首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Akyaka section in the central Taurus region in the southern part of Turkey includes the organic matter and graptolite-rich black shales which were deposited under dysoxic to anoxic marine conditions in the Early Silurian. A biostratigraphical analysis, based on graptolite assemblages, indicates that the sediments studied may well be referable to the querichi Biozone and early Telychian, Llandovery. A total of 15 samples have been subjected to Leco and Rock-Eval pyrolysis and graptolite reflectance measurements for determination of their source rock characteristics and thermal maturity. The total organic carbon content of the graptolite-bearing shales varies from 1.75 to 3.52 wt% with an average value of 2.86 wt%. The present Rock-Eval pyrolytic yields and calculated values of hydrogen and oxygen indexes imply that the recent organic matter type is inert kerogen. The measured maximum graptolite reflectance (GRmax %) values are between 5.04% and 6.75% corresponding to thermally over maturity. This high maturity suggests a deep burial of the Lower Silurian sediments resulting from overburden rocks of Upper Paleozoic to Mesozoic Upper Cretaceous and Middle-Upper Eocene thrusts occurred in the region.  相似文献   

2.
The Shoushan Basin is an important hydrocarbon province in the Western Desert, Egypt, but the origin of the hydrocarbons is not fully understood. In this study, organic matter content, type and maturity of the Jurassic source rocks exposed in the Shoushan Basin have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. The Jurassic source rock succession comprises the Ras Qattara and Khatatba Formations, which are composed mainly of shales and sandstones with coal seams. The TOC contents are high and reached a maximum up to 50%. The TOC values of the Ras Qattara Formation range from 2 to 54 wt.%, while Khatatba Formation has TOC values in the range 1-47 wt.%. The Ras Qattara and Khatatba Formations have HI values ranging from 90 to 261 mgHC/gTOC, suggesting Types II-III and III kerogen. Vitrinite reflectance values range between 0.79 and 1.12 VRr %. Rock−Eval Tmax values in the range 438-458 °C indicate a thermal maturity level sufficient for hydrocarbon generation. Thermal and burial history models indicate that the Jurassic source rocks entered the mature to late mature stage for hydrocarbon generation in the Late Cretaceous to Tertiary. Hydrocarbon generation began in the Late Cretaceous and maximum rates of oil with significant gas have been generated during the early Tertiary (Paleogene). The peak gas generation occurred during the late Tertiary (Neogene).  相似文献   

3.
《Marine Chemistry》2005,93(1):53-73
The provenance of organic matter in sediments from the Mackenzie River and Beaufort Shelf was investigated using the stable carbon and radiocarbon isotopic compositions of bulk organic matter and the stable carbon isotopic compositions of individual organic compounds, including lignin-derived phenols and lipid-derived fatty acids. Most river suspended sediments and shelf surface sediments contained organic carbon characterized by highly depleted Δ14C values that were consistent with average radiocarbon ages exceeding 7000 years. The stable carbon isotopic signatures of lignin phenols were uniformly depleted (−25≥δ13C≥−32‰), indicating the predominant contributions of C3 vascular plant sources. The isotopic compositions of C14 and C16 fatty acids exhibited important contrasts between the river (−36‰ to −40‰) and shelf (−25‰ to −29‰) sediments that were consistent with contributions from freshwater algae and/or vascular plants in the former and marine phytoplankton in the latter. Using 14C isotopic mass balance, the abundances of modern and ancient organic matter were quantitatively constrained. The fate of organic matter in the Beaufort Shelf was explored by normalizing these abundances to the specific surface area of sediments. Ancient organic carbon, which may include old pre-aged soil material as well as fossil bitumen or kerogen, accounted for the majority (∼70%) of the particulate organic matter exported by the Mackenzie River and deposited in surface sediments of the Beaufort Shelf. Modern organic carbon accounted for ∼30% in both river and shelf sediments, with significant contributions from vascular plant-derived materials in both river and shelf samples and from marine algae in the shelf sediments. Respiration (and/or leaching) of particle-bound marine organic matter dominates the carbon metabolism in the Mackenzie Delta/Beaufort Shelf region. However, land-derived pools, including modern carbon derived from vascular plants as well as ancient carbon also appeared to undergo a degree of post-depositional degradation prior to burial in the shelf. These novel source apportionments are reflected in an updated carbon budget for the study area.  相似文献   

