首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
The Subei Shoal is a special coastal area with complex physical oceanographic properties in the Yellow Sea. In the present study, the distribution of phytoplankton and its correlation with environmental factors were studied during spring and summer of 2012 in the Subei Shoal of the Yellow Sea. Phytoplankton species composition and abundance data were accomplished by Uterm?hl method. Diatoms represented the greatest cellular abundance during the study period. In spring, the phytoplankton cell abundance ranged from 1.59×10~3 to 269.78×10~3 cell/L with an average of 41.80×10~3 cell/L, and Skeletonema sp. and Paralia sulcata was the most dominant species. In summer, the average phytoplankton cell abundance was 72.59×10~3 cell/L with the range of 1.78×10~3 to 574.96×10~3 cell/L, and the main dominant species was Pseudo-nitzschia pungens, Skeletonema sp., Dactyliosolen fragilissima and Chaetoceros curvisetus. The results of a redundancy analysis(RDA) showed that turbidity,temperature, salinity, pH, dissolved oxygen(DO), the ratio of dissolved inorganic nitrogen to silicate and SiO_4-Si(DIN/SiO_4-Si) were the most important environmental factors controlling phytoplankton assemblages in spring or summer in the Subei Shoal of the Yellow Sea.  相似文献   

2.
夏秋季南黄海浮游植物群落及其调控因子   总被引:1,自引:1,他引:0  
The phytoplankton water samples were collected in two multidisciplinary investigations which were carried out during summer(June) and autumn(November to December) of 2011. Phytoplankton species composition and abundance data were accomplished by Uterm?hl method. The phytoplankton community was dominated by diatoms and dinoflagellates in the southern Yellow Sea(YS) in summer and autumn. In summer, Paralia sulcata and Prorocentrum dentatum were the predominated species, the cell abundance ranged from 0.074 to 107.733×103 cells/L with an average of 9.057×103 cells/L. Two phytoplankton high abundance appeared in northwest part of the survey area and the Changjiang River Estuary, respectively. In autumn, Par. sulcata became the predominant species, and the phytoplankton cell abundance ranged from 1.035×103 to 8.985×103 cells/L, the average was 3.263×103 cells/L. The phytoplankton abundance in surface layer presented the homogeneous distributions. Canonical Correspondence Analysis(CCA) method was applied for discovering the relationship between environmental factors and the common found phytoplankton species. The responses of phytoplankton to nutrients were varied between summer and autumn. The abundance of most predominant species, Par. sulcata was strongly correlated to temperature and salinity in autumn, but not the case in summer.  相似文献   

3.
The living coccolithophores(LCs) are an important class of calcified taxa of phytoplankton functional groups,and major producers of marine biogenic inorganic carbon,playing an important role in the marine carbon cycle.In this study,we report the two-demensional abundance,composition of LCs and its correlation with the environmental parameters in spring and autumn,in order to understand the ecological role of LCs in the Yellow Sea and the Bohai Sea.In spring,totally 9 taxa belonging to coccolithophyceae were identified using a polarized microscope at the 1 000× magnification.The dominant species were Emiliania huxleyi,Gephyrocapsa oceanica,Helicosphaera carteri,and Calcidiscus leptoporus.The abundance of coccosphores and coccoliths ranged 0–7.72cells/m L,and 0–216.09 coccoliths/m L,with the average values of 0.21 cells/m L,and 11.36 coccoliths/m L,respectively.The Emiliania huxleyi distribution was similar to Gephyrocapsa oceanica.The highest abundance of coccoliths was observed in the east of Shandong Peninsula in northern Yellow Sea,whereas Helicosphaera carteri distributed more widely.Emiliania huxleyi and Gephyrocapsa oceanica were the two predominant species in LCs with higher abundances.The distribution of LCs was similar to that of coccoliths.In autumn,14 taxa belonging to coccolithophyceae were identified with dominant species as Emiliania huxleyi,Gephyrocapsa oceanica,Helicosphaera carteri,Calcidiscus leptoporus and Oolithotus fragilis.The abundance of coccosphores and coccoliths ranged 0–24.69 cells/m L,and 0–507.15 coccoliths/m L,with the average values of 1.47 cells/m L,and55.89 coccoliths/m L,respectively.The highest abundance of coccoliths was located in Qingdao coastal waters and south of the survey area.The distribution of LCs was similar to the coccoliths; in addition,LCs presented large abundance in the east of the central Yellow Sea area.  相似文献   

