首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sedimentological, geochemical, and physical-oceanographic studies of the Brazilian continental shelf near the Amazon River help provide a broad understanding of this major sediment dispersal system. Amazon River sediment accumulates as a subaqueous delta, with the most rapid accumulation (10 cm/yr) occurring near the seaward edge of the topset beds and in the foreset beds. Amazon River sediment is dispersed northwestward along the shelf and is transported beyond the Brazilian border. Radiographic studies of sediment cores delineate three sedimentary environments: interbedded mud and sand, faintly laminated mud, and bioturbated mud. The distribution of these environments is a function of proximity to the river mouth and of sediment accumulation rate.  相似文献   

2.
《Marine Geology》2005,216(4):239-247
The Ayeyarwady continental shelf is a complex sedimentary system characterized by large sediment influx (> 360 million ton/yr), a wide shelf (> 170 km), a strong tidal regime (7 m maximum tidal range), and incised by the Martaban Canyon. Grain size distribution on the Ayeyarwady shelf reveals three distinct areas in terms of sediment texture (i) a near-shore mud belt in the Gulf of Martaban and adjacent inner shelf (ii) outer shelf relict sands and (iii) mixed sediments with varying proportions of relict sand and modern mud in the Martaban Canyon. The bulk of the terrigenous sediment discharged by the Ayeyarwady River is displaced eastwards by a combination of tidal currents and clockwise flowing SW monsoon current and deposited in the Gulf of Martaban resulting in shoaling of its water depths. Part of the sediment discharge reaches the deep Andaman Sea via the Martaban Canyon and the rest is transported westward into the Bay of Bengal by the counter-clockwise flowing NE monsoon currents.  相似文献   

3.
A sediment budget for the South Otago continental shelf and coast, between Nugget Point and Otago Peninsula, reveals modern (post 6500 y) sediment input is dominated by the Clutha River (total 3.14 Mt y‐1; Mt = 106 tonnes). Contributions from the Taieri River (0.6 Mt y‐1), the adjacent Southland shelf (0.4 Mt y‐1), and the biogenic production of calcareous shell debris (0.25 Mt y‐1) account for only 28% of the input. About half of the bedload (sand and gravel) reaching the Otago shelf is stored within a large nearshore sand wedge in the protected waters of Molyneux Bay, off the Clutha River. Bedload that escapes storage (1.1 Mt y‐1) is transported north‐eastwards to be deposited on beach and inner shelf environments just north of Otago Peninsula. Suspended load (mud) accounts for over half of the sediment input (2.33 Mt y‐1) and is nearly all transported from the study area to accumulate in north‐easterly shelf and slope depocentres.  相似文献   

4.
东海陆架中北部沉积物粒度特征及其沉积环境   总被引:4,自引:1,他引:3  
通过对东海陆架表层沉积物粒级组成、粒度参数、14C年龄和微体古生物组合的综合分析,绘制了东海陆架的沉积物类型分布图;运用Folk等(1970)沉积物分类方法将东海表层沉积物分成砂、粉砂、粉砂质砂、砂质粉砂、砂质泥5种类型,其中粉砂质砂分布最广,砂质泥分布最少;沉积物由陆向海粒度变粗,反映沉积过程中的物源和沉积动力控制作用。根据沉积环境及成因分析,可将东海陆架沉积分为3类:分别是长江口外席状砂沉积区、现代泥质沉积区和陆架中部砂质沉积区。长江口外砂质沉积是全新世冰消期晚期潮流作用及风暴潮流共同作用的产物,是高海平面以来太平洋潮波系统作用下的潮流沙沉积,沙波地貌仍在发生变化。现代泥质沉积区包括长江前三角洲沉积、浙闽沿岸流沉积和济州岛西南泥质沉积三个区域,不同沉积区的成因机制不同。陆架中部砂质沉积是末次冰盛期之后海侵作用下发育的砂质沉积物,在海侵的不同阶段中沉积物被冲刷改造,具有不等时性特征,沉积环境与现代陆架海洋环流的动力特征不一致,现代沉积作用较弱,仅接受悬浮体细粒沉积。  相似文献   

5.
Under present-day conditions, rivers are the main source of fine sediments dispersed to the Bay of Biscay. They deliver about 2.5×106 t yr−1 of continental fine sediments, 60% of which is derived from the Gironde estuary. Of this flux, 65% is believed stored on the shelf. Two kinds of mud fields can be found in the Bay of Biscay: coastal mud and shelf mud belts. The total mass of fine sediments stored during the past 2000 years is 3.2×109 t. Consequently, about 0.9×106 t yr−1 could reach the shelf edge and eventually the open sea. From this amount of displaced material and the deposition surface areas, an evaluation of sediment fluxes across the margin during the late Holocene period is discussed. This evaluation is compared with results obtained from ECOsystéme du canyon du cap-FERret (ECOFER) data from sediment traps and surficial box cores.  相似文献   