4.
Poland is considered the most prospective country for shale gas production in Europe. Hydrocarbon generation/expulsion scenarios, drawn in the latest intensive exploration phases, tend to overestimate maturation levels when compared with brand new data acquired after recent drillings. We tested an integrated workflow to correlate published and original thermal maturity datasets for the Paleozoic to Jurassic successions cropping out in the Holy Cross Mountains. These successions, when preserved in subsurface, host the major source rocks in the area. The application of the workflow allowed us to highlight the burial and thermal evolutionary scenarios of the two tectono-stratigraphic blocks of the Holy Cross Mountains (Łysogòry and Kielce blocks) and to propose this approach as a tool for reducing levels of uncertainty in thermal maturity assessment of Paleozoic successions worldwide. In particular, published datasets including colour alteration indexes of Paleozoic microfossils (conodont, acritarchs) and vitrinite and graptolite reflectance data, show differences in levels of thermal maturity for the Łysogòry (mid mature to overmature) and Kielce (immature to late mature) blocks. Original data, derived from optical analysis, pyrolysis, and Raman spectroscopy on kerogen, and X-Ray diffraction on fine-grained sediments, mostly confirm and integrate published data distribution. 1D thermal models, constrained by these data, show burial and exhumation events of different magnitude, during the Late Cretaceous, for the Łysogòry (maximum burial depths of 9 km) and Kielce (burial depths of 6 km) blocks that have been related to the Holy Cross Fault polyphase activity. In the end, Palynomorph Darkness Index and Raman spectroscopy on kerogen, for Llandoverian and Cambrian rocks, turned out to be promising tools for assessing thermal maturity of Paleozoic organic facies devoid of vitrinite macerals.  相似文献   

5.
Fluid inclusion gases in minerals from shale hosted fracture-fill mineralization have been analyzed for stable carbon isotopic ratios of CH4 using a crushing device interfaced to an isotope ratio mass spectrometer (IRMS). The samples of Paleozoic strata under study originate from outcrops and wells in the Rhenish Massif and Campine Basin, Harz Mountains, and the upper slope of the Southern Permian Basin. Fracture-fill mineralization hosted by Mesozoic strata was sampled from drill cores in the Lower Saxony Basin. Some studied sites are candidates for shale gas exploration in Germany. Samples of Mesozoic strata are characterized by abundant calcite-filled horizontal fractures which preferentially occur in TOC-rich sections of the drilled sediments. Only rarely are vertical fractures filled with carbonates and/or quartz in drill cores from Mesozoic strata but in Paleozoic shale they occur frequently. The δ13C(CH4) values of fluid inclusions in calcite from horizontal fractures hosted by Mesozoic strata suggest that gaseous hydrocarbons were generated during the oil/early gas window and that the formation of horizontal fractures seems to be related to hydraulic expulsion fracturing. The calculated maturity of the source rocks at the time of gas generation lies below the maturity derived from measured vitrinite reflectance. Thus, the formation of horizontal fractures and trapping of gas that was generated in the oil and/or early gas window obviously occurred prior to maximal burial. Rapidly increasing vitrinite reflectance data seen locally can be explained by hydrothermal alteration, as indicated by increasing δ13C (CH4–CO2) values in fluid inclusions. The formation of vertical fractures in studied Mesozoic sediments is related to stages of post-burial inversion; gas-rich inclusions in fracture filling minerals recorded the migration of gas that had probably been generated instantaneously, rather than cumulatively, from high to overmature source rocks. Since no evidence is given for the presence of early generated gas in studied Paleozoic shale, it appears likely that major gas loss from shales occurred due to deformation and uplift of these sediments in response to the Variscan Orogeny.  相似文献   