4.
Autumn living coccolithophores in the Yellow Sea and the East China Sea   总被引:1,自引:0,他引:1  
An investigation was carried out on living coccolithophores(LCs) distribution in the Yellow Sea and the East China Sea from October 17 to November 24, 2011. A total of 223 samples from different depths were collected at 48 stations. Totally 18 taxa belonging to coccolithophyceae were identified using a polarized microscope at the 1 000× magnification. The maximum species abundance was found at the outside of Transect P. The dominated species were Gephyrocapsa oceanica, Emiliania huxleyi, Helicosphaera carteri, and Algirosphaera robusta. The abundance of coccoliths and cells ranged 0–2 965.73 coccoliths/mL, and 0–119.16 cells/mL, with the average values of 471.00 coccoliths/mL and 23.42 cells/mL, respectively. The LCs in surface layer were mainly observed on the coastal belt and middle part of the survey area. The comparison among Transects A, F, P and E indicated lower species diversity and less abundance in the Yellow Sea than those of the East China Sea. The highest abundance of LCs was found in transect F and P. The coccolith abundance increased slightly from surface to bottom in the water column, but the highest value of the cell abundance was observed in the depth of 10–30 m. Temperature, depth and nutrient concentration were suggested as the major environmental factors controlling the distribution and species composition of LCs in the studying area based on canonical correspondence analysis(CCA).  相似文献   

5.
影响北欧海和楚科奇海夏季细菌丰度和生产力的因素   总被引:3,自引:0,他引:3  
Abundance and production of bacterioplankton were measured in the Nordic seas and Chukchi Sea during the5 th Chinese Arctic Research Expedition in summer 2012.The results showed that average bacterial abundances ranged from 3.31×10~(11) cells/m~3 to 2.25× 10~(11)cells/m~3,and average bacterial productions(calculated by carbon)were 0.46 mg/(m~3·d) and 0.54 mg/(m~3·d) in the Nordic seas and Chukchi Sea,respectively.T-test result showed that bacterial abundances were significantly different between the Nordic seas and Chukchi Sea,however,no significant difference was observed regarding bacterial productions.Based on the slope of lg bacterial biomass versus lg bacterial production,bacterial communities in the Nordic seas and Chukchi Sea were moderately dominated by bottom-up control.Both Pearson correlation analysis and multivariable linear regression indicated that temperature had significant positive correlation with bacterial abundance in the Chukchi Sea,while no correlations with productions in both areas.Meanwhile,Chl a had positive correlations with both bacterial abundance and production in these two regions.As the temperature and Chl a keep changing in the future,we suggest that both bacterial abundance and production been hanced in the Chukchi Sea but weaken in the Nordic seas,though the enhancement will not be dramatic as a result of higher pressure of predation and viral lysis.  相似文献   

6.
黑潮入侵对南海东北部浮游植物群落结构的影响   总被引:1,自引:0,他引:1  
To further understand the effect of Kuroshio intrusion on phytoplankton community structure in the northeastern South China Sea(NSCS, 14°–23°N, 114°–124°E), one targeted cruise was carried out from July to August, 2017. A total of 79 genera and 287 species were identified, mainly including Bacillariophyta(129 species), Pyrrophyta(150 species), Cyanophyta(4 species), Chrysophyta(3 species) and Haptophyta(1 species). The average abundance of phytoplankton was 2.14×10~3 cells/L, and Cyanobacterium was dominant species accounting for 86.84% of total phytoplankton abundance. The abundance and distribution of dominant Cyanobacterium were obviously various along the flow of the Kuroshio, indicating the Cyanobacterium was profoundly influenced by the physical process of the Kuroshio. Therefore, Cyanobacterium could be used to indicate the influence of Kuroshio intrusion. In addition, the key controlling factors of the phytoplankton community were nitrogen, silicate, phosphate and temperature, according to Canonical Correspondence Analysis. However, the variability of these chemical parameters in the study water was similarly induced by the physical process of circulations. Based on the cluster analysis, the similarity of phytoplankton community is surprisingly divided by the regional influence of the Kuroshio intrusion, which indicated Kuroshio intrusion regulates phytoplankton community in the NSCS.  相似文献   

