首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Vortex induced vibration (VIV) of circular cylinders is widely accepted as depending weakly on Reynolds number (Re) and strongly on reduced velocity, mass ratio, and damping. Experiments are conducted in the regime right before transition from laminar to turbulent flow (high-Reynolds 2×l04?4×l04<Re<3.5×l05?6×l06) in the Low Turbulence Channel at the University of Michigan. Limited experimental data are available in that regime. This research was initiated in 2004 studying high-damping VIV to convert hydrokinetic energy from ocean/river currents to electricity using the VIVACE Converter.The following experimental observations are made: low and high Reynolds VIV significantly differ. The range of synchronization of the upper branch increases with increase in Reynolds number. Amplitude ratio (A/D) increases with Reynolds number within the upper branch. For high-Reynolds, A/D=1.9 is achieved routinely in spite of high damping. The lower branch disappears, overtaken by extended upper branch. High-Reynolds VIV enters into the 2P domain in the Williamson–Roshko (W–R) map beginning with the initial branch. Hysteresis is not observed in these experiments possibly because parameters remain in the 2P-domain. High Reynolds numbers have a stronger influence than mass ratio on A/D. High-damping high-Reynolds VIV amplitudes are double of those predicted by the modified Griffin plot by extrapolation.  相似文献   

2.
Passive Turbulence Control (PTC) in the form of selectively distributed surface roughness is used to alter Flow Induced Motion (FIM) of a circular cylinder in a steady flow. The objective is to enhance FIM's synchronization range and amplitude, thus maximizing conversion of hydrokinetic energy into mechanical energy by oscillator in vortex-induced vibration and/or galloping. Through additional viscous damping, mechanical energy is converted to electrical harnessing clean and renewable energy from ocean/river currents. High Reynolds numbers (Re) are required to reach the high-lift TrSL3 (Transition-Shear-Layer-3) flow regime. PTC trips flow separation and energizes the boundary layer, thus inducing higher vorticity and consequently lift. Roughness location, surface coverage, and size are studied using systematic model tests with broad-field laser visualization at 3.0×104<Re<1.2×105 in the low-turbulence free-surface water-channel of the Marine Renewable Energy Laboratory of the University of Michigan. Test results show that 16° roughness coverage is effective in the range (10°-80°) inducing reduced vortex-induced vibration (VIV), enhanced VIV, or galloping. Range of synchronization may increase or decrease, galloping amplitude of oscillation reaches three diameters; wake structures change dramatically reaching up to ten vortices per cycle. Conversion of hydrokinetic energy to mechanical is enhanced strongly with proper PTC.  相似文献   

3.
A device/system VCK is built to replace the physical damper/springs of the VIVACE Converter with virtual elements. VIVACE harnesses hydrokinetic energy of currents by converting mechanical energy of cylinders in Vortex Induced Vibrations (VIV) into electricity. VCK enables conducting high number of model tests rapidly as damping/springs are set by software rather than hardware. VCK consists of a cylinder, a belt–pulley transmission, a motor/generator, and a controller. The controller provides a damper–spring force feedback using displacement/velocity measurements, thus introducing no artificial force–displacement phase lag, which biases energy conversion. Damping is nonlinear, particularly away from the system natural frequency, and affects modeling near the VIV synchronization ends. System identification (SI) in air reveals nonlinear viscous damping, static and dynamic friction. Hysteresis, occurring in the zero velocity limit, is modeled by a nonlinear dynamic damping model Linear Autoregression with Nonlinear Static model (LARNOS). SI performed in air is verified using monochromatic excitation in air and VIV tests in water using physical damper and springs. A resistor bank added to the device provides an integrated VCK/Power Take-Off (PTO) system. VIV testing is performed in the Low Turbulence Free Surface Water Channel of the University of Michigan at 40,000<Re<120,000 and damping 0<ζ<0.16.  相似文献   

4.
A series of flow induced vibration (FIV) experiments for an equilateral triangle prism elastically mounted in a water channel are performed with different system stiffness at constant damping and mass. An amplitude variation coefficient is proposed to describe FIV stationarity in the present study. The FIV of the prism can be divided into three primary regions based on the amplitude and frequency responses, which are the vortex induced vibration (VIV) branch, the transition branch from VIV to galloping, and the galloping branch. The transition branch occurs at the reduced velocity in the range of 7.8 < Ur = U/(fn,air·D) < 10.4, accompanied with a relatively rapid increase in amplitude and a precipitous drop in frequency and vibration stationarity. In addition, the reduced velocity where the transition region is initiated is independent of the system stiffness. The maximum amplitude reaches 3.17 D in the galloping branch. The ratio of the response frequency to the natural frequency of the prism in air remains locked to approximately 0.65 throughout the fully developed galloping branch. Large amplitude responses in an infinite range of flow velocities, excellent vibration stationarity and steady vibration frequencies, which are characteristics of the galloping of the prism, have a positive impact on improving energy conversion.  相似文献   