6.
A three-dimensional reconstruction of burial and palaeogeothermal conditions is presented for Miocene sediments of the Carpathian Foredeep beneath the Outer Western Carpathians fold and trust belt in the eastern part of the Czech Republic. The sedimentary units involved include autochthonous Paleozoic sequences, Miocene deposits of the Carpathian Foredeep and of the Western Carpathian nappe system. Reservoir rocks with economic oil and gas accumulations occur in the fractured crystalline basement and in the Neogene Carpathian Foredeep. The studied Vizovice area, is characterized by rocks representing both Variscan and Carpathian orogenic cycles. The 3D thermal maturity and subsidence model presented allows the significance of both tectonic events to be evaluated. The model, calibrated by vitrinite reflectance from eight boreholes proved that eroded units related to the Variscan orogeny approach, in amount, those eroded during the Carpathian orogeny. The thickness of the eroded rocks does not exceed 300 m in either case. Vitrinite reflectance data from representative core samples of the Miocene organic matter show that Rr values increase with depth from 0.36 to 0.58%. A re-evaluation of archival data on the quantity and quality of organic matter shows that total organic carbon ranges from 0.20 to 2.92 wt%, and residual hydrocarbons (S2) from 0.04 to 8.48 mg HC/g rock. These results lead to the conclusion that Neogene Unit II that was interpreted as coastline-through to shallow-marine deposition environment within the Carpathian Foredeep in the Czech Republic is potential source rock for hydrocarbon accumulations.  相似文献   

7.
Uppermost Jurassic and Lower Cretaceous strata of the Silesian Nappe of the Outer Western Carpathians contain large amounts of shale, which can, under favourable conditions, become source rocks for hydrocarbons. This study analysed 45 samples from the area of Czech Republic by the means of palynofacies analysis, thermal alteration index (TAI) of palynomorphs and total organic carbon (TOC) content to determine the kerogen type, hydrocarbon source rock potential, and to interpret the depositional environment. Uppermost Jurassic Vendryně Formation and Lower Cretaceous Formations (Těšín Limestone, Hradiště and Lhoty) reveal variable amount of mostly gas prone type III kerogen. Aptian Veřovice Formation has higher organic matter content (over 3 wt.%) and oil-prone type II kerogen. Organic matter is mature to overmature and hydrocarbon potential predisposes it as a source of gas. Aptian black claystones of the Veřovice Fm. are correlatable with oceanic anoxic event 1 (OAE1).  相似文献   

8.
To study the sedimentary environment of the Lower Cambrian organic-rich shales and isotopic geochemical characteristics of the residual shale gas, 20 black shale samples from the Niutitang Formation were collected from the Youyang section, located in southeastern Chongqing, China. A combination of geochemical, mineralogical, and trace element studies has been performed on the shale samples from the Lower Cambrian Niutitang Formation, and the results were used to determine the paleoceanic sedimentary environment of this organic-rich shale. The relationships between total organic carbon (TOC) and total sulfur (TS) content, carbon isotope value (δ13Corg), trace element enrichment, and mineral composition suggest that the high-TOC Niutitang shale was deposited in an anoxic environment and that the organic matter was well preserved after burial. Stable carbon isotopes and biomarkers both indicate that the organic matter in the Niutitang black shales was mainly derived from both lower aquatic organisms and algaes and belong to type I kerogen. The oil-prone Niutitang black shales have limited residual hydrocarbons, with low values of S2, IH, and bitumen A. The carbon isotopic distribution of the residual gas indicate that the shale gas stored in the Niutitang black shale was mostly generated from the cracking of residual bitumen and wet gas during a stage of significantly high maturity. One of the more significant observations in this work involves the carbon isotope compositions of the residual gas (C1, C2, and C3) released by rock crushing. A conventional δ13C1–δ13C2 trend was observed, and most δ13C2 values of the residual gases are heavier than those of the organic matter (OM) in the corresponding samples, indicating the splitting of ethane bonds and the release of smaller molecules, leading to 13C enrichment in the residual ethane.  相似文献   

