首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
单点高频地波雷达资料估算潮能耗散的方法   总被引:1,自引:0,他引:1  
使用嵊泗站所布设的地波雷达观测获取的径向流数据,以及嵊泗、芦潮港、岱山3个潮汐观测站水位资料,采用两点近似投影方法反演流场全矢量流速,并用T-Tide程序计算调和常数,分别计算O1、K1、M2、S2各分潮流速场及迟角场,并计算各点上的潮能通量及潮能耗散,得到嵊泗岛以西杭州湾口区域潮能耗散同地形存在良好对应关系,充分证明了采用地波雷达观测数据进行潮能耗散计算这一方法的可行性,供相关工作者作进一步研究和讨论.  相似文献   

2.
利用粤西海域高频地波雷达观测得到的表层海流资料进行潮流调和分析。结果表明: 粤西近海主要属于不正规半日分潮, 浅水分潮较强。以M2分潮为例, 潮流运动形式主要为逆时针的往复流为主, 方向沿西北—东南方向。粤西近海的潮能主要由东部陆架输送进来, 潮能自东向西传播, 在大潮期间, 粤西的潮能出现向岸方向分量, 表现为从东南向西北方向传播, 在近岸区域潮能通量传播的方向会发生一个向岸的偏转。通过潮能收支方程计算潮能耗散, 发现粤西近海潮能耗散的高值区在西部岛屿密集区域, 与琼州海峡的存在和琼州海峡东北处地形变化存在明显的相关关系。  相似文献   

3.
利用基于FVCOM(Finite Volume Coastal Ocean Model)模式同化沿岸验潮站数据的高分辨率潮汐数值模型结果,分析研究了包含中国近海、日本海和鄂霍次克海在内的西北太平洋海域全日、半日分潮的潮能通量与耗散。西北太平洋的潮波能量分3支,分别传入鄂霍次克海、东海和南海。传入东海的半日潮波能量是传入南海的3倍左右;传入南海的全日潮波能量是传入东海的5倍多。传入中国东部海域的M2分潮能中,有64.3%耗散在东海,32.4%耗散在黄海,仅有3.2%耗散在渤海;而K1分潮能中分别有48.2%、31.4%及7.1%耗散在东海、黄海及渤海。进入南海的潮能中,仅有32.7%的M2分潮能和38.3%的K1分潮能耗散在南海的北部海域,另有23.9%的M2分潮能进入并耗散在台湾海峡,其余则进入南海南部。传入日本海的太平洋潮能很少。鄂霍次克海消耗的全日潮能是半日潮能的2倍。  相似文献   

4.
珠江河口潮能通量与耗散   总被引:4,自引:1,他引:3  
珠江河口三角洲是我国一个极其复杂的大尺度河口系统,具有独特的河网体系和河口湾.为探讨珠江河口三角洲的潮能通量和潮能耗散机制,基于SELFE模型,建立了珠江河网-河口湾的三维数值模型,计算了河网-河口湾区的潮能通量和潮能耗散.研究表明:珠江河口的潮能通量平面上表现出主槽大,滩地较小;在总能耗中,底摩擦能耗最大,其次是垂向扩散耗散能耗,水平扩散能耗最小;存在‘门’、分汊汇流区和弯曲河道区等典型的高能耗区,高能耗区的单位面积能耗比附近水域的高数倍甚至1~2个数量级.  相似文献   