6.
A deep-sea sediment core (GC98-06) from the southernmost Drake Passage, West Antarctica, shows late Quaternary depositional environments distinctly different from sedimentary drifts commonly found along the southwestern Pacific margin of the Drake Passage. The chronology of the core has been inferred using geochemical tracers of paleoproductivity and diatom biostratigraphy, and represents the paleoceanographic conditions in a continental rise setting during the last 150,000 years. Three dominant sediment types associated with distinct sedimentary processes have been identified using textural/compositional analyses: (1) hemipelagic mud (interglacial sediments) deposited from pelagic settling of bioclasts, meltwater plumes, and ice-rafted detritus; (2) terrigenous mud (glacial sediments) delivered by turbid meltwater plumes; and (3) massive muds marking the boundaries from interglacial to glacial periods. The succession of the sedimentary facies in core GC98-06 is interpreted to reflect temporal changes in environmental conditions prevailing on the continental rise of the southern Drake Passage in the course of successive climatic stages over the last 150 ka: from the bottom upward, these are glacial, interglacial, glaciation, glacial, and interglacial episodes. Variability in sediment flux and diatom abundance seem to have been related to changes in glacial advance, sea-ice extent, and specific sedimentary environments, collectively influenced by mid- to late Quaternary climatic changes.  相似文献   

7.
Abstract

Vertical variations of geotechnical properties in the uppermost sediment layers characterize the main sedimentary processes acting on the construction and destruction of progressive‐type continental slopes. In the Gulf of Lions, the original thicknesses and distribution of the uppermost sedimentary layers of the continental slope and rise, which consist of Holocene muds overlying Pleistocene muds, have been greatly modified by erosion and several kinds of slope failure processes. Each process is typified through sets of geotechnical properties measured in the eroded or slumped sections and in the associated sediment accumulations.

In slump scars, the water‐rich Holocene muds lie on fine, overconsolidated, Pleistocene muds with high plasticity and low shear strength. In bottom current‐eroded slopes, where modern sedimentation is extremely reduced, the Pleistocene muds frequently outcrop and may sometimes be overlain by a very thin layer of Holocene muds. The Pleistocene muds of eroded slopes are overconsolidated and more silty and less plastic than the Pleistocene muds from slopes affected by slope failure, their shear strength being 10 times greater.

Deposits at the toe of slumps are very often formed by several superposed three‐layer units (triplets of interstratified Holocene, transitional, and Pleistocene layers) issued from retrogressive slumping occurring in the slump scars above their head area. The main body of each layer is then relatively undisturbed, showing the usual burial geotechnical gradients due to overburden pressure (i.e., decrease of water content and increase of unit weight and shear strength). At the toe of bottom current‐eroded slopes, a thick and homogeneous layer of Holocene muds overlies the Pleistocene muds; this Holocene layer has unappreciable burial depth gradient of its geotechnical parameters because of a high rate of modem and continuous deposition.  相似文献   

8.
《Marine Geology》2006,225(1-4):129-144
Four mud extrusions were investigated along the erosive subduction zone off Costa Rica. Active fluid seepage from these structures is indicated by chemosynthetic communities, authigenic carbonates and methane plumes in the water column. We estimate the methane output from the individual mud extrusions using two independent approaches. The first is based on the amount of CH4 that becomes anaerobically oxidized in the sediment beneath areas covered by chemosynthetic communities, which ranges from 104 to 105 mol yr 1. The remaining portion of CH4, which is released into the ocean, has been estimated to be 102–104 mol yr 1 per mud extrusion. The second approach estimates the amount of CH4 discharging into the water column based on measurements of the near-bottom methane distribution and current velocities. This approach yields estimates between 104–105 mol yr−1. The discrepancy of the amount of CH4 emitted into the bottom water derived from the two approaches hints to methane seepage that cannot be accounted for by faunal growth, e.g. focused fluid emission through channels in sediments and fractures in carbonates. Extrapolated over the 48 mud extrusions discovered off Costa Rica, we estimate a CH4 output of 20·106 mol yr 1 from mud extrusions along this 350 km long section of the continental margin. These estimates of methane emissions at an erosional continental margin are considerably lower than those reported from mud extrusion at accretionary and passive margins. Almost half of the continental margins are described as non-accretionary. Assuming that the moderate emission of methane at the mud extrusions off Costa Rica are typical for this kind of setting, then global estimates of methane emissions from submarine mud extrusions, which are based on data of mud extrusions located at accretionary and passive continental margins, appear to be significantly too high.  相似文献   

