1,自引:0,他引:1  
The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. The sensors were calibrated before application, and then a wave flume experiment was conducted to study the bed shear stress for the case of regular waves spilling and plunging on a 1:15 smooth PVC slope. The experiment shows that the sensor is feasible for the measurement of the bed shear stress under breaking waves. For regular incident waves, the bed shear stress is mainly periodic in both outside and inside the breaking point. The fluctuations of the bed shear stress increase significantly after waves breaking due to the turbulence and vortexes generated by breaking waves. For plunging breaker, the extreme value of the mean maximum bed shear stress appears after the plunging point, and the more violent the wave breaks, the more dramatic increase of the maximum bed shear stress will occur. For spilling breaker, the increase of the maximum bed shear stress along the slope is gradual compared with the plunging breaker. At last, an empirical equation about the relationship between the maximum bed shear stress and the surf similarity parameter is given, which can be used to estimate the maximum bed shear stress under breaking waves in practice.  相似文献   

16.
A probabilistic model ( -model) was developed to describe the propagation and transformation of individual waves (wave by wave approach). The individual waves shoal until an empirical criterion for breaking is satisfied. Wave height decay after breaking is modelled by using an energy dissipation method. Wave-induced set-up and set-down and breaking-associated longshore currents are also modelled. Laboratory and field data were used to calibrate and verify the model. The model was calibrated by adjusting the wave breaking coefficient (as a function of local wave steepness and bottom slope) to obtain optimum agreement between measured and computed wave height. Four tests carried out in the large Delta flume of Delft Hydraulics were considered. Generally, the measured H1/3-wave heights are reasonably well represented by the model in all zones from deep water to the shallow surf zone. The fraction of breaking waves was reasonably well represented by the model in the upsloping zones of the bottom profile. Verification of the model results with respect to wave-induced longshore current velocities was not extensive, because of a lack of data. In case of a barred profile the measured longshore velocities showed a relatively uniform distribution in the (trough) zone between the bar crest and the shoreline, which could to some extent be modelled by including space-averaging of the radiation force gradient, horizontal mixing and longshore water surface gradients related to variations in set-up. In case of a monotonically upsloping profile the cross-shore distribution of the longshore current velocities is reasonably well represented.  相似文献   

17.
基于一系列实验室风浪破碎实验,讨论破碎波群间隔的统计分布。实验时风速分别设定在6~9 m/s间几个不同的风速水平,破碎波群间隔定义为两个相继发生破碎的波群中破碎首发时刻之间的时间间隔,破碎依据波面信号和实验者同步记录的破碎标记信号判别,分布拟合检验采用Kolmogorov-Smirnov检验。数据分析结果表明:1)所有实验信号的破碎波群间隔都服从Gamma分布;2)低风速情形的破碎波群间隔大多服从指数分布——Gamma分布的一种特殊情形;3)相同实验条件下的破碎波群间隔具有相同的分布。这意味着破碎波群的发生可以视为一种更新过程。  相似文献   

18.
—Based on theoretical analysis.numerical calculation.and experimental study,this paper dis-cusses breaker indices of irregular waves.transformation of wave spectrum.characteristics and computa-tion of breaking waves.as well as the critical beach slope under which waves will not break.Computed re-sults are in good agreement with laboratory physical model test data and ocean wave field measurements.  相似文献   

19.
Energy dissipation in waves breaking on gentle slopes   总被引:1,自引:0,他引:1  
The flow field of waves breaking on a gently sloping beach is shown to closely resemble that of hydraulic jumps. This supports the use of the hydraulic jump formulation for the breaking wave energy dissipation. A correction to this formulation, which takes into account the effects of turbulent flow, is found to explain the observed discrepancies between the classical theoretical result and the experiments satisfactorily. These findings are used to propose a simple, semi-empirical model for the wave height decay which includes the set-up. The model is generalized to a wider range of wave conditions by analyzing published data.  相似文献   

20.
A semi-implicit shallow-water and Boussinesq model has been developed to account for random wave breaking, impact and overtopping of steep sea walls including recurves. At a given time breaking is said to occur if the wave height to water depth ratio for each individual wave exceeds a critical value of 0.6 and the Boussinesq terms are simply switched off. The example is presented of waves breaking over an offshore reef and then ceasing to break as they propagate inshore into deeper water and finally break as they run up a slope. This is not possible with the conventional criterion of a single onset of breaking based on rate of change of surface elevation which was also found to be less effective generally. The runup distribution on the slope inshore of the reef was well predicted. The model is tested against field data for overtopping available for Anchorsholme, Blackpool and corresponding 1:15 scale wave flume tests. Reflection of breaking waves impacting a steep sea wall is represented as a partial reversal of momentum flux with an empirically defined coefficient. Offshore to nearshore significant wave height variation was reasonably predicted although nearshore model spectra showed distinct differences from the experiments. The breaking wave shape described by a shape parameter was also not well represented as might be expected for such a simple model. Overtopping agreement between model, field and flume was generally good although repeatability of two nominally identical flume experiments was only within 25%. Different distributions of random phase between spectral components can cause overall overtopping rates to differ by up to a factor of two. Predictions of mean discharge by EurOtop methods were within a factor of two of experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号