首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 146 毫秒
1.
琼东南盆地深水区中央峡谷黄流组物源特征   总被引:3,自引:2,他引:1  
物源分析作为岩相-古地理研究的前提和基础,物源体系决定了砂体的展布和储集性能。为明确中央峡谷体系黄流组储集体展布规律及下一步勘探方向,本文应用中央峡谷最新钻井资料,采用重矿物组合、锆石U-Pb测年等分析方法,结合地震反射特征,对中央峡谷黄流组物源体系特征进行分析。地震反射特征表明来自海南隆起和昆嵩隆起物源的三角洲体系,通过二次搬运沉积了陆架斜坡区和盆底的低位海底扇,为中央峡谷的沉积充填提供了充足的粗碎屑沉积物;新钻井黄流组样品中重矿物组合以白钛矿、石榴石、磁铁矿含量较高为主要特征,与莺歌海盆地受蓝江物源影响和琼东南盆地受丽水-秋滨河物源影响的地层重矿物组合相似;锆石U-Pb测年分析表明,中央峡谷黄流组地层中样品年龄图谱具有30~2 000Ma变化范围,与莺歌海盆地受昆嵩隆起物源影响的钻井以及越南现代河流采集的沙样具有非常一致的年龄段和丰度。综上所述,中央峡谷受多物源的影响,越南昆嵩隆起为主的琼东南盆地西部物源体系,是琼东南盆地乐东凹陷晚中新世深水扇以及中央峡谷粗碎屑物质的主要沉积物供给来源区。  相似文献   

2.
琼东南盆地中央峡谷的形态及成因   总被引:11,自引:0,他引:11  
琼东南盆地中央峡谷平面上呈"S"型、NE向展布,西起莺歌海盆地中央凹陷带,经乐东凹陷、陵水凹陷、松南凹陷、宝岛凹陷、长昌凹陷,向东延伸进入西沙海槽。剖面形态上存在"V"型、"W"型、"U"型和复合型等4种类型。通过不同区域峡谷下切底界面的形态变化及充填特征,将中央峡谷划分为东段、西段和转换段3个区段,转换段与琼东南盆地的构造转换段相一致,即以西地区控凹断裂为NE向,而以东地区控凹断裂渐变为NEE或EW向。琼东南盆地中央峡谷的成因与构造作用和深水沉积作用关系密切,峡谷东段主要受构造作用控制,特别是深部隆起的存在为黄流期中央峡谷的形成提供了"限制性"作用,并且为后期中央峡谷的发育提供了"限制性通道";西段则受深水沉积作用的控制,重力流沉积为中央峡谷的下切和充填提供了来源。每期中央峡谷的形成均稍早于或与该时期陆坡的发育同期,最早形成于盆地东部,并随陆坡的持续向西迁移表现为不断向西上溯,下切能力逐渐减弱。  相似文献   

3.
基于琼东南盆地深水区砂岩储层整体欠发育这一地质背景,综合评价了陵南低凸起古潜山领域油气成藏地质条件,并对该区的成藏模式与特征进行了预测和讨论。研究表明,陵南低凸起古潜山由邻近的乐东-陵水富生烃凹陷供烃,被成熟烃源岩包围,具有中生界花岗岩潜山储层与新近系厚层海相泥岩构成的储盖组合,发育大型沟源断裂及与之配置较好的大型继承性构造脊等构成畅通的运聚系统,具有源储压差大、近源直接充注的优势。相较已获勘探成功的松南低凸起古潜山油气藏,其成藏条件更为优越,成藏模式与越南白虎大型古潜山油田和渤海渤中19-6大型古潜山凝析气田具有一定的可类比性。陵南低凸起的石油地质条件切合琼东南盆地深水区“富泥贫砂”的地质背景,可形成大规模、连片性古潜山油气藏,是琼东南盆地中央峡谷水道领域之外又一有利的深水油气勘探新领域。  相似文献   

