首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2008年7月至9月,中国第3次北极科学考察期间,在走航路线上利用黑碳仪对黄海-日本海-鄂霍次克海-西北太平洋-白令海-楚科奇海-加拿大海盆等海区上的黑碳气溶胶浓度进行连续观测,最北观测位置达85°21.3′N.观测结果显示,北冰洋是全航线黑碳浓度最低的海区,平均浓度为(5.3±3.7)ng/m3;在70°N以北的海区...  相似文献   

2.
Since 2000 long-term measurements of vertical particle flux have been performed with moored sediment traps at the long-term observatory HAUSGARTEN in the eastern Fram Strait (79°N/4°E). The study area, which is seasonally covered with ice, is located in the confluence zone of the northward flowing warm saline Atlantic water with cold, low salinity water masses of Arctic origin. Current projections suggest that this area is particularly vulnerable to global warming. Total matter fluxes and components thereof (carbonate, particulate organic carbon and nitrogen, biogenic silica, biomarkers) revealed a bimodal seasonal pattern showing elevated sedimentation rates during May/June and August/September. Annual total matter flux (dry weight, DW) at ~300 m depth varied between 13 and 32 g m?2 a?1 during 2000 and 2005. Of this total flux 6–13% was due to CaCO3, 4–21% to refractory particulate organic carbon (POC), and 3–8% to biogenic particulate silica (bPSi). The annual flux of all biogenic components together was almost constant during the period studied (8.5–8.8 g m?2 a?1), although this varied from 27% to 67% of the total annual flux. The fraction was lowest in a year characterized by the longest duration of ice coverage (91 and 70 days for the calendar year and summer season, May–September, respectively). Biomarker analyses revealed that organic matter originating from marine sources was present in excess of terrigenious material in the sedimented matter throughout most of the study period. Fluxes of recognizable phyto- and protozooplankton cells amounted up to 60×106 m?2 d?1. Diatoms and coccolithophorids were the most abundant organisms. Diatoms, mainly pennate species, dominated during the first years of the investigation. A shift in the composition occurred during the last year when numbers of diatoms declined considerably, leading to a dominance of coccolithoporids. This was also reflected in a decrease in the sedimentation of bPSi. The sedimentation of biogenic matter, however, did not differ from the amount observed during the previous years. Among the larger organisms, pteropods at times contributed significantly to both the total matter and CaCO3, fluxes.  相似文献   

3.
2016年8月7-14日中国第七次北极科学考察期间,在83°N附近设立的长期浮冰站开展了辐射和湍流通量观测研究。结果表明,观测期间反照率变化范围为0.64~0.92,平均反照率为0.78;基于现场观测数据评估了PW79、HIRHAM、ARCSYM和CCSM3 4种不同复杂度的反照率参数化方案在天气尺度的表现,最为复杂的CCSM3结果优于其他参数化方案,但不能体现降雪条件下的反照率快速增长。浮冰区冰雪面平均净辐射为18.10 W/m2,平均感热通量为1.73 W/m2,平均潜热通量为5.55 W/m2,海冰表面消融率为(0.30±0.22) cm/d,表明此时北冰洋浮冰正处于快速消融期。冰面的平均动量通量为0.098(kg·m/s)/(m2·s),动量通量与风速有很好的对应关系,相关系数达0.80。  相似文献   

4.
The flux of ammonia, phosphate, silica and radon-222 from Potomac tidal river and estuary sediments is controlled by processes occurring at the sediment-water interface and within surficial sediment. Calculated diffusive fluxes range between 0·6 and 6·5 mmol m?2 day?1 for ammonia, 0·020 and 0·30 mmol m?2 day?1 for phosphate, and 1·3 and 3·8 mmol m?2 day?1 for silica. Measured in situ fluxes range between 1 and 21 mmol m?2 day?1 for ammonia, 0·1 and 2·0 mmol m?2 day?1 for phosphate, and 2 and 19 mmol m?2 day?1 for silica. The ratio of in situ fluxes to diffusive fluxes (flux enhancement) varied between 1·6 and 5·2 in the tidal river, between 2·0 and 20 in the transition zone, and from 1·3 to 5·1 in the lower estuary. The large flux enhancements from transition zone sediments are attributed to macrofaunal irrigation. Nutrient flux enhancements are correlated with radon flux enhancements, suggesting that fluxes may originate from a common region and that nutrients are regenerated within the upper 10–20 cm of the sediment column.The low fluxes of phosphate from tidal viver sediments reflect the control benthic sediment exerts on phosphorus through sorption by sedimentary iron oxyhydroxides. In the tidal river, benthic fluxes of ammonia and phosphate equal one-half and one-third of the nutrient input of the Blue Plains sewage treatment plant. In the tidal Potomac River, benthic sediment regeneration supplies a significant fraction of the nutrients utilized by primary producers in the water column during the summer months.  相似文献   