9.
Early diagenetic properties of Amazon shelf muds are dominated by nonsulfidic Fe and Mn cycling, resulting in relatively little S deposition compared to previously studied marine margin environments. Despite abundant potential reactants typical of sulfidic deposits, authigenic sulfides represent only ~ 10% of diagenetically reduced Fe, and DOP (degree of pyritization) is only ~0.02. The average C/S (wt wt–1) ratio of buried sediment below the zone of SO4 2- reduction is ~ 7.4, ~ 2.6 times more than the commonly assumed modern shelf average of ~ 2.8. The deltaic burial rate forS is ~ 0.65 × 106 tons yr–1. Relatively lowS deposition is promoted by terrestrial weathering that delivers reactive oxide debris, but apparently depends most strongly on reoxidation and rapid burial by intense physical reworking and fluid-mud formation. Diagenetic models of S distributions demonstrate rapid sediment reworking (~ 10–100 cm yr–1 as apparent advection), substantialS reoxidation (84–98%), and in one case, massive sediment deposition of up to ~ 5 m of sediment in ~ 1 year. Extremely low DOP coupled with dominance by nonsulfidic reduced-Fe minerals and lack of biogenic sedimentary structures may be an indicator in marine organic-rich muds of intense physical reworking under oxygenated waters.  相似文献   

10.
The fate of the terrestrial sediment supplied by rivers is a critical issue for understanding the patterns of Holocene environmental change on continental shelves. The East China Sea is a typical broad continental shelf with abundant sediment supply from large rivers. Here, a variety of sedimentary records were formed during the Holocene period. The sedimentary systems associated with these records have unique charac- teristics in terms of spatial distribution, material composition, deposition rate and the timing of deposition, which are related to active sediment transport processes induced by tides and waves, shelf circulations and sediment gravity flows. The sedimentary records thus formed are high resolution slices, i.e., each record has a temporal resolution of up to 10~-10-1 a, but only covers a limited part of the Holocene time. In terms of the spatial distribution, these records are scattered over a large area on the shelf. Further studies of these systems are required to understand the underlying process-product relationships. In particular, the mid- Holocene coastal deposits on the Jiangsu coast, the early to middle Holocene sequences of the Hangzhou Bay, as well as the Holocene mud deposits off the Zhejiang-Fujian coasts, should be investigated in terms of the material supply (from both seabed reworking during the sea level rise event and river discharges), transport-accumulation processes, the sediment sequences and the future evolution of the sedimentary systems. Advanced numerical modeling techniques should be developed to meet the needs of these studies.  相似文献   

11.
Sediments from the seabed off the eastern side of the North Island, New Zealand, are divided into 12 facies on the basis of grain size and mineralogy of the sand fraction. The facies are grouped into three types; modern detrital sediments, relict detrital sediments, and non‐detrital sediments. The sediments are described in terms of a modified Wentworth grain‐size scale and a modified Folk sediment classification.

The modern detrital sediments range from fine sand near the shore to clayey fine silt on the lower slope. At most places they are bimodal, probably because floes and single grains are deposited together. The relict detrital sediments, which include sands and gravels, occur where deposition is slow on the inner continental shelf and near the shelf edge. Those near the shelf edge include Last Glacial sandy muds that have been winnowed and mixed with Holocene volcanic ash and glauconite. The non‐detrital sediments, which contain forarninifera, volcanic ash, and glauconite, but no detrital sand, occur on anticlinal ridges on the continental slope. In places they overlie muddier sediment deposited during the last glaciation when the sources of river‐borne detritus were nearer than at present and when mud was deposited more rapidly on the ridges than at present.  相似文献   

12.
基于2006年夏季和2007年冬季实测温盐数据和悬浮体浓度数据,分析东海内陆架悬浮体水平和垂直分布季节性特征,并结合MIKE3数值模拟海流结果,定量估算东海关键断面悬浮体运移通量,探讨悬浮体输运与泥质区形成和演化的关系。研究表明:东海内陆架悬浮体分布主要受流系控制,且季节变化明显;一般天气条件下,东海内陆架泥质区海域输入悬浮体净通量约为2.24×108t/a,其中夏半年悬浮体向泥质区海域输入净通量约为52.19×106t,贡献约为23.29%,冬半年净通量约为171.87×106t,贡献约为76.71%,浙闽沿岸悬浮体输运净通量均有利于东海内陆架泥质区的发育。本研究将对东海内陆架泥质区物质来源和发育演化研究提供理论支持。  相似文献   