5.
莫桑比克海峡及其邻近海区是全球海洋潮流和潮能耗散最强的海区之一。文章利用高分辨率通用环流模式对该海区的正压潮流进行模拟, 并对该海区潮能通量和潮能耗散特征进行分析。结果表明, 莫桑比克海峡及其邻近海区的潮波主要是半日分潮占主导地位, 全日分潮可忽略不计, M2分潮形成1个左旋潮波系统和1个右旋潮波系统, S2分潮形成1个左旋潮波系统。莫桑比克海峡和马达加斯加岛南部等绝大数区域的M2和S2半日潮流是逆时针旋转, 在马达加斯加岛顶部等局部区域是顺时针旋转, 而且在海峡通道等复杂地形处潮流流速量级较大。潮能通量矢量主要来自东边界, 大部分潮能通量沿马达加斯岛北部传入莫桑比克海峡区域, 其中经过马达加斯加岛北部和进入莫桑比克海峡的M2 (S2)分潮的潮能通量分别为156.86GW (40.53GW)和148.07GW (36.05GW), S2分潮潮能通量的量级大约为M2分潮的1/5~1/4。底摩擦耗散主要发生莫桑比克海峡和马达加斯加岛南北部, 其中莫桑比克海峡M2 (S2)分潮的底摩擦耗散为1.762GW (0.460GW), 占其底部总耗散的43.74% (39.72%)。  相似文献   

6.
利用ECOM模式模拟南海正压M2、S2、K1、O1分潮, 对南海潮能通量及潮能耗散进行研究.结果显示, M2、S2、K1和O1分潮分别有38.93、5.77、29.73和28.97GW的能通量经吕宋海峡传入南海, 并有2.42、0.36、8.67和7.86GW的能通量由南海经卡里马塔海峡传入爪哇海.由东海及吕宋海峡西北部传入台湾海峡的M2分潮能通量为25.28GW.半日潮进入北部湾和泰国湾的能通量较少(6.52GW), 全日潮则较大(24.74GW).通过民都洛和巴拉巴克海峡断面, 全日潮由南海向苏禄海共输送12.28GW的能通量, 而半日潮则由苏禄海向南海输送1.92GW的能通量.由模式输出结果估计得到的南海各局部海域的底摩擦耗散与净潮能通量存在差异, 为使二者平衡, 可对南海不同海域的底摩擦系数进行调整.依净潮能通量与底摩擦耗散平衡关系计算得到台湾海峡、北部湾、泰国湾及南海深水海域的底摩擦系数分别为0.0023、0.0024、0.0023和0.0021.  相似文献   

7.
作为LORCE计划中构建高频地波雷达观测网的试点,面向象山港牛鼻山水道,在六横岛郭巨山和白马礁各设置了1台OSMAR S50高频地波雷达。在2台雷达合成表面流场有效区域的中间地带,利用Valeport旋桨式海流仪和ADCP定点开展了周日连续观测,以验证高频地波雷达合成表面流场的精度。对比定点流场和高频地波雷达对应数据发现,两者变化相关性较好,高频地波雷达在该点获得的流场有较高精度。借助SCHISM建立的区域模型结果,检验了高频地波雷达数据大面上的可用性。比较发现,观测和模拟值在大的趋势上是一致的:牛鼻山水道为规则半日潮流海域,M2是主要分潮,分潮M2和K1以往复流为主;涨潮时外海海水先通过牛鼻山水道流向象山港内,一段时间后再流向佛渡水道;落潮时象山港内海水率先经牛鼻山水道流出至外海,随后佛渡水道海水再逐渐流入牛鼻山水道。  相似文献   

8.
渤黄东海潮能通量与潮能耗散   总被引:7,自引:0,他引:7  
利用同化高度计资料和沿岸验潮站资料对潮汐数值模式进行同化,根据同化后的数值模式结果,对渤黄东海中的潮能通量和潮能耗散进行了研究.M2分潮从太平洋进入渤黄东海的潮能为122.499GW,占4个主要分潮进入总量的79%.黄海是半日分潮潮能耗散的主要海区.全日分潮则主要耗散在东海.全日分潮在遇到陆坡的阻挡以后有一部分潮能沿着冲绳海槽向西南传播,并有一部分潮能反射回太平洋,其中O1分潮通过C3断面反射回太平洋的潮能,约占其传入东海潮能的44%.  相似文献   