4.
琼东南盆地位于南海北部大陆边缘西部,其深水区是重要的油气勘探新领域。利用琼东南盆地高密度的多道地震资料,阐明了琼东南盆地海底地形地貌特征,分析了盆地内深水沉积体的类型、特征、形成机制和空间展布,探讨了地形地貌对深水沉积的控制作用,对深入理解深水沉积过程,尤其是该区深水油气储层的预测具有重要意义。研究结果表明,琼东南盆地海底地形总体可以划分为陆架、陆坡和深海平原。在该地形地貌控制下,研究区内主要发育6种深水沉积体:浊流沉积、陆坡峡谷充填、滑塌沉积、滑移沉积、沉积物波和碎屑流沉积。进一步的研究表明,这些沉积体的空间发育部位和规模与陆坡的坡度有关。地形坡度通过控制重力流流体的流态产生各类型重力流沉积,进而控制了陆坡体系的调整过程。研究结果还表明,由于地形坡度的变化,重力流流态会发生相应变化,并进而导致各种类型重力流沉积在其形成过程中发生相互转化,其一般转化顺序通常为滑塌-碎屑流-浊流。  相似文献   

5.
琼东南盆地古近纪基底断裂的活动特征分析   总被引:1,自引:0,他引:1  
为优化油气盆地内断裂活动强度的研究方法,分析了断层生长指数、断层落差和断层活动速率等定量研究断裂活动强度的常用参数,提出了根据断裂两侧的构造沉降差异计算断裂的垂直断距和垂直活动速率的新方法。然后应用这种方法研究琼东南盆地古近纪基底断裂的活动特征。研究表明,琼东南盆地古近纪基底断裂的活动分为3个阶段:第一阶段(40—36MaBP),琼东南盆地东部NE向断裂发生强烈活动,垂直断距800m左右,垂直活动速率约200m.Ma 1;第二阶段(36—30MaBP),盆地东部NE向断裂活动减弱,盆地西部E-W向断裂开始活动,两者垂直断距约400—800m,垂直活动速率70—130m.Ma 1;第三阶段(30—21MaBP),盆地内部断裂活动再次增强,垂直断距700—1800m,垂直活动速率80—200m.Ma 1,而边界断裂活动较弱,垂直断距约500m,垂直活动速率不足60m.Ma 1。  相似文献   

6.
在深入调研南海深水盆地油气地质条件的基础上,系统分析了油气分布规律和成藏主控因素,明确了油气资源潜力和有利勘探方向,旨在为南海深水油气勘探决策提供科学依据。研究结果表明:南海深水盆地发育在非典型边缘海大陆边缘,其石油地质条件具有特殊性,油气分布特征存在显著的南北差异。其中,南海北部深水的珠江口盆地和琼东南盆地,以构造圈闭型油气藏为主;南海中南部深水的曾母盆地南部和文莱-沙巴盆地,主要为构造圈闭型油气藏,曾母盆地北部以岩性油气藏(生物礁滩型油气藏)为主,万安盆地主要为构造圈闭型和基岩潜山型油气藏。南海北部深水盆地和中南部深水盆地的烃源岩、储盖和圈闭等油气地质特征表明,南海深水盆地具有巨大的油气勘探潜力。南海深水的有利勘探方向为:①琼东南盆地乐东-陵水凹陷的中央峡谷、陵南斜坡带,松南-宝岛凹陷的反转构造带,宝岛凹陷北坡海底扇,长昌凹陷的环A洼圈闭带(海底扇);珠江口盆地白云凹陷的主洼深水扇、主洼两翼、西南断阶带,荔湾凹陷的深水扇。②南海中南部深水盆地的文莱-沙巴、曾母和万安盆地。  相似文献   