5.
Multiple biotic and abiotic drivers regulate the balance between CO2 assimilation and release in surface waters. In the present study, we compared in situ measurements of plankton carbon metabolism (primary production and respiration) to calculated air–water CO2 fluxes (based on abiotic parameters) during 1 year (2008) in a hypereutrophic tropical estuary (Recife Harbor, NE Brazil – 08°03′S, 34°52′W) to test the hypothesis that high productivity leads to a net CO2 flux from the atmosphere. The calculated CO2 fluxes through the air–water interface (FCO2) were negative throughout the year (FCO2: –2 to –9 mmol C·m?2·day?1), indicating that Recife Harbor is an atmospheric CO2 sink. Respiration rates of the plankton community ranged from 2 to 45 mmol C·m?2·hr?1. Gross primary production ranged from 0.2 to 281 mmol C·m?2·hr?1, exceeding respiration during most of the year (net autotrophy), except for the end of the wet season, when the water column was net heterotrophic. The present results highlight the importance of including eutrophic tropical shallow estuaries in global air–water CO2 flux studies, in order to better understand their role as a sink of atmospheric CO2.  相似文献   

6.
Hydrographic, geochemical, and direct velocity measurements along two zonal (7.5°N and 4.5°S) and two meridional (35°W and 4°W) lines occupied in January–March, 1993 in the Atlantic are combined in an inverse model to estimate the circulation. At 4.5°S, the Warm Water (potential temperature θ>4.5°C) originating from the South Atlantic enters the equatorial Atlantic, principally at the western boundary, in the thermocline-intensified North Brazil Undercurrent (33±2.7×106 m3 s−1 northward) and in the surface-intensified South Equatorial Current (8×106 m3 s−1 northward) located to the east of the North Brazil Undercurrent. The Ekman transport at 4.5°S is southward (10.7±1.5×106 m3 s−1). At 7.5°N, the Western Boundary Current (WBC) (17.9±2×106 m3 s−1) is weaker than at 4.5°S, and the northward flow of Warm Water in the WBC is complemented by the basin-wide Ekman flow (12.3±1.0×106 m3 s−1), the net contribution of the geostrophic interior flow of Warm Water being southward. The equatorial Ekman divergence drives a conversion of Thermocline Water (24.58⩽σ0<26.75) into Surface Water (σ0<24.58) of 7.5±0.5×106 m3 s−1, mostly occurring west of 35°W. The Deep Water of northern origin flows southward at 7.5°N in an energetic (48±3×106 m3 s−1) Deep Western Boundary Current (DWBC), whose transport is in part compensated by a northward recirculation (21±4.5×106 m3 s−1) in the Guiana Basin. At 4.5°S, the DWBC is much less energetic (27±7×106 m3 s−1 southward) than at 7.5°N. It is in part balanced by a deep northward recirculation east of which alternate circulation patterns suggest the existence of an anticyclonic gyre in the central Brazil Basin and a cyclonic gyre further east. The deep equatorial Atlantic is characterized by a convergence of Lower Deep Water (45.90⩽σ4<45.83), which creates an upward diapycnal transport of 11.0×106 m3 s−1 across σ4=45.83. The amplitude of this diapycnal transport is quite sensitive to the a priori hypotheses made in the inverse model. The amplitude of the meridional overturning cell is estimated to be 22×106 m3 s−1 at 7.5°N and 24×106 m3 s−1 at 4.5°S. Northward heat transports are in the range 1.26–1.50 PW at 7.5°N and 0.97–1.29 PW at 4.5°S with best estimates of 1.35 and 1.09 PW.  相似文献   

7.
The Arctic Ocean is connected to the Pacific by the Bering Sea and the Bering Strait. During the 4th Chinese National Arctic Research Expedition, measurements of carbon tetrachloride (CCl4) were used to estimate ventilation time-scales and anthropogenic CO2 (Cant) concentrations in the Arctic Ocean and Bering Sea based on the transit time distribution method. The profile distribution showed that there was a high-CCl4 tongue entering through the Canada Basin in the intermediate layer (27.6?<?σθ?<?28), at latitudes between 78 and 85°N, which may be related to the inflow of Atlantic water. Between stations B09 and B10, upwelling appeared to occur near the continental slope in the Bering Sea. The ventilation time scales (mean ages) for deep and bottom water in the Arctic Ocean (~?230–380 years) were shorter than in the Bering Sea (~?430–970 years). Higher mean ages show that ventilation processes are weaker in the intermediate water of the Bering Sea than in the Arctic Ocean. The mean Cant column inventory in the upper 4000 m was higher (60–82 mol m?2) in the Arctic Ocean compared to the Bering Sea (35–48 mol m?2).  相似文献   