9.
Deposition of organic rich black shales and dark gray limestones in the Berriasian-Turonian interval has been documented in many parts of the world. The Early Cretaceous Garau Formation is well exposed in Lurestan zone in Iran and is composed of organic-rich shales and argillaceous limestones. The present study focuses on organic matter characterization and source rock potential of the Garau Formations in central part of Lurestan zone. A total of 81 core samples from 12 exploratory wells were subjected to detailed geochemical analyses. These samples have been investigated to determine the type and origin of the organic matter as well as their petroleum-generation potential by using Rock-Eval/TOC pyrolysis, GC and GCMS techniques. The results showed that TOC content ranges from 0.5 to 4.95 percent, PI and Tmax values are in the range of 0.2 and 0.6, and 437 and 502 °C. Most organic matter is marine in origin with sub ordinary amounts of terrestrial input suggesting kerogen types II-III and III. Measured vitrinite reflectance (Rrandom%) values varying between 0.78 and 1.21% indicating that the Garau sediments are thermally mature and represent peak to late stage of hydrocarbon generation window. Hydrocarbon potentiality of this formation is assessed fair to very good capable of generating chiefly gas and some oil. Biomarker characteristics are used to provide information about source and maturity of organic matter input and depositional environment. The relevant data include normal alkane and acyclic isoprenoids, distribution of the terpane and sterane aliphatic biomarkers. The Garau Formation is characterized by low Pr/Ph ratio (<1.0), high concentrations of C27 regular steranes and the presence of tricyclic terpanes. These data indicated a carbonate/shale source rock containing a mixture of aquatic (algal and bacterial) organic matter with a minor terrigenous organic matter contribution that was deposited in a marine environment under reducing conditions. The results obtained from biomarker characteristics also suggest that the Garau Formation is thermally mature which is in agreement with the results of Rock-Eval pyrolysis.  相似文献   

10.
Palynological and biomarker characteristics of organic facies recovered from Cretaceous–Miocene well samples in the Ras El Bahar Oilfield, southwest Gulf of Suez, and their correlation with lithologies, environments of deposition and thermal maturity have provided a sound basis for determining their source potential for hydrocarbons. In addition to palynofacies analysis, TOC/Rock-Eval pyrolysis, kerogen concentrates, bitumen extraction, carbon isotopes and saturated and aromatic biomarkers enable qualitative and quantitative assessments of sedimentary organic matter to be made. The results obtained from Rock-Eval pyrolysis and molecular biomarker data indicate that most of the samples come from horizons that have fair to good hydrocarbon generation potential in the study area. The Upper Cretaceous–Paleocene-Lower Eocene samples contain mostly Type-II to Type-III organic matter with the capability of generating oil and gas. The sediments concerned accumulated in dysoxic–anoxic marine environments. By contrast, the Miocene rocks yielded mainly Type-III and Type-II/III organic matter with mainly gas-generating potential. These rocks reflect deposition in a marine environment into which there was significant terrigenous input. Three palynofacies types have been recognized. The first (A) consists of Type-III gas-prone kerogen and is typical of the Early–Middle Miocene Belayim, Kareem and upper Rudeis formations. The second (B) has mixed oil and gas features and characterizes the remainder of the Rudeis Formation. The third association (C) is dominated by amorphous organic matter, classified as borderline Type-II oil-prone kerogen, and is typical of the Matulla (Turonian–Santonian) and Wata (Turonian) formations. Rock-Eval Tmax, PI, hopane and sterane biomarkers consistently indicate an immature to early mature stage of thermal maturity for the whole of the studied succession.  相似文献   