5.
Experimental studies were carried out to investigate the response features of an inclined flexible bare cylinder as well as a straked cylinder in a towing tank, with the main purpose of further improving the understanding of the effect of yaw angle on vortex-induced vibration (VIV) suppression. Four yaw angles (a = 0°, 15°, 30°, 45°), which is defined as the angle between the cylinder axis and the plane orthogonal to the oncoming fluid flow, were tested. The cylinder model was towed along the tank to generate a uniform fluid flow. The towing velocity was in the range of 0.05–1.0 m/s with an interval of 0.05 m/s. The corresponding Reynolds number ranged from 800 to 16000. The strakes selected for the experiments had a pitch of 17.5D and a height of 0.25D, which is generally considered as the most effective configuration for VIV suppression of a flexible cylinder in water. The experimental results indicate that VIV suppression effectiveness of the inclined flexible straked cylinder is closely related to the yaw angle. The displacement amplitudes are significantly suppressed in both cross-flow (CF) and in-line (IL) directions at a = 0°. However, with increasing yaw angle, the suppression efficiencies of the CF and IL displacement amplitudes gradually decrease. In addition, the CF dominant frequencies of the straked cylinder obviously deviate from those of the bare cylinder at a = 0° and 15°. This deviation is substantially alleviated with increasing yaw angle. The IL dominant frequencies show less dependency on the yaw angle. Similar trends are also observed on the dominant modes of vibration and the mean drag coefficients.  相似文献   

6.
Laminar flow past a circular cylinder with 3 small control rods is investigated by numerical simulation. This study is concerned with the suppression efficacy of vortex induced vibration by small control rods located around a main cylinder. The effects of the attack angle and rod-to-cylinder gap ratio on the hydrodynamics and vibration responses of the main cylinder are investigated. The attack angle of α = 45° is performed as the critical angle for VIV suppression of 3 control rods. The 3 control rods have no effect on VIV suppression when the attack angle is less than the critical angle. The 3 control rods have an excellent VIV suppression efficacy when the attack angle is larger than the critical angle. The transverse vibration frequency of the cylinder with 3 control rods is less than that for an isolated cylinder for all the configurations. The numerical results for the configurations of α = 45° & 60°, G/D = 0.6–1.2 show excellent suppression efficient among the cases investigated in this study. The best suppression efficient is found at α = 45°, G/D = 0.9 for 3 control rods. 2 rods in behind of the main cylinder perform more efficient than that of 1 rod in front for VIV suppression as the gap ratio of G/D less than 1.0.  相似文献   

7.
Flow past a circular cylinder with multiple small control rods is studied by numerical simulation for ReD ranging from 1161.3 to 6387.1. The Reynolds-Averaged-Navier–Stokes (RANS) equations and shear stress transport (SST) k  ω turbulence model are used to calculate the vortex field, while a fourth-order Runge–Kutta method is employed for evaluating the structure dynamics of the cylinder group. Comparisons with experimental results demonstrate the validation of this method. This study is concerned with the vortex induced vibration (VIV) suppression efficacy of small control rods placed around a main cylinder. The effects of control rod number, diameter ratio, spacing ratio and Reynolds number on the hydrodynamics and vibration responses of the main cylinder are investigated. The reduced percents of in-line and cross-flow amplitudes and the increased percents of the whole cross-sectional area of cylinders and the drag coefficient are used to give a comprehensive evaluation. Results of simulation indicate that placing small rods with appropriate number at appropriate locations can achieve good suppression effectiveness at a wide range of Reynolds number. The numerical result for the case with nine control rods, diameter ratio of 0.15 and spacing ratio of 0.6 shows the best suppression effect among the cases investigated in this study.  相似文献   

