首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
2.
An experimental investigation of U-type breakwaters was carried out in a laboratory channel. Both regular and irregular waves were used during testing. Two types of breakwaters such as solid and perforated were studied to analyse the porosity effect of structures. In order to investigate performance of these breakwaters for different immersion depths, four depths of immersions of the solid and perforated breakwaters were selected. Different wave groups were generated over these breakwaters, and the transmission, reflection and energy dissipation characteristics of each breakwater were determined. Three coefficients such as transmission, reflection and energy dissipation coefficients, which were named as Ct, Cr, and Cl, respectively, were used during the evaluation of the test results. The most important parameters governing performance of these breakwaters were determined by using earlier investigations and experimental results. These parameters were expressed as a dimensionless group by using π theory. Based on the test results, empirical expressions were formulated to describe the Ct, Cr, and Cl for different immersion depths of solid and perforated breakwaters under regular and irregular waves.  相似文献   

3.
A series of laboratory experiments was carried out to investigate the strong reflection of regular water waves over a train of submerged breakwaters. Rectangular and trapezoidal shapes of submerged breakwaters are employed and compared for reflecting capability of incident waves. Measured reflection coefficients of regular waves over impermeable submerged breakwaters are verified by comparing with those of the eigenfunction expansion method. A very good agreement is observed. Reflection coefficients of permeable submerged breakwaters are less than those of impermeable breakwaters. The trapezoidal shape is recommended for a submerged breakwater in terms of reflecting capability and practical application.  相似文献   

4.
Numerical prediction of performance of submerged breakwaters   总被引:1,自引:0,他引:1  
The results of a numerical model study on the transmission characteristics of a submerged breakwater are presented. Study aimed to determine the effect of depth of submergence, crest width, initial wave conditions and material properties on the transmission characteristics of the submerged breakwater. The results highlight the optimum crest width of the breakwater and optimum clear spacing between two breakwaters. A submerged permeable breakwater with ds/d=0.5, p=0.3 and f=1.0, reduces the transmission coefficient by about 10% than the impermeable breakwater. The results indicates an optimum width ratio of B/d=0.75 for achieving minimum transmission. By restricting the effective width ratio of the series of breakwaters to 0.75, studies were conducted to determine the effect of clear spacing between breakwaters on transmission coefficient, suggesting an optimum clear spacing of w/b=2.00 to obtain Kt below 0.6.  相似文献   

5.
Wave interaction with T-type breakwaters   总被引:1,自引:0,他引:1  
The wave transmission, reflection and energy dissipation characteristics of partially submerged ‘T'-type breakwaters (Fig. 1) were studied using physical models. Regular and random waves, with wide ranges of wave heights and periods and a constant water depth were used. Five different depths of immersions of the ‘T'-type breakwater were selected. The coefficient of transmission, Kt, coefficient reflection, Kr, were obtained from the measurements and the coefficient of energy loss, Kl is calculated using the law of conservation of energy. It is found that the coefficient of transmission generally reduces with increased wave steepness and increased relative water depth, d/L. This breakwater is found to be effective closer to deep-water conditions. Kt values less than 0.35 is obtained for both normal and high input wave energy levels, when the horizontal barrier of the T type breakwater is immersed to about 7% of the water depth. This breakwater is also found to be very efficient in dissipating the incident wave energy to an extent of about 65% (i.e. Kl>0.8), especially for high input wave energy levels. The wave climate in front of the breakwater is also measured and studied.
Full-size image (12K)
Fig. 1. Schematic view of the T-type breakwater.  相似文献   

6.
《Coastal Engineering》2006,53(1):39-48
This paper describes a simple method for modelling wave breaking over submerged structures, with the view of using such modelling approach in a coastal area morphodynamic modelling system.A dominant mechanism for dissipating wave energy over a submerged breakwater is depth-limited wave breaking. Available models for energy dissipation due to wave breaking are developed for beaches (gentle slopes) and require further modifications to model wave breaking over submerged breakwaters.In this paper, wave breaking is split into two parts, namely: 1) depth-limited breaking modelled using Battjes and Janssen's (1978) theory [Battjes, J.A. and Jannsen, J.P.F.M. (1978). Energy loss and setup due to breaking of random waves. Proceedings of the 16th Int. Conf. Coast. Eng., Hamburg, Germany, pp. 569-587.] and 2) steepness limited breaking modelled using an integrated form of the Hasselmann's whitecapping dissipation term, commonly used in fully spectral wind–wave models. The parameter γ2, governing the maximum wave height at incipient breaking (Hmax = γ2d) is used as calibration factor to tune numerical model results to selected laboratory measurements. It is found that γ2 varies mainly with the relative submergence depth (ratio of submergence depth at breakwater crest to significant wave height), and a simple relationship is proposed. It is shown that the transmission coefficients obtained using this approach compare favourably with those calculated using published empirical expressions.  相似文献   