7.
为了研究琼东南盆地深水区的沉积环境及物源,对琼东南盆地深水区LS33-1-1钻井岩心样品的微量元素地球化学特征进行了分析,结果表明:研究区自渐新世以来沉积环境多变,物源复杂;在崖三段沉积早期,物源主要为当地或附近的基性玄武质火山碎屑,可能来自南海扩张引起的岩浆喷发活动;自崖三段沉积晚期(早于31.5Ma)以来,物源以陆源和海洋自生沉积为主,其中火山岩风化产物占有相当的比例。LS33-1-1钻井岩心沉积物的微量元素地球化学特征在距今31.5、28.4、25.5、23、16、8.2、5.5、2.7Ma均发生明显突变,表明沉积环境及物源均发生了明显的变化,反映了构造运动的影响。各地球化学指标在崖三段底部4 207m左右的突变,反映了琼东南盆地发生了较大规模的构造运动,造成了沉积物源由以基性火山碎屑为主转变为以陆源碎屑为主。在渐新世-中新世界线(23MaBP)附近,各项指标均表现出明显的突变,表明在ODP1148站及珠江口盆地深水区发现的物源突变事件(白云运动)也影响到了琼东南盆地深水区。  相似文献   

8.
位于黄土高原东南缘的三门峡红粘土地层,以陕县指望剖面为其典型代表。厚度为74.3m的指望剖面由上部厚34m的黄土地层和下伏厚40.3m的红粘土沉积组成,黄土为L24-L33的连续风尘沉积,下部红粘土为RS1-RS5的沉积。磁性地层研究显示:M/Ga界线位于33.8m处,黄土与红粘土界线之上20cm,Ga/Gi界线位于56.25m处的RS3中下部。该区红粘土近5Ma至2.6Ma的风尘沉积夹河湖相沉积。指望剖面的红粘土地层磁化率较黄土高原内部偏高,总体特征一致,说明近5Ma来东亚季风在区域演化上的一致性。  相似文献   

9.
对长达70.20m的东海浅钻EY02-1进行了岩石磁学和古地磁分析,证明沉积物的载磁矿物主要为低矫顽力的磁铁矿,磁性地层揭示了发生于9.62~8.58m的磁极性事件,结合钻孔上部的AMS14C测年证明它为全新世初期的哥德堡磁极性漂移,线性外推的时间是距今12681~10206Ma,为全新世开始时地磁场是否发生过短期的磁极性漂移提供了新证据;与东海高分辨率的浅地层地震剖面以及典型钻孔(中法联合东海地震调查和DZQ4钻孔)对比还揭示,在中更新世地层中也出现过两次磁倾角变化。在钻孔中下部54.00~50.94m(2271—2151号样品)出现一段磁倾角变小甚至变成负值,但是由于该段沉积物以粗颗粒的砂为主并且负向样品并不连续,依据研究的标准不作为反磁极性事件。第二个比较连续的负向样品段出现在最底部70.20~64.31m。虽然研究区域内不乏揭示中更新统地层的地震剖面,但至今没有足够长的钻孔在时间上予以佐证。根据东海地震相对比和沉积物中海侵和海退旋回的不同特征以及布容期以来报道的反磁极性事件发生的时间来推测下部地层的时代归属。由于钻孔最底部的沉积主要是粗颗粒的粉砂质砂和细砂,同时钻孔也穿透了倒数第二冰期的杂乱地震相地层和其下的平行透明海相层,所以推测下部的倒转可能为发生在MIS8晚期的CR0反磁极性事件(距今265~255ka)。  相似文献   

10.
蔡佳  王华  崔敏 《海洋地质前沿》2014,30(4):14-19,27
在建立层序地层格架的基础上,对琼东南盆地古近系各个层位沉降史进行了回剥分析。研究表明,琼东南盆地古近系沉降中心不断迁移,沉积中心不断扩大,沉降速率随构造活动程度的变化而发生变化。琼东南盆地的12个凹陷可分为2个沉降梯队,西北及东南部总体上为非沉降区。通过选取各个凹陷中的典型点(最深位置)做出单点上的回剥模拟结果可知,琼东南盆地断陷期的3幕表现明显,构造沉降所占的比例逐渐减少,整体上琼东南盆地中央凹陷带东南区的沉降大于西北区。  相似文献   