11.
Oil samples from Lower Cretaceous to Eocene reservoirs in southwest Iran were analyzed using gas chromatography–mass spectrometry and gas chromatography–isotope ratio mass spectrometry for genetic classification of oil families and determining their maturity. The Studied oil samples are non-biodegraded and their gravity range from 18.3 to 37° API. The slight even/odd n-alkane predominance, coupled with low Pr/Ph values, suggests their likely source rocks with a predominance of algal organic matter, type IIS kerogen deposited under strongly reducing marine environments. The biomarker distribution of investigated oils is characterized by high concentration of both C29 and C30 hopanes and ratios of C29/C30H are generally greater than unity. There is a marked predominance of C29 regular sterane over C27 and C28 homologs in our studied oils. High sterane/hopane values and cross plot of the δ13C sat versus δ13C aro show contribution of marine organic matter. Medium value of gammacerane index and other salinity indices show water density stratification and high salinity conditions of the environment of deposition. It can be concluded that the studied reservoirs, due to their variable maturity have different API gravity and contain two oil families (types A and B) with latter being deeper and comprising more mature oils.  相似文献   

12.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

13.
Although extensive studies have been conducted on unconventional mudstone (shales) reservoirs in recent years, little work has been performed on unconventional tight organic matter-rich, fine-grained carbonate reservoirs. The Shulu Sag is located in the southwestern corner of the Jizhong Depression in the Bohai Bay Basin and filled with 400–1000 m of Eocene lacustrine organic matter-rich carbonates. The study of the organic matter-rich calcilutite in the Shulu Sag will provide a good opportunity to improve our knowledge of unconventional tight oil in North China. The dominant minerals of calcilutite rocks in the Shulu Sag are carbonates (including calcite and dolomite), with an average of 61.5 wt.%. The carbonate particles are predominantly in the clay to silt size range. Three lithofacies were identified: laminated calcilutite, massive calcilutite, and calcisiltite–calcilutite. The calcilutite rocks (including all the three lithofacies) in the third unit of the Shahejie Formation in the Eocene (Es3) have total organic carbon (TOC) values ranging from 0.12 to 7.97 wt.%, with an average of 1.66 wt.%. Most of the analyzed samples have good, very good or excellent hydrocarbon potential. The organic matter in the Shulu samples is predominantly of Type I to Type II kerogen, with minor amounts of Type III kerogen. The temperature of maximum yield of pyrolysate (Tmax) values range from 424 to 452 °C (with an average of 444 °C) indicating most of samples are thermally mature with respect to oil generation. The calcilutite samples have the free hydrocarbons (S1) values from 0.03 to 2.32 mg HC/g rock, with an average of 0.5 mg HC/g rock, the hydrocarbons cracked from kerogen (S2) yield values in the range of 0.08–57.08 mg HC/g rock, with an average of 9.06 mg HC/g rock, and hydrogen index (HI) values in the range of 55–749 mg HC/g TOC, with an average of 464 mg HC/g TOC. The organic-rich calcilutite of the Shulu Sag has very good source rock generative potential and have obtained thermal maturity levels equivalent to the oil window. The pores in the Shulu calcilutite are of various types and sizes and were divided into three types: (1) pores within organic matter, (2) interparticle pores between detrital or authigenic particles, and (3) intraparticle pores within detrital grains or crystals. Fractures in the Shulu calcilutite are parallel to bedding, high angle, and vertical, having a significant effect on hydrocarbon migration and production. The organic matter and dolomite contents are the main factors that control calcilutite reservoir quality in the Shulu Sag.  相似文献   