7.
春、秋季南黄海浮游纤毛虫丰度及生物量的分布差异   总被引:1,自引:0,他引:1  
Seasonal variation of marine plankton spatial distribution is important in understanding the biological processes in the ocean.In this study,we studied spatial distribution of planktonic ciliate abundance and biomass in the central deep area(station depth greater than 60 m) and the coastal shallow area(station depth less than 60 m) of the southern Yellow Sea(32°–36.5°N,121°–125°E) in spring(April) and autumn(October–November) of 2006.Our results showed that both ciliate abundance and biomass in the surface waters were higher in spring((1 490±2 336)ind./L;(4.11±7.81) μg/L) than in autumn((972±823) ind./L;(1.11±1.18) μg/L,calculated by carbon).Ciliate abundance and biomass in the surface waters of the coastal shallow area were similar in spring and autumn.However,in the central deep area,those values were much higher in spring((1 878±2 893) ind./L;(5.99±10.10)μg/L) than in autumn((738±373) ind./L;(0.74±0.76) μg/L).High values of ciliate abundance and biomass occurred in the central deep area in spring and in the coastal shallow area in autumn.Mixotrophic ciliate Laboea strobila was abundant in the central deep area in spring,when a phytoplankton bloom occurred.However,in autumn,L.strobila was abundant in the coastal shallow area.Boreal tintinnid Ptychocyli obtusa was found in spring.Both L.strobila and P.obtusa were concentrated in the surface waters when their abundance was more than 1 000 ind./L.Peaks of these species were in the subsurface waters when their abundance was less than 400 ind./L.This study showed that both high abundance and biomass of ciliates occurred in different areas in southern Yellow Sea seasonally.  相似文献   

8.
The West Pacific Ocean is considered as the provenance center of global marine life and has the highest species diversity of numerous marine taxa. The phytoplankton, as the primary producer at the base of the food chain,effects on climate change, fish resources as well as the entire ecosystem. However, there are few large-scale surveys covering several currents with different hydrographic characteristics. This study aimed to explore the relationships between the spatio-temporal variation in phytoplankton community structure and different water masses. A total of 630 water samples and 90 net samples of phytoplankton were collected at 45 stations in the Northwest Pacific Ocean(21.0°–42.0°N, 118.0°–156.0°E) during spring and summer 2017. A total of 281 phytoplankton taxa(5 μm) belonging to 61 genera were identified in the study area. The distribution pattern of the phytoplankton community differed significantly both spatially and temporally. The average abundances of phytoplankton in spring and summer were 797.07×10~2 cells/L and 84.94×10~2 cells/L, respectively. Whether in spring or summer, the maximum abundance always appeared in the northern transition region affected by the Oyashio Current, where nutrients were abundant and diatoms dominated the phytoplankton community;whereas the phytoplankton abundance was very low in the oligotrophic Kuroshio region, and the proportion of dinoflagellates in total abundance increased significantly. The horizontal distribution of phytoplankton abundance increased from low to high latitudes, which was consistent with the trend of nutrient distributions, but contrary to that of water temperature and salinity. In the northern area affected by the Oyashio Current, the phytoplankton abundance was mainly concentrated in the upper 30 m of water column, while the maximum abundance often occurred at depths of 50–75 m in the south-central area affected by the Kuroshio Current.Pearson correlation and redundancy analysis(RDA) showed that phytoplankton abundance was significant negatively correlated with temperature and salinity, but positively correlated with nutrient concentration. The phytoplankton community structure was mainly determined by nutrient availability, especially the N:P ratio.  相似文献   