11.
Based on the interpretation of high resolution 2D/3D seismic data,sedimentary filling characteristics and fullfilled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied.The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma(T40),at which the canyon began to develop due to the scouring of turbidity currents from west to east.During the period of 11.6–8.2 Ma(T40–T31),strong downcutting by gravity flow occurred,which led to the formation of the canyon.The canyon fillings began to form since 8.2 Ma(T31) and were dominated by turbidite deposits,which constituted of lateral migration and vertical superposition of turbidity channels during the time of8.2–5.5 Ma.The interbeds of turbidity currents deposits and mass transport deposits(MTDs) were developed in the period of 5.5–3.8 Ma(T30–T28).After then,the canyon fillings were primarily made up of large scale MTDs,interrupted by small scale turbidity channels and thin pelagic mudstones.The Central Canyon can be divided into three types according to the main controlling factors,geomorphology-controlled,fault-controlled and intrusionmodified canyons.Among them,the geomorphology-controlled canyon is developed at the Ledong,Lingshui,Songnan and western Baodao Depressions,situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt.The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression.Intrusion-modified canyon is only occurred in the Songnan Low Uplift,which is still mainly controlled by geomorphology,the intrusion just modified seabed morphology.The full-filled time of the Central Canyon differs from west to east,displaying a tendency of being successively late eastward.The geomorphology-controlled canyon was completely filled before3.8 Ma(T28),but that in intrusion-modified canyon was delayed to 2.4 Ma(T27) because of the uplifted southern canyon wall.To the Changchang Depression,the complete filling time was successively late eastward,and the canyon in eastern Changchang Depression is still not fully filled up to today.Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities.Due to sufficient supply of turbidity currents and MTDs from west and north respectively,western segment of the Central Canyon is entirely filled up earlier.Owing to slower sediment supply rate,together with differential subsidence by deep-seated faults,the full-filled time of the canyon is put off eastwards gradually.  相似文献   

12.
High-resolution multichannel seismic data enables the discovery of a previous, undocumented submarine canyon(Huaguang Canyon) in the Qiongdongnan Basin, northwestern South China Sea. The Huaguang Canyon with a NW orientation is 140 km in length, and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach. The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the Central Canyon. This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(around 10.5 Ma). The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections, indicating that this ancient submarine canyon was filled with coarse-grained sediments. The sediment was principally scourced from the Xisha carbonate platform. In contrast to other buried large-scale submarine canyons(Central Canyon and Zhongjian Canyon) in the Qiongdongnan Basin, the Huaguang Canyon displays later formation time,smaller width and length, and single sediment supply. The coarse-grained deposits within the Huaguang Canyon provide a good environment for reserving oil and gas, and the muddy fillings in the Huaguang Canyon have been identified as regional caps. Therefore, the Huaguang Canyon is a potential area for future hydrocarbon exploration in the northwestern South China Sea. The result of this paper may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.  相似文献   

13.
Cui  Yuchi  Shao  Lei  Qiao  Peijun  Pei  Jianxiang  Zhang  Daojun  Tran  Huyen 《Marine Geophysical Researches》2019,40(2):223-235

Provenance studies of the Central Canyon, Qiongdongnan Basin has provided significant insights into paleographic and sedimentology research of the South China Sea (SCS). A suite of geochemical approaches mainly including rare earth elemental (REE) analysis and detrital zircon U–Pb dating has been systematically applied to the “source-to-sink” system involving our upper Miocene–Pliocene Central Canyon sediments and surrounding potential source areas. Based on samples tracing the entire course of the Central Canyon, REE distribution patterns indicate that the western channel was generally characterized by positive Eu anomalies in larger proportion, in contrast to the dominance of negative values of its eastern side during late Miocene–Pliocene. Additionally, for the whole canyon and farther regions of Qiongdongnan Basin, the number of samples bearing negative Eu anomalies tended to increase within younger geological strata. On the other hand, U–Pb geochronology results suggest a wide Proterozoic to Mesozoic age range with peak complexity in Yanshanian, Indosinian, Caledonian and Jinningian periods. However in detail, age combination of most western samples displayed older-age signatures than the eastern. To make it more evidently, western boreholes of the Central Canyon are mainly characterized with confined Indosinian and Caledonian clusters which show great comparability with mafic-to-ultramafic source of Kontum Massif of Central Vietnam, while eastern samples largely bear with distinguishable Yanshanian and Indosinian peaks which more resemble with Hainan Island. Based on geochemistry and geochronology analyses, two significant suppliers and sedimentary infilling processes are generated: (1) the Indosinian collision orogenic belt in central-northern Vietnam, Indochina has ever played significant role in Central Canyon sedimentary evolution, (2) Hainan Island once as a typical provenance restricted within eastern Central Canyon, has been enlarging its influence into the whole channel, even into the farther western regions of Qiongdongnan Basin.