13.
为研究南海北部外陆架沉积物来源及沉积特征, 对南海北部外陆架18 个站位进行了表层沉积物取样和分析, 通过对沉积物的分类和粒度参数的计算, 探讨了沉积物类型和粒度参数的分布特征及其指示意义。研究结果表明, 研究区表层沉积物类型包括砾、砂质砾、砾质砂、砾质泥质砂、含砾砂、含砾泥质砂和含砾泥7 种类型。沉积物输运方式在外陆...  相似文献   

14.
Modern (last 100 yr) accumulation rates of shelf mud deposits in the Yellow and East China Seas were investigated using the distribution of excess 210Pb (210Pbex) in sediment core samples. Compilation and merger of new and previously published data helped clarify sediment accumulation in these seas. The estimated accumulation rates, together with data of suspended sediment concentrations, provided findings on the sediment budget, origin, and transport pathway of the mud deposits. The overall accumulation distribution in the Yellow and East China Sea shelf revealed a general, cross-shelf decreasing trend along the sediment dispersal system away from the rivers, except for the South Sea (SSM) and southeastern Yellow Sea (SEYSM) mud patches found along the Korean coast. Notably, 210Pbex activity profiles within the SSM and the SEYSM yielded a relatively high accumulation rate of 2-5 mm/yr, implying a sedimentation rate of 4-15 × 107 tons per year in this coastal zone. Such an annual accumulation rate is about one order of magnitude greater than the total sediment discharge (6-20 × 106 tons/yr) from Korean rivers, suggesting an additional offshore source. The distribution pattern of the well-defined suspended plume clearly showed the possible transport and exchange of fine-grained sediments between the ECS shelf and the coastal area of Korea, especially during winter. Such a high accumulation in Korean coastal areas is attributable to the sediments supplied from the mud deposit of the ECS (i.e., SWCIM), with origins in Chinese rivers. Therefore, the Korean coastal area may be an important sink for some of Chinese river sediments being transported from the south by the Yellow Sea Warm Current.  相似文献   

15.
Numerous oceanographic cruises (with hydrology, water sampling, drift current measurements) carried out since 1980 on the continental shelf of the Bay of Biscay, together with available NOAA/AVHRR infra-red images, form the basis of a proposed explanation for the processes responsible for the distribution of suspended sediments on the shelf. The seasonal hydrographic structure of continental shelf waters is of paramount importance in sediment distribution. In summer, there is an horizontal stratification of water masses, and suspended sediment distribution is closely related to the thermo-haline structure. A fresher water mass with less suspended material lies on a thicker and more turbid homogeneous layer. During winter, when sediment discharge from the rivers often reaches its annual maximum, an oceanic thermo-haline wedge occurs on the shelf at around −100 m. As a result, winter turbidity values on the outer continental shelf are low (comparable to summer values), and a permanent nepheloı̈d layer is never observed. The wedge, which lasts for several months, may act as a filter, preventing transport to the slope. High turbidities on the external shelf and the continental slope are only measured in spring, when the thermo-haline wedge disappears. It seems possible that during winter time, suspended materials brought by rivers are deposited in the “Grande Vasière” (the “large mud patch”). It is postulated that the position of this mud patch is linked to the long-term stable location of the thermo-haline front that separates oceanic waters from the colder and less salty coastal waters.  相似文献   

16.
Seismic data and cores from the Waitaki continental shelf, New Zealand, indicate a major reduction in terrigenous deposition about 10,000 years ago when the accumulation of extensive marine sand wedges ceased. This change reflects the impact of lacustrine traps on the main sediment supplier to the shelf, the Waitaki River. Prior to 10,000 years BP, lakes Ohau, Pukaki and Tekapo were glaciated and glacio-fluvial detritus was fed directly to the river and shelf where marine deposition was ca. 6.8×106 t/yr. Following deglaciation, the newly created lakes acted as efficient sediment traps that denied the river 22.2×106 t/yr. Accordingly, modern shelf deposition is around 0.04×106 t/year.  相似文献   