14.
In three sections in the Kara Sea, the contents of the dissolved and particulate organic carbon (the DOC and POC, respectively), as well as of the organic carbon of the bottom sediments (Corg) were determined. The contents of varied from 6.3 to 2400 μg/l for the DOC and from 0.84 to 12.2 mg of C/l for the POC. The average concentrations for all the samples tested amounted to 200 μg/l for the DOC (n = 78, σ = 368) and 2.7 mg/l for the POC (n = 92, σ = 2.7). The concentrations of Corg in the samples of the upper layer of the bottom sediments of the area treated varied from 0.13 to 2.10% of the dry substance at an average value of 0.9% (n = 21, σ= 0.49%). It is shown that the distribution of the different forms of organic matter (OM) is an indicator of the supply and spreading of the particulate matter in the Kara Sea and that the DOC and POC of the Kara Sea are formed under the impact of the runoff of the Ob and Yenisei river waters. It is found that the distribution of the OM of the bottom sediments in the surveyed area of the Kara Sea is closely related to their grain-size composition and to the structure of the currents in the area studied. The variations in the Corg content in the bottom sediment cores from the zone of riverine and marine water mixing represent the variability of the OM burial.  相似文献   

15.
The presence of a strongly developed oxygen minimum zone (OMZ; [O2]<2 μM) in the northeastern Arabian Sea affords the opportunity to investigate whether oxygen deficiency in bottom waters enhances the preservation of organic matter in the underlying sediments. We explored if the observed patterns of organic matter accumulation could be explained by differences in productivity, sedimentation rate, water depth, and mineral texture. The differences in the burial rates of organic matter in sediments deposited within or below the OMZ could not be explained on the basis of these factors. All collected evidence points to a coupling of low oxygen concentrations and enhanced organic matter preservation. Under more oxygenated conditions bioturbation as well as the presence of labile manganese and iron oxides are probably important factors for a more efficient microbially mediated degradation of organic matter. Pore water profiles of dissolved Mn2+ and Fe2+ show that reduction of manganese and iron oxides plays a minor role in sediments lying within the OMZ and a larger role in sediments lying below the OMZ.  相似文献   

16.
The non-marine Fushun Basin in NE China is a fault-controlled basin filled with Eocene sediments. It hosts the largest opencast coal and oil shale mine in Asia. A single thick oil shale layer overlying sub-bituminous coal occurs within the Middle Eocene Jijuntun Formation. Based on mineralogy, inorganic and organic geochemistry, organic petrography, stable isotope geochemistry, and vitrinite reflectance measurements, the depositional environment and the oil shale potential of the oil shale-bearing succession were investigated. The Jijuntun Formation is subdivided into a lower and an upper unit characterized by a low and high quality oil shale, respectively. The thick oil shale layer of the Jijuntun Formation developed under long-lasting stable conditions in a deep freshwater lake, after drowning of a swamp. The organic matter in the lower unit is characterized by landplant-derived macerals. The sediments containing a type II kerogen (HI: ∼400 mgHC/gTOC) were deposited during warm and humid conditions. Lacustrine organisms predominant in the upper unit are forming kerogen type I (HI: ∼700 mgHC/gTOC). High bioproductivity and excellent preservation conditions resulted in high TOC contents up to 23.6 wt.% in the upper unit. The organic matter preservation was controlled by photic zone anoxia originating in a temperature stratified water column in the deep lake, without significant changes in bottom water salinity. Mid-Eocene cooling during deposition of the upper unit of the Jijuntun Formation is reflected by clay mineral composition. A hot and arid climate favoring brackish conditions in a shallow lake prevailed during accumulation of the overlying carbonate-rich Xilutian Formation. Individual geochemical parameters in the Fushun Basin have to be used with caution, e.g. the maturity proxy Tmax is affected by kerogen type, the redox proxy Pr/Ph ratio is probably biased by different sources of isoprenoids. This demonstrates the importance of multi-proxy studies.  相似文献   