9.
北部湾潮波数值研究   总被引:9,自引:1,他引:9  
利用普林斯顿海洋模式(POM08)建立了北部湾及其临近海区潮汐潮流数值模式,模拟了K1,O1,M2和S2这4个主要分潮,分析了模拟的潮汐和潮流分布特征,从潮波能量的角度讨论了琼州海峡对北部湾潮波系统的影响,并给出北部湾潮能的耗散情况。研究表明,北部湾是典型的全日潮海区,K1和O1分潮在南部湾口形成半个旋转潮波系统,无潮点位于越南顺安附近岸边。琼州海峡中的欧拉潮汐余流为西向流,潮余流造成的水通量约为0.034×106m3/s;余流出海峡西口后,先折向北,然后转向南流出湾外。研究海区中两个强潮流区分别位于琼州海峡和海南岛的西侧,同时这也是两个潮能的高耗散区。北部湾的潮能自南部湾口由外海传入,通过西口涌入琼州海峡,到达海峡东口时日潮波的能量已基本耗散殆尽,在海峡内耗散的4个分潮的潮能约为3.33 GW,相当于北部湾潮能耗散量的35%左右。数值试验表明,琼州海峡作为潮能耗散的重要海区,其存在对于北部湾潮波系统的形成具有较大影响。计算了底边界潮能耗散,结果表明在北部湾和琼州海峡,底边界耗散的潮能分别占该海区总耗散的83%和80%。  相似文献   

10.
舟山群岛海域潮能丰富,近年来大面积的围垦工程影响了邻近海域的潮流结构与潮能分布特征。基于FVCOM(finite volume coastal ocean model)三维水动力数值模型,选取1984年、2010年、2019年三个代表年份,探讨围垦工程影响下舟山群岛海域潮流结构与潮能分布的时空变化状况。结果显示:1984年至2010年间围垦面积相对不大,且较为分散,主要改变外海进入杭州湾各通道的潮能分配,对能量耗散的影响较小。2010年至2019年间的围垦工程缩窄了潮汐通道,流速增大使得螺头水道及邻近水道的潮能增加,近底流速增大与较强湍流涡旋的产生,使得围垦工程周边海域能量耗散更为集中。  相似文献   

11.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   

12.
吐噶喇海峡是西北太平洋重要的内潮产生区域,该区域内产生的内潮对于东海陆架和西北太平洋的混合和物质输运有十分重要的作用。水平分辨率为3km的JCOPE-T(JapanCoastalOcean PredictabilityExperiment—Tides)水动力学模式的结果表明,吐噶喇海峡的内潮主要产生在地形变化剧烈的海山和海岛附近,其引起的等密面起伏振幅可达30m。吐噶喇海峡的内潮在垂直于等深线方向分为两支向外传播:一支向西北方向传播,进入东海陆架后迅速减小;另一支向东南方向传播,进入西北太平洋。吐噶喇海峡潮能丰富,其在约半个月内的平均输入的净正压潮能通量为13.92GW,其中约有3.73GW转化为内潮能量。生成的内潮能量有77.2%在当地耗散,传出的内潮能通量为0.84GW,主要通过西北和东南两个边界传出。该区域潮能通量有显著的大小潮变化,大潮期间输入的正压潮净能通量和产生的内潮能通量均约为小潮期间的2倍,但其主要产生区域基本不变,且内潮能量耗散比率均在产生的内潮通量的76%—79%。另外,内潮能通量的传播方向也没有发生变化,仍主要通过西北和东南两个边界传出。因此,大小潮的变化仅影响吐噶喇海峡处产生的内潮能量的大小,不影响其产生区域、传播方向和耗散比率。  相似文献   