9.
Green tides caused by the unusual accumulation of high floating Ulva prolifera have occurred regularly in the Yellow Sea since 2007. The primary source of the Yellow Sea green tides is the attached algae on the Pyropia aquaculture rafts in the Subei Shoal. Ulva prolifera and Blidingia(Italic) sp. are the main species observed on Pyropia aquaculture rafts in the Subei Shoal. We found that U. prolifera has strong buoyancy and a rapid growth rate, which may explain why it is the dominant species of green tides that occur in the China's sea area of the Yellow Sea. The growth rate of floating U. prolifera was about 20%–31% d–1, which was much higher than Blidingia(Italic) sp. There were about 1.7 × 10~4 t of attached algae on the Pyropia aquaculture rafts in May 2012. We found that 39% of attached algae could float when the tide rose in the Subei Shoal, and U. prolifera accounted for 63% of the floating algae. Our analysis estimated that about 4 000 t of attached U. prolifera floated into the surrounding waters of the Subei Shoal during the recycling period of aquaculture rafts. These results suggest that the initial floating biomass of large-scale green tides in the Yellow Sea is determined by the U. prolifera biomass attached to Pyropia aquaculture rafts, further impacting the scale of the green tide.  相似文献   

10.
The study was conducted during two cruises of June–August 2006 (summer),and January–February 2007 (winter) in the Huanghai (Yellow) Sea and East China Sea.Spatial and temporal variations of zooplankton abundance,biomass and community structure and its relation to currents and water masses over the continental shelf were examined.A total of 584 zooplankton species/taxa and 28 planktonic larvae were identified during the two surveys.Copepods were the most abundant component among these identified groups.Zooplankton abundance and biomass fluctuated widely and showed distinct heterogeneity in the shelf waters.Five zooplankton assemblages were identified with hierarchical cluster analysis during this study,and they were Huanghai Sea Assemblage,Changjiang Estuary Assemblage,Coastal Assemblage,East China Sea Mixed-water Assemblage and East China Sea Offshore Assemblage.Seasonal changes of zooplankton community composition and its geographical distribution were detected,and the locations of the faunistic areas overlap quite well with water masses and current systems.So we suggest that the zooplankton community structure and its changes were determined by the water masses in the Huanghai Sea and East China Sea.The results of this research can provide fundamental information for the long-term monitoring of zooplankton ecology in the shelf of Huanghai Sea and East China Sea.  相似文献   

11.
It is shown that, in 2002–2005, the mass development of the coccolithofore Emiliania huxleyi on the Gelendzhik shelf occurred annually and in May–June its abundance reached 1.5 × 106 cells/l. In 2004–2005, the bloom of E. huxleyi was accompanied by a mass development of the diatom alga Chaetoceros subtilis var. abnormis f. simplex (0.6–0.9 × 106 cells/l); for the first time, it was registered as a dominating form of the Black Sea phytoplankton. Small flagellates and picoplankton algae played a noticeable role in the phytoplankton throughout the entire period of the studies. Meanwhile, in the early summer period, the bulk of the biomass consisted of coccolithophores (50–60%), while, in the late summer period, diatomaceous algae dominated (50–70%). Among the ecological factors that favor the coccolithophore development one may note the microstratification of the upper mixed layer at a high illumination level and high temperature in the surface waters (18–21°C). The terrigenous runoff during the rainy period had a negative effect on the E. huxleyi development, while storms dispersed the population over the upper mixed layer. The wind-induced near-shore upwelling stimulated the development of diatoms.  相似文献   