17.
The Upper Cretaceous Mukalla coals and other organic-rich sediments which are widely exposed in the Jiza-Qamar Basin and believed to be a major source rocks, were analysed using organic geochemistry and petrology. The total organic carbon (TOC) contents of the Mukalla source rocks range from 0.72 to 79.90% with an average TOC value of 21.50%. The coals and coaly shale sediments are relatively higher in organic richness, consistent with source rocks generative potential. The samples analysed have vitrinite reflectance in the range of 0.84–1.10 %Ro and pyrolysis Tmax in the range of 432–454 °C indicate that the Mukalla source rocks contain mature to late mature organic matter. Good oil-generating potential is anticipated from the coals and coaly shale sediments with high hydrogen indices (250–449 mg HC/g TOC). This is supported by their significant amounts of oil-liptinite macerals are present in these coals and coaly shale sediments and Py-GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30. The shales are dominated by Type III kerogen (HI < 200 mg HC/g TOC), and are thus considered to be gas-prone.One-dimensional basin modelling was performed to analysis the hydrocarbon generation and expulsion history of the Mukalla source rocks in the Jiza-Qamar Basin based on the reconstruction of the burial/thermal maturity histories in order to improve our understanding of the of hydrocarbon generation potential of the Mukalla source rocks. Calibration of the model with measured vitrinite reflectance (Ro) and borehole temperature data indicates that the present-day heat flow in the Jiza-Qamar Basin varies from 45.0 mW/m2 to 70.0 mW/m2 and the paleo-heat flow increased from 80 Ma to 25 Ma, reached a peak heat-flow values of approximately 70.0 mW/m2 at 25 Ma and then decreased exponentially from 25 Ma to present-day. The peak paleo-heat flow is explained by the Gulf of Aden and Red Sea Tertiary rifting during Oligocene-Middle Miocene, which has a considerable influence on the thermal maturity of the Mukalla source rocks. The source rocks of the Mukalla Formation are presently in a stage of oil and condensate generation with maturity from 0.50% to 1.10% Ro. Oil generation (0.5% Ro) in the Mukalla source rocks began from about 61 Ma to 54 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 25 Ma to 20 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Mukalla source rocks began from 15 Ma to present-day.  相似文献   

18.
Structured organic matters of the Palynomorphs of mainly dinoflagellate cysts are used in this study for dating the limestone, black shale, and marl of the Middle Jurassic (Bajocian–Bathonian) Sargelu Formation, Upper Jurassic (Upper Callovian – Lower Oxfordian) Naokelekan Formation, Upper Jurassic (Kimeridgian and Oxfordian) Gotnia and Barsarine Formations, and Upper Jurassic – Lower Cretaceous (Tithonian-Beriassian) Chia Gara source rock Formations while spore species of Cyathidites australis and Glechenidites senonicus are used for maturation assessments of this succession. Materials' used for this palynological study are 320 core and cutting samples of twelve oil wells and three outcrops in North Iraq.Terpane and sterane biomarker distributions, as well as stable isotope values, were determined for oils potential source rock extracts of Jurassic-Lower Cretaceous strata to determine valid oil-to-source rock correlations in North Iraq. Two subfamily carbonate oil types-one of Middle Jurassic age (Sargelu) carbonate rock and the other of mixed Upper Jurassic/Cretaceous age (Chia Gara) with Sargelu sources as well as a different oil family related to Triassic marls, were identified based on multivariate statistical analysis (HCA & PCA). Middle Jurassic subfamily A oils from Demir Dagh oil field correlate well with rich, marginally mature, Sargelu source rocks in well Mk-2 near the city of Baiji. In contrast, subfamily B oils have a greater proportion of C28/C29 steranes, indicating they were generated from Upper Jurassic/Lower Cretaceous carbonates such as those at Gillabat oil field north of Mansuriyah Lake. Oils from Gillabat field thus indicate a lower degree of correlation with the Sargelu source rocks than do oils from Demir Dagh field.Palynofacies assessments are performed for this studied succession by ternary kerogen plots of the phytoclast, amorphous organic matters, and palynomorphs. From the diagram of these plots and maturation analysis, it could be assessed that the formations of Chia Gara and Sargelu are both deposited in distal suboxic to anoxic basin and can be correlated with kerogens classified microscopically as Type A and Type B and chemically as Type II. The organic matter, comprised principally of brazinophyte algae, dinoflagellate cysts, spores, pollen, foraminifera test linings, and phytoclasts in all these formations and hence affected with upwelling current. These deposit contain up to 18 wt% total organic matters that are capable to generate hydrocarbons within mature stage of thermal alteration index (TAI) range in Stalplin's scale (Staplin, 1969) of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation. Case study examples of these oil prone strata are; one 7-m (23-ft) thick section of the Sargelu Formation averages 44.2 mg HC/g S2 and 439 °C Tmax (Rock-Eval pyrolysis analyses) and 16 wt% TOC especially in well Mk-2 whereas, one 8-m (26-ft) thick section of the Chia Gara and 1-m (3-ft) section of Naokelekan Formations average 44.5 mg HC/g S2 and 440 °C Tmax and 14 wt% TOC especially in well Aj-8. One-dimension, petroleum system models of key wells using IES PetroMod Software can confirm their oil generation capability.These hydrocarbon type accumulation sites are illustrated in structural cross sections and maps in North Iraq.  相似文献   