17.
Fine sediment dynamics were recorded in February 2007 in coastal waters of the Great Barrier Reef during a moderate flood of the Tully River. An estuarine circulation prevailed on the inner continental shelf with a surface seaward velocity peaking at 0.1 m s−1 and a near-bottom landward flow peaking at 0.05 m s−1. Much of the riverine mud originating from eroded soils was exported onto a 10 km wide coastal strip during the rising stage of the river flood in the first flush. In coastal waters, suspended sediment concentration peaked at 0.2 kg m−3 near the surface and 0.4 kg m−3 at 10 m depth during calm weather, and 0.5 kg m−3 near the surface and 2 kg m−3 at 10 m depth during strong winds when bottom sediment was resuspended. Diurnal irradiance at 4 m depth was almost zero for 10 days. The sedimentation rate averaged 254 (±33) g m−2 d−1 over the 28-day study period, and concentrations of dissolved and particulate nutrients originating from the river were high. The observed low irradiance would have prevented coral photosynthesis, while the sedimentation rate would have been lethal to some juvenile corals. The mud may ultimately be minnowed out over long periods, however, flushing of the mud occurs at time scales much longer than the flood event and the mud is likely to affect coral physiology for significant periods after the flood has subsided. The data show the need to better control erosion on farmed land for the conservation of coral reefs on the inner shelf of the Great Barrier Reef.  相似文献   

18.
Along the southern Brazilian coast, Tijucas Bay is known for its unique muddy tidal flats associated with chenier plains. Previous field observations pointed to very high suspended sediment concentrations (SSCs) in the inner parts of the bay, and in the estuary of the Tijucas River, suggesting the presence of fluid mud. In this study, the occurrences of suspended sediments and fluid mud were examined during a larger-scale, high-resolution 2-day field campaign on 1–2 May 2007, encompassing survey lines spanning nearly 80 km, 75 water sampling stations for near-bottom density estimates, and ten sediment sampling stations. Wave refraction modeling provided qualitative wave energy estimates as a function of different incidence directions. The results show that SSC increases toward the inner bay near the water surface, but seaward near the bottom. This suggests that suspended sediment is supplied by the local rivers, in particular the Tijucas. Near-surface SSCs were of the order of 50 mg l−1 close to the shore, but exceeded 100 mg l−1 near the bottom in the deeper parts of the bay. Fluid mud thickness and location given by densimetry and echo-sounding agreed in some places, although being mostly discordant. The best agreement was observed where wave energy was high during the campaign. The discrepancy between the two methods may be an indication for the existence of fluid mud, which is recorded by one method but not the other. Agreement is considered to be an indication of fluidization, whereas disagreement indicates more consolidation. Wave modeling suggests that waves from the ENE and SE are the most effective in supplying energy to the inner bay, which may induce the liquefaction of mud deposits to form fluid mud. Nearshore mud resuspension and weak horizontal currents result in sediment-laden offshore flow, which explains the higher SSCs measured in the deeper parts of the bay, besides providing a mechanism for fine-sediment export to the inner shelf.  相似文献   

19.
Parallel laminated, graded, and homogeneous muds of turbidity current origin are the predominant facies in the non-fan slope-centered Ulleung marginal basin during the last glacial period. Dilute turbidity currents were probably generated from slumps, slides, and debris flows on the slope. A mid-slope core contains poorly sorted mud-clast muds of debris flow origin. During the period of 75,000 and 10,000 years BP, turbidity currents occurred approximately every 125 years, each depositing about 0.5 km3 of mud with an accumulation rate of up to 40 cm/103 years. The basin was largely suboxic with a rare incursion of bottom currents.  相似文献   

20.
The narrow shelf along the coast of central Vietnam is seasonally supplied by large amounts of sediment from the adjacent mountainous hinterland following monsoonal precipitation. This study examines the fate of these sediments, and their accumulation rates along two transects across the shelf, based on analyses of radionuclides (210Pb, 137Cs), sediment texture and structure, as well as carbonate content. The inner shelf is covered by sands, and probably serves as bypass zone for fine sediments transported offshore. Sediment characteristics suggest that the transport to the mid and outer shelf is related to flood events. Averaged over the last century, the 210Pb-based mud mass accumulation rates on the mid and outer shelf vary between 0.25 g cm −2 and 0.56 g cm −2 year −1 (corresponding to linear sediment accumulation rates of 0.20–0.47 cm year −1). Along with high excess 210Pb inventories, these high accumulation rates suggest a significant sediment depocentre on the mid shelf. The 210Pb-derived sediment accumulation rates were found to be several times higher than 14C-derived rates previously reported for the Holocene, at the same location on the outer shelf. This is probably due to the incompleteness of the Holocene record, and an overestimation of the modern rate. Another explanation would be increased erosion within the rivers’ drainage basins, due to 20th century deforestation. This hypothesis is supported by the difference between recent (less sand, more lithic grains in the sand fraction) and older sediments. In terms of modern sedimentation processes and rates, the central Vietnam shelf, although being a part of a narrow passive continental margin, is similar to active flood-dominated continental margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号