7.
Surface or submerged horizontal or vertical plate can be considered as a new concept breakwater.This paper investigates the wave-plate interaction of this type of breakwater by use of the boundary element method.The relationships of wave transmitted and reflected among plate thickness,submergence and length are carefully studied by numerical simulation.It is shown that:(1) The transmitted coefficients of submerged horizontal plate or vertical plate will become larger with the increase of plate thickness and reduce rapidly with the decrease of plate submergence.(2) Both surface horizontal and vertical plate are efficient for intermediate and short wave elimination,but vertical plate is more effective.(3) Submerged horizontal plate can act more effectively than submerged vertical plate does.With all wave frequencies,the vertical plate almost has no wave elimination effect.  相似文献   

8.
The hydrodynamic efficiency of the vertical porous structures is investigated under regular waves by use of physical models. The hydrodynamic efficiency of the breakwater is presented in terms of the wave transmission (kt ), reflection (kr) and energy dissipation (kd ) coefficients. Different wave and structural parameters affecting the breakwater efficiency are tested. It is found that, the transmission coefficient (kt ) decreases with the increase of the relative water depth (h/L), the wave steepness (Hi/L), the relative breakwater widths (B/L, B/h), the relative breakwater height (D/h), and the breakwater porosity (n). The reflection coefficient (kr) takes the opposite trend of kt when D/h=1.25 and it decreases with the increasing h/L, Hi/L and B/L when D/h 1.0. The dissipation coefficient (kd) increases with the increasing h/L, Hi/L and B/L when D/h 1.0 and it decreases when D/h=1.25. In which, it is possible to achieve values of kt smaller than 0.3, krlarger than 0.5, and kd larger than 0.6 when D/h=1.25, B/h=0.6, h/L 0.22, B/L 0.13, and Hi/L 0.04. Empirical equations are developed for the estimation of the transmission and reflection coefficients. The results of these equations are compared with other experimental and theoretical results and a reasonable agreement is obtained.  相似文献   

9.
The wave transmission, reflection and energy dissipation characteristics of ‘’-type breakwaters were studied using physical models. Regular and random waves in a wide range of wave heights and periods and a constant water depth were used. Five different depths of immersion (two emerged, one surface flushing and two submerged conditions) of this breakwater were selected. The coefficient of transmission, Kt, and coefficient of reflection, Kr, were obtained from the measurements, and the coefficient of energy loss, Kl was calculated using the law of balance of energy. It was found that the wave transmission is significantly reduced with increased relative water depth, d/L, whether the vertical barrier of the breakwater is surface piercing or submerged, where ‘d’ is the water depth and ‘L’ is the wave length. The wave reflection decreases and energy loss increases with increased wave steepness, especially when the top tip of the vertical barrier of this breakwater is kept at still water level (SWL). For any incident wave climate (moderate or storm waves), the wave transmission consistently decreases and the reflection increases with increased relative depth of immersion, Δ/d from −0.142 to 0.142. Kt values less than 0.3 can be easily obtained for the case of Δ/d=+0.071 and 0.142, where Δ is the height of exposure (+ve) or depth of immersion (−ve) of the top tip of the vertical barrier. This breakwater is capable of dissipating wave energy to an extent of 50–80%. The overall performance of this breakwater was found to be better in the random wave fields than in the regular waves. A comparison of the hydrodynamic performance of ‘’-type and ‘T’-type shows that ‘T’-type breakwater is better than ‘’-type by about 20–30% under identical conditions.  相似文献   

10.
O.S. Rageh 《Ocean Engineering》2009,36(14):1112-1118
The efficiency of the breakwater, which consists of caissons supported on two or three rows of piles, was studied using physical models. The efficiency of the breakwater is presented as a function of the transmission, reflection and the wave energy dissipation coefficients. Regular waves with wide ranges of wave heights and periods and constant water depth were used. Different characteristics of the caisson structure and the supporting pile system were also tested. It was found that, the transmission coefficient (kt) decreases with increasing the relative breakwater draft D/L, increasing the relative breakwater width B/h, and decreasing the piles gap-diameter ratio G/d. It is possible to achieve kt values less than 0.25 when D/L≥0.1. The reflection coefficient takes the opposite trend especially when D/L≤0.15. The proposed breakwater dissipates about 10-25% of the incident wave energy. Also, simple empirical equations are developed for estimating the wave transmission and reflection. In addition, the proposed breakwater model is efficient compared with other floating breakwaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号