8.
The geographical distribution of barotropic to baroclinic transfer of tidal energy by baroclinic wave drag in the abyssal ocean is estimated. Using tidal velocities from a state-of-the-art numerical tidal model, the total loss of barotropic tidal energy in the deep ocean (between 70°S and 70°N and at depths greater than 1000 m) is estimated to be about 0.7 TW (M2) corresponding to a mean value of the energy flux (e) of 2.4×10−3 W/m2. The distribution of e is however highly skewed with a median of about 10−6 W/m2. Only 10% of the area is responsible for more than 97% of the total energy transfer.To assess the possible influence of the relatively coarse bathymetry representation upon the present estimate, complementary calculations using better resolved sea floor topography are carried out over a control area around the Hawaiian Ridge. There are no major differences between the results achieved using the two different bathymetry databases. Fluxes of about 16 GW or 6×10−3 W/m2 are computed in both cases, and the main contributions to the total fluxes originate in the same range of e-values and cover equally large parts of the total area.It is not clear whether the present model is valid at flat or subcritical bottom slopes. However, for the Hawaiian region, only 2% of the total energy flux as calculated in the present study originates in areas of critical and subcritical slopes.  相似文献   

9.
The atmospheric, primary down-column and sedimentary fluxes of particulate aluminium (Alp) have been calculated for a number of regions in the Atlantic Ocean.The vertical down-column flux of Alp from Atlantic surface waters exhibits a strong geographical variation, and its magnitude is influenced by supply mechanisms, which control the surface Alp concentrations, and primary production, which affects the rate of down-column transport. Overall, the down-column transport of Alp is greatest in the marginal regions of the Atlantic. In the eastern margins the highest surface water concentrations are found in the region lying between ~30°N and ~10°N, i.e. under the general path of the northeast trades. In this region there is excellent agreement between the dry (i.e. 1 cm?1 s?1 deposition velocity) atmospheric flux (~80 000 ng Alp cm?2 y?1), the primary vertical down-column flux (? 70 000 ng Alp cm?2 y?1) and the sediment flux (~90 000 ng Alp cm?2 y?1). In the regions to the north (i.e. ~40°N to ~30°N) and to the south (i.e. ~10°N to ~5°S) the primary down-column Alp flux decreases to an average of ~19 000 μg cm?2 y?1, which makes a direct maximum contribution of ~20% of the sediment Alp requirement. In the open-ocean South Atlantic the primary down-column flux of Alp is ~3300 μg cm?2 y?1, this is similar to the dry (i.e. 1 cm?1 s?1 deposition velocity) atmospheric flux, and contributes ~20% of the Alp required by the underlying deep-sea sediment.  相似文献   

10.
The lithogenic flux of sediment trap material was analyzed from a three year time series (February 2002–March 2005) at 2000 m depth in the Northeast Atlantic (Kiel 276, 33°N, 22°W) with regards to the seasonal and interannual variability of flux intensity and mineralogy—by applying an automated particle SEM-EDX analysis (scanning electron microscope-energy dispersive X-ray analysis). The lithogenic flux shows strong interannual variations with highest lithogenic flux rates occurring during January–February and April–March coupled to the total particle flux. Mean lithogenic flux rates for the sample years are 7.1 (2002–2003), 5.1 (2003–2004) and 16.1 mg m?2 d?1 (2004–2005). Mineral assemblages from the three sample years reveal distinct major minerals related to specific source regions. Clay minerals dominate the lithogenic fraction within the years 2002 and 2004 with illite (2002–2003) and palygorskite (2003–2004) being the major clay minerals. During the year 2004–2005, quartz is the major lithogenic mineral accompanied by smectite. The mineral assemblages hint to a mixture of North African source areas with dominant sources in Mauritania and north western parts of NW Africa for the years 2002–2004 and central Sahara (Algeria–Mali) within the year 2004–2005.  相似文献   