19.
The Yanshiping section, which includes the Quemo Co, Buqu, Xiali, Suowa and Xueshan Formations (Yanshiping Group) exposes organic-rich Middle to Late Jurassic deposits in the Qiangtang Basin of northern Tibet. The biostratigraphic data, from bivalves, brachiopods as well as dinoflagellate cysts, define a Bajocian to Tithonian age. This study focuses on the biomarkers present in these mudstones and limestones to determine the sources, thermal maturity and depositional environment of the organic matter. Most samples show a clear dominance of short-chain (C15–C20) n-alkanes with a maximum at C19 or C19 with a secondary maximum at C23 except for the sample BP01(22)S1 where the predominant range is C22 to C26 with a maximum at C24, significant CPI and odd-to-even predominance. The hopanoids and steroids suggest that the sources of organic matter were dominated by phytoplankton, especially algae, as the primary source. Furthermore, the Pr/Ph, Pr/nC17 and Ph/nC18, with relatively low values plus high abundance of 17α(H)-hopanes, support deposition in dysoxic to reducing, relatively shallow-water depositional settings, and the presence of gammacerane indicates normal marine salinity and/or water-column stratification. All samples are fairly mature with respect to petroleum generation, a conclusion supported by maturity parameters such as C31 22S/(22S + 22R) hopanes and C29 ααα20S/(20S + 20R) steranes.  相似文献   

20.
A reconnaissance study of potential hydrocarbon source rocks of Paleozoic to Cenozoic age from the highly remote New Siberian Islands Archipelago (Russian Arctic) was carried out. 101 samples were collected from outcrops representing the principal Paleozoic-Cenozoic units across the entire archipelago. Organic petrological and geochemical analyses (vitrinite reflectance measurements, Rock-Eval pyrolysis, GC-MS) were undertaken in order to screen the maturity, quality and quantity of the organic matter in the outcrop samples. The lithology varies from continental sedimentary rocks with coal particles to shallow marine carbonates and deep marine black shales. Several organic-rich intervals were identified in the Upper Paleozoic to Lower Cenozoic succession. Lower Devonian shales were found to have the highest source rock potential of all Paleozoic units. Middle Carboniferous-Permian and Triassic units appear to have a good potential for natural gas formation. Late Mesozoic (Cretaceous) and Cenozoic low-rank coals, lignites, and coal-bearing sandstones also display a potential for gas generation. Kerogen type III (humic, gas-prone) dominates in most of the samples, and indicates deposition in lacustrine to coastal paleoenvironments. Most of the samples (except some of Cretaceous and Paleogene age) reached oil window maturities, whereas the Devonian to Carboniferous units shared a maturity mainly within the gas window.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号