12.
Studies have been performed on a transect along 130°30′ E from the Lena River delta (71°60′ N) to the continental slope and adjacent deepwater area (78°22′ N) of the Laptev Sea in September 2015. The structure of phytoplankton communities has distinct latitudinal zoning. The southern part of the shelf (southward of 73°10′ N), the most desalinated by riverine discharge, houses a phytoplankton community with a biomass of 175–840 mg/m2, domination of freshwater Aulacoseira diatoms, and significant contribution of green algae (both in abundance and biomass). The northern border for the distribution range of the southern complex of phytoplankton species lies between the 8 and 18 psu isohalines (~73°10′ N). The continental slope and deepwater areas of the Laptev Sea (north of 77°30′ N), with a salinity of >27 psu in the upper mixed layer, are populated by the community prevalently composed of Chaetoceros and Rhizosolenia diatoms, very abundant in the Arctic, and dinoflagellates. The phytoplankton number in this area fall in the range of 430–1100 × 106 cell/m2, and the biomass, in the range of 3600 mg/m2. A moderate desalinating impact of the Lena River discharge is observed in the outer shelf area between 73°20′ and 77°30′ N; the salinity in the upper mixed layer is 18–24 psu. The phytocenosis in this area has a mosaic spatial structure with between-station variation in the shares of different alga groups in the community, cell number of 117–1200 × 106 cells/m2, and a biomass of 1600–3600 mg/m2. As is shown, local inflow of “fresh” nutrients to the euphotic layer in the fall season leads to mass growth of diatoms.  相似文献   

13.
Bacterial abundance, phytoplankton community structure and environmental parameters were investigated to study the relationships between bacteria and phytoplankton during giant jellyfish Nemopilema nomurai blooms in the central Yellow Sea during 2013. N. nomurai appeared in June, increased in August, reached a peak and began to degrade in September 2013. Results showed that phosphate was possible a key nutrient for both phytoplankton and bacteria in June, but it changed to nitrate in August and September. Phytoplankton composition significantly changed that pico-phytoplankton relative biomass significantly increased, whereas other size phytoplankton significantly decreased during jellyfish bloom. In June, a significantly positive correlation was observed between chlorophyll a concentration and bacterial abundance(r=0.67, P0.001, n=34).During jellyfish outbreak in August, there was no significant correlation between phytoplankton and bacteria(r=0.11, P0.05, n=25), but the relationship(r=0.71, P0.001, n=31) was rebuilt with jellyfish degradation in September. In August, small size phytoplankton occupied the mixed layer in offshore stations, while bacteria almost distributed evenly in vertical. Chlorophyll a concentration significantly increased from(0.42±0.056) μg/L in June to(0.74±0.174) μg/L in August, while bacterial abundance just slightly increased. Additionally, the negative net community production indicated that community respiration was not entirely determined by the local primary productivity in August. These results indicated that jellyfish blooms potentially affect coupling of phytoplankton and bacteria in marine ecosystems.  相似文献   

14.
Oxygen and carbon isotope ratios(δ~(18)O and δ~(13)C) in otoliths were used to identify the stock structure of small yellow croaker,Larimichthys polyactis.Otoliths were collected from fish at five locations across the Yellow Sea and the Bohai Sea representing most of their distributional range and fisheries areas.The significant differences in the isotopic signatures showed that the five locations could be chemically distinguished and clearly separated,indicating stock subdivision.Correlation of δ~(18)O and δ~(13)C values suggested that population of L.polyactis could be divided into the Bohai Sea group,the southern Yellow Sea group and the central Yellow Sea group.Discriminant analysis of δ~(18)O and δ~(13)C values demonstrated a high significant difference with 85.7% classification accuracy.The spatial separation of L.polyactis indicated a complex stock structure across the Yellow Sea and the Bohai Sea.These results indicate that optimal fisheries management may require a comprehensive consideration on the current spatial arrangements.This study has provided further evidence that measurement of the stable isotopes ratios in otolith can be a valuable tool in the delineation of fishery management units.  相似文献   