8.
Control rod is one of the common passive control methods to suppress the vortex-induced vibration (VIV) of cylindrical structures. In this paper, the experimental study is conducted to detailed understand the performance of multiple control rods in suppressing the cross-flow (CF) VIV for a long flexible cylinder. The influence of the spatial arrangement of 3 and 4 control rods on CF VIV response of the main cylinder is investigated in a towing tank. It is observed that the attack angle θ is a very significant parameter to affect the vibration response, dominant frequency and the VIV suppression efficiency of the main cylinder. Based on the suppression efficiencies analysis of VIV response in the present experimental investigation, the spatial arrangement of 3 control rods with θ = 40° and 4 control rods with θ = 30° is the best choice for suppressing the CF VIV response of the main flexible cylinder. Overall, the use of 4 control rods could reduce VIV more effectively than the application of 3 control rods.  相似文献   

9.
Many simple (univariate, bivariate) and complex (multivariate) statistical techniques are used to investigate trends in biological communities and to test hypotheses about potential relationships between ecosystem components. However, the simple methods that are commonly used (regression and correlation) are prone to Type I error (rejecting a true null hypothesis) when applied repeatedly. Although multivariate methods are preferable for community analysis, their computations are mathematically demanding and the interpretation of their outputs can be challenging. We present simple community analysis (SCA), an intuitive methodology with which to test for trend and correlation at the community-level. We demonstrate SCA using fish survey and phytoplankton count data: the non-parametric test statistic, Kendall's tau, is used to determine the strength of trends in abundance in 65 species of fish sampled during the Irish groundfish survey (maximal length of sampling periods were 1999–2007 in ICES division VIIg and 2002–2007 in divisions VIa, VIIb and VIIj, however catches of numerous species were not recorded prior to 2003) and in 77 genera of phytoplankton sampled at Irish aquaculture sites (1991–2002). The sample distribution of the test statistic (tau is used here, but other measures may be used) is compared to the expected distribution using distributional tests (Kolmogorov–Smirnov) to evaluate the significance of community-level trends. The phytoplankton community has been increasing in abundance on Irish western and southwestern coasts (Kolmogorov–Smirnov test D > 0.5, p < 0.001). Similarly, and in agreement with previously published long-term studies, Lusitanian fish have been increasing on the shelf to the north and west of Ireland (D ≥ 0.35, p < 0.001), while the boreal community has been declining to the south (southeast, D = 0.47, p < 0.001; southwest, D = 0.32, p = 0.03). Although SCA cannot identify causality, the trends in fish communities are as expected given the combined impacts of climate change and fishing: thus, we suggest that these are currently the main drivers of change and the precise mechanisms at play merit further study with long-term data. Biological processes at aquaculture sites should be investigated further as possible mechanisms explaining both the observed positive trends in the phytoplankton community and the restriction of negative trends to Heterosigma and eight dinoflagellate genera. Applied in conjunction with other statistical tools, SCA should aid researchers who aim to describe change in communities and community-level relationships with covariates. SCA is a powerful tool for hypothesis testing at the community-level, which simultaneously produces information at the community member level for more detailed insight, while providing simple summary statistics for managers and policy makers.  相似文献   

10.
Sand transport in Lido and Chioggia inlets was measured using modified Helley–Smith sand traps equipped with 60-micron nets. The traps had an efficiency of about 4% only but provided enough material for analysis. Very fine sand (0.07 < d < 0.11 mm) only was collected in the traps. Transport of sand was greatest in the bottom 10% of the water column and followed a Rouse profile. Sand extended to a height of about 4 m above the bed during peak flows corresponding to the estimated thickness of the boundary layer; and observed in synoptic ADCP profiles. The sand in the benthic boundary layer was largely inorganic (>95%); above this layer, organic content varied widely and was greatest near the surface. The movability number Ws/UWs/U showed a linear relationship to dimensionless grain diameter (D*): (Ws/U)=(D/10)(Ws/U)=(D/10); D* < 10. Sand concentration in suspension was simulated by a mean Rouse parameter of −2.01 ± 0.66 (Lido inlet) and −0.82 ± 0.27 (Chioggia inlet). The β parameter ( Hill et al., 1988) was correlated with D* and movability number in the form: β=2.07−2.03D+59(Ws/U)2β=2.072.03D+59(Ws/U)2 (r2 = 0.42). Von Karman's constant was back-calculated from a Law of the Wall relationship as a test on the accuracy of U* estimates; a mean value of 0.37 ± 0.1 (compared to the accepted value of 0.41) suggest U* was accurate to within 10%. The constant of proportionality (γ = 3.54 × 10−4) between reference concentration (Ca) and normalized excess bed shear stress was in line with the published literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号