13.
A global ocean tide model (NAO.99b model) representing major 16 constituents with a spatial resolution of 0.5° has been estimated by assimilating about 5 years of TOPEX/POSEIDON altimeter data into barotropic hydrodynamical model. The new solution is characterized by reduced errors in shallow waters compared to the other two models recently developed; CSR4.0 model (improved version of Eanes and Bettadpur, 1994) and GOT99.2b model (Ray, 1999), which are demonstrated in comparison with tide gauge data and collinear residual reduction test. This property mainly benefits from fine-scale along-track tidal analysis of TOPEX/POSEIDON data. A high-resolution (1/12°) regional ocean tide model around Japan (NAO.99Jb model) by assimilating both TOPEX/POSEIDON data and 219 coastal tide gauge data is also developed. A comparison with 80 independent coastal tide gauge data shows the better performance of NAO.99Jb model in the coastal region compared with the other global models. Tidal dissipation around Japan has been investigated for M2 and K1 constituents by using NAO.99Jb model. The result suggests that the tidal energy is mainly dissipated by bottom friction in localized area in shallow seas; the M2 ocean tidal energy is mainly dissipated in the Yellow Sea and the East China Sea at the mean rate of 155 GW, while the K1 energy is mainly dissipated in the Sea of Okhotsk at the mean rate of 89 GW. TOPEX/POSEIDON data, however, detects broadly distributed surface manifestation of M2 internal tide, which observationally suggests that the tidal energy is also dissipated by the energy conversion into baroclinic tide.  相似文献   

14.
内潮耗散与自吸-负荷潮对南海潮波影响的数值研究   总被引:1,自引:0,他引:1  
利用非结构三角形网格的FVCOM海洋数值模式,在其传统二维潮波方程中加入参数化的内潮耗散项和自吸-负荷潮项,计算了南海及其周边海域的M_2、S_2、K_1和O_1分潮的分布。与实测值的比较表明,引入这两项对模拟准确度的提高有明显效果。根据模式结果本文计算分析了研究海域的潮能输入和耗散。能量输入计算表明,能通量是潮能输入的最主要构成部分,通过吕宋海峡断面进入南海的M_2和K_1分潮能通量分别为38和29GW;半日周期的自吸-负荷潮能量输入以负值居多,而全日周期的自吸-负荷潮能量输入以正值居多,因而自吸-负荷潮减弱了南海的半日潮,并加强了南海的全日潮。引潮力的作用也减弱了半日潮而加强了全日潮,但其作用要小于自吸-负荷潮。潮能耗散的分析显示底摩擦耗散在沿岸浅水区域起主导作用,内潮耗散则主要发生在深水区域。内潮耗散的最大值出现在吕宋海峡,且位于南海之外的海峡东部的耗散量大于位于南海之内的海峡西部的耗散量。对M_2和K_1分潮吕宋海峡的内潮耗散总值分别达到16和23GW。  相似文献   

15.
We adopt a parameterized internal tide dissipation term to the two-dimensional (2-D) shallow water equations, and develop the corresponding adjoint model to investigate tidal dynamics in the South China Sea (SCS). The harmonic constants derived from 63 tidal gauge stations and 24 TOPEX/Poseidon (T/P) satellite altimeter crossover points are assimilated into the adjoint model to minimize the deviations of the simulated results and observations by optimizing the bottom friction coefficient and the internal tide dissipation coefficient. Tidal constituents M2, S2, K1 and O1 are simulated simultaneously. The numerical results (assimilating only tidal gauge data) agree well with T/P data showing that the model results are reliable. The co-tidal charts of M2, S2, K1 and O1 are obtained, which reflect the characteristics of tides in the SCS. The tidal energy flux is analyzed based on numerical results. The strongest tidal energy flux appears in the Luzon Strait (LS) for both semi-diurnal and diurnal tidal constituents. The analysis of tidal energy dissipation indicates that the bottom friction dissipation occurs mainly in shallow water area, meanwhile the internal tide dissipation is mainly concentrated in the LS and the deep basin of the SCS. The tidal energetics in the LS is examined showing that the tidal energy input closely balances the tidal energy dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号