15.
2014年夏季南海北部浮游植物群落结构   总被引:7,自引:0,他引:7       下载免费PDF全文
薛冰  孙军  李婷婷 《海洋学报》2016,38(4):54-65
2014年8月20日-9月6日对南海北部(18°~22°N,114°~116°E)的11个站位进行了浮游植物群落结构的调查,其中2个站位为时间连续站。共鉴定出浮游植物4门68属229种(包括变种、变型及未定种),其中硅藻门43属147种,甲藻门20属75种。浮游植物平均细胞丰度为16.318×103 cells/L,硅藻的平均细胞丰度为14.653×103 cells/L,占总丰度的89.80%,硅藻的分布决定了浮游植物的分布。近岸冲淡水含有丰富的营养盐,因此近岸海域的细胞丰度高于大洋海域,垂直分布表现出先增加后降低的趋势。本次调查的优势种为铁氏束毛藻(Trichodesmium thiebautii)、中肋骨条藻(Skeletonema costatum)、拟脆杆藻(Fragilariopsis sp.)、短孢角毛藻(Chaetoceros brevis)、菱形海线藻(Thalassionema nitzschioides)、柔弱伪菱形藻(Pseudo-nitzschia delicatissima)、尖刺伪菱形藻(Pseudo-nitzschia pungens)、扁面角毛藻(Chaetoceros compressus)、洛氏角毛藻(Chaetoceros lorenzianus)以及海洋角毛藻(Chaetoceros pelagicus),各优势种的分布趋势相似,呈现出近岸高于外海的趋势。Shannon-Weiner多样性指数与Pielou均匀度指数的平均值分别为2.37和0.56。浮游植物昼夜垂直变化明显。典范对应分析结果显示浮游植物空间分布主要受总氮盐、硅酸盐、微型浮游动物与盐度的影响。根据细胞丰度进行的站位的聚类分析显示浮游植物群落明显可划分为近岸群聚与大洋群聚。  相似文献   

16.
The species composition, density, biomass, and distribution of zooplankton of the northeastern Sakhalin shelf, Sea of Okhotsk (Chaivo, Pil’tunskii, and Morskoi regions) were studied in October 2014. Zooplankton was represented by 15 taxonomic groups, which were dominated by Copepoda (13 species). The average density and biomass was highest in the Chaivo region (14112 ± 4322 ind./m3, 395 ± 107 mg/m3) and in the Pil’tunskii region (16692 ± 10707 ind./m3, 346 ± 233 mg/m3); the abundance of detected taxonomic groups was minimal (8–12). The average density and biomass of zooplankton was up to 4304 ± 2441 ind./m3, 133 ± 77 mg/m3 in the Morskoi region and increased with depth; the abundance of taxa was maximum (15). Four species of copepods made up the majority of the density and biomass of zooplankton: Acartia hudsonica, Eurytemora herdmani, Pseudocalanus newmani, and Oithona similis. In the Chaivo region, species of the genera Acartia, Eurytemora, and Oithona dominated and subdominated; in Pil’tunskii region, species of the genera Acartia and Oithona dominated and subdominated; and in the Morskoi region, species of the genera Oithona, Pseudocalanus, and Acartia dominated and subdominated.  相似文献   

17.
The species composition, phytoplankton abundance, and relative yield of the variable fluorescence (F v /F m ) were determined in the mesotrophic Nhatrang Bay in October–November of 2004. The species diversity (250 taxonomic units) and heterogeneity of the phytoplankton structure were high. With respect to the number of species and their abundance, diatoms prevailed. In selected parts of the bay, dinoflagellates dominated. The mean biomass in the water column under 1 m2 (B t ) varied from 2.3 to 64.4 mg C/m3 being 31.0 mg C/m3 on average. The values of B t were the lowest at the stations nearest to the river mouth. Seaward, B t increased. The values of B t increased with depth at some stations and decreased at others. In the surface sea layers, the biomass was lower than that in the underlying waters. The values of F v /F m ranged from 0.10 to 0.64 (at a mean value of 0.49). The lowest values of F v /F m were observed in the area close to the seaport. Over the greater part of the bay, the values of F v /F m were higher than 0.47. Such values are indicative of the relatively high potential photosynthetic activity of the phytoplankton. The abundance and species diversity were higher than those in the dry season (March–April).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号