  相似文献   

14.
High-resolution multichannel seismic data enables the discovery of a previous, undocumented submarine canyon(Huaguang Canyon) in the Qiongdongnan Basin, northwest South China Sea. The Huaguang Canyon with a NW orientation is 140 km in length, and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach. The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the central canyon. This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(~10.5 Ma). The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections, indicating that this ancient submarine canyon was filled with coarse-grained sediments. The sediment was principally scourced from the Xisha carbonate platform. In contrast to other buried large-scale submarine canyons(central canyon and Zhongjian Canyon) in the Qiongdongnan Basin, the Huaguang Canyon displays later formation time, smaller width and length, and single sediment supply. The coarse-grained deposits within Huaguang Canyon provide a good environment for reserving oil and gas, and the muddy fillings in Huaguang Canyon have been identified as regional caps. Therefore, Huaguang Canyon is potential area for future hydrocarbon exploration in the northwest South China Sea. Our results may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.  相似文献   

15.
中国海域及邻区主要含油气盆地与成藏地质条件   总被引:15,自引:4,他引:11  
中国海域及邻区分布有近50个沉积盆地,其中大部分发育在大陆边缘,而主要含油气盆地则分布在大陆架部位。盆地的起源,发生,发展受控于大地构造不同时期的构造运动,形成诸如裂谷型断陷盆地,走滑盆地以及非典型前陆盆地等多类型沉积盆地。从区域广度阐述了盆地沉积的有利相带对油气成藏的重要性,尤其是陆架盆地的成藏地质条件所形成的富集油气藏包括已发现的一大批大中型油气田,更具有的开发前景。  相似文献   

16.
通过对“Sonne”号调查船第50航次的地震剖面资料分析,结合一些钻井资料,认为珠江口盆地中部第四纪以来的沉积可分为四套,其中层Ⅰ是浅海相沉积,属全新世;层Ⅱ,Ⅲ,Ⅳ是海陆相交替沉积,属更新世。在陆架区第四纪沉积厚220—400m,其中全新世沉积厚约29m。作者认为珠江口盆地的不稳定地质因素有:浅层断裂,埋藏古河道,浅层气,泥底辟,活动沙波,海底滑移,活动断裂与地震。  相似文献   

17.
本文基于琼东南盆地15口钻井和西沙石岛岛礁“西科一井”的钻井资料,结合过井地震剖面,系统分析了琼东南盆地沉降(沉积充填)和西沙岛礁生长速率及其变化特征,探讨了青藏高原隆升与琼东南盆地沉降和西沙岛礁发育之间的耦合关系,三者在发育时间和发育过程上表现出高度的一致性,且南海古海水中Sr同位素组成变化也表现出对青藏高原隆升速率变化很好的响应。相对于深水区,浅水区的沉积物堆积速率及其变化能够更好地反映盆地的沉降速率及其变化。琼东南盆地的沉降(沉积物堆积)和西沙岛礁的发育过程均可以分为3个阶段,分别对应于青藏高原的3个隆升期,时间自老到新分别为:23~16 Ma BP、16~5.5 Ma BP、5.5 Ma BP至今。相比而言,岛礁的发育过程与青藏高原的隆升之间的耦合关系更为密切。在青藏高原的快速隆升期,相应发生盆地沉降(沉积充填或沉积物堆积)和岛礁生长速率的加快,同时对应发生了南海海水87Sr/86Sr比值的增大,说明青藏高原隆升可能是影响琼东南盆地乃至整个南海沉降(沉积充填)、岛礁发育和古海水Sr同位素组成变化的主要因素。  相似文献   

18.
In recent years, exploration of the Lower Congo Basin in Angola has focused on the Neogene turbidite sand play of the Malembo Formation. Gravity tectonics has played an important role during deposition of the Malembo Formation and has imparted a well-documented structural style to the post-rift sediments. An oceanward transition from thin-skinned extension through mobile salt and eventually to thin-skinned compressional structures characterises the post-rift sediments. There has been little discussion, however, regarding the influence of these structures on the deposition of the Malembo Formation turbidite sands. Block 4 lies at the southern margin of the Lower Congo Basin and is dominated by the thin-skinned extensional structural style. Using a multidisciplinary approach we trace the post-rift structural and stratigraphic evolution of this block to study the structural controls on Neogene turbidite sand deposition.In the Lower Congo Basin the transition from terrestrial rift basin to fully marine passive margin is recorded by late Aptian evaporites of the Loeme Formation. Extension of the overlying post-rift sequences has occurred where the Loeme Formation has been utilised as a detachment surface for extensional faults. Since the late Cretaceous, the passive margin sediments have moved down-slope on the Loeme detachment. This history of gravity-driven extension is recorded in the post-rift sediments of Block 4. Extension commenced in the Albian in the east of the block and migrated westwards with time. In the west, the extension occurred mainly in the Miocene and generated allochthonous fault blocks or “rafts”, separated by deep grabens. The Miocene extension occurred in two main phases with contrasting slip vectors; in the early Miocene the extension vector was to the west, switching to southwest-directed extension in the late Miocene. Early Miocene faults and half-grabens trend north–south whereas late Miocene structures trend northwest–southeast. The contrast in slip vectors between these two phases emphasises the differences in driving mechanisms: the early Miocene faulting was driven by basinward tilting of the passive margin, but gravity loading due to sedimentary progradation is considered the main driver for the late Miocene extension. The geological evolution of the late Miocene grabens is consistent with southwest-directed extension due to southwest progradation of the Congo fan.High-resolution biostratigraphic data identifies the turbidite sands in Block 4 as early Miocene (17.5–15.5 Ma) and late Miocene (10.5–5.5 Ma) in age. Deposition of these sands occurred during the two main phases of gravity-driven extension. Conditions of low sedimentation rates relative to high fault displacement rates were prevalent in the early Miocene. Seafloor depressions were generated in the hangingwalls of the main extensional faults, ultimately leading to capture of the turbidity currents. Lower Miocene turbidite sand bodies therefore trend north–south, parallel to the active faults. Cross-faults and relay ramps created local topographic highs capable of deflecting turbidite flows within the half grabens. Flow-stripping of turbidity currents across these features caused preferential deposition of sands across, and adjacent to, the highs. Turbidite sands deposited in the early part of the late Miocene were influenced by both the old north–south fault trends and by the new northwest–southeast fault trends. By latest Miocene times turbidite channels crosscut the active northwest–southeast-trending faults. These latest Miocene faults had limited potential to capture turbidity currents because the associated hangingwall grabens were rapidly filled as pro-delta sediments of the Congo fan prograded across the area from the northeast.  相似文献   

19.
A 1-D unloaded tectonic subsidence (air-loaded tectonic subsidence) model is proposed and applied to the Qiongdongnan Basin. Results show that three episodes of subsidence exist in Cenozoic, that is, syn-rift rapid subsidence (Eocene–Oligocene) with subsidence rate at 20–100 m/m.y., post-rift slow thermal subsidence (early-middle Miocene) around 40 m/m.y., and post-rift accelerated subsidence (since late Miocene) 40–140 m/m.y., which is substantially deviated from the exponentially decayed thermal subsidence model. For exploring the mechanism of post-rift accelerated subsidence, the faulting analyses are conducted and results show that there is a dramatically decrease in the numbers of active faults and fault growth rate since 21 Ma, which indicates that no active brittle crust extension occurred during post-rift period. Furthermore, previous studies have demonstrated that the stretching of the upper crust is far less than that affecting the whole crust. Therefore, we infer that the lower crust thinned during the post-rift period and a new model of basin development and evolution is put forward to explain the post-rift accelerated subsidence and depth-dependent crust thinning in the Qiongdongnan Basin, which is supported by gravity data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号