11.
The annual flux of biologically produced organic carbon from surface waters is equivalent to annual net community production (NCP) at a steady state and equals the export of particulate and dissolved organic carbon (POC and DOC, respectively) to the ocean interior. NCP was estimated from carbon budgets of salinity-normalized dissolved inorganic carbon (nDIC) inventories at two time-series stations in the western subarctic (K2) and subtropical (S1) North Pacific Ocean. By using quasi-monthly biogeochemical observations from 2004 to 2013, monthly mean nDIC inventories were integrated from the surface to the annual maximum mixed layer depth and corrected for changes due to net air–sea CO2 exchange, net CaCO3 production, vertical diffusion from the upper thermocline, and horizontal advection. The annual organic carbon flux at K2 (1.49 ± 0.42 mol m?2 year?1) was lower than S1 (2.81 ± 0.53 mol m?2 year?1) (p < 0.001 based on t test). These fluxes consist of three components: vertically exported POC fluxes (K2: 1.43 mol m?2 year?1; S1: 2.49 mol m?2 year?1), vertical diffusive DOC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.25 mol m?2 year?1), and suspended POC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.07 mol m?2 year?1). The estimated POC export flux at K2 was comparable to the sum of the POC flux observed with drifting sediment traps and active carbon flux exported by migrating zooplankton. The export fluxes at both stations were higher than those reported at other time-series sites (ALOHA, the Bermuda Atlantic Time-series Study, and Ocean Station Papa).  相似文献   

12.
Abstract

The water chemistry, flora, and fauna of Lake Rotokawa (38° 37.8’ S, 176° 11.2'E) was studied in 1975–76. The mean pH is 2.1 and thermal inflows may elevate the mean summer temperature of the surface waters 4.2°c above that of nearby cold water Lake Rotongaio (18.9°c). The temperature range of surface water was from 10.1 °c in winter to 23.1°c in summer. The major anions were SO4 2? 679 g.m?3, and Cl‐ 314 g.m?3. Mean concentrations of major cations were Na+ 224 g.m?3, K+ 28.9 g.m?3, Ca2+ 13.3 g.m?3, and Mg2+ 2.6 g.m?3.

Two species of flagellate algae were recorded, of which Euglena anabaena was predominant. Only two benthic macroinvertebrates were found, larvae of Chironomus zealandicus, mean density 253 per square metre, and Helobdella sp., 1.3 per square metre.

The Parariki Stream was influenced by thermal springs in its upper and lower reaches, being cooler (24–25°c) about halfway along its length than near its source (27.8–39.0°c) or confluence (26.5°‐28.0°c) with the Waikato River. In the cooler stretch of the stream where unidentified benthic algae were not limited by high temperature, chlorophyll and total pigment increased from 3.9 to 377.9 mg.m?3 and from 17.5 to 534.4 mg.m?3 respectively, and nutrient levels fell (NO3‐N, 22–10.5 mg.m?3; NH4‐N, 6440–230 mg.m?3; and PO4‐P, 51–19 mg.m?3).  相似文献   

13.
The air exchange between the Arctic and midlatitude regions is one of the processes forming the climate of the whole Northern Hemisphere. Analysis of the wind regime in the vicinity of the Arctic border (70° N) at the boundary between the 20th and 21st (1997–2004) centuries showed significant changes in the conditions of a meridional air transport between the Arctic and midlatitude regions as compared to the previous years (1960–1990). In this study, the wind fluxes of mass and heat (internal) and kinetic energies are estimated without consideration for turbulent and convective processes. The importance of spatial, seasonal, and interannual variations in wind velocity and air temperature in the formation of these fluxes is analyzed. It is shown that, during the period 1997–2004, an advective transport of energy from the northern latitudes occurred in the lower 6-km tropospheric layer at 70° N latitude over almost a whole year. Only in spring (April) did the wind fluxes bring heat energy from the south. The total amount of both heat and kinetic energies transported from the Arctic region in this way during a year is comparable to the mean amount of these energies contained in the whole atmosphere over the area bounded by 70° N latitude. The current spatial and temporal distributions of wind velocity and meridional mass and energy fluxes, which are presented in this study, may serve as additional information for interpreting data obtained from different on-site measurements in Arctic regions.  相似文献   

14.
Using simultaneous sampling with a commercial-sized trawl, a zooplankton net, and a sediment trap, we evaluated the contribution of vertically migrating micronekton to vertical material transport (biological pump) at two stations (3°00′N, 146°00′E and 3°30′N, 145°20′E) in the western equatorial North Pacific. The gravitational sinking particulate organic carbon flux out of the euphotic zone was 54.8 mg C m−2 day−1. The downward active carbon flux by diel migrant mesozooplankton was 23.53 and 9.97 mg C m−2 day−1, and by micronekton 4.40 and 2.26mg C m−2 day−1 at the two stations. Assuming that the micronekton sampling efficiency of the trawl was 14%, we corrected the downward carbon flux due to micronekton respiration to 29.9 and 15.2mg C m−2 day−1, or 54.6 and 27.7% of the sinking particle flux at the two stations. The corrected micronekton gut fluxes were 1.53 and 0.97mg C m−2 day−1. The role of myctophid fish fecal matter as a possible food resource for deep-sea organisms, based on its fatty acid and amino acid analysis, is discussed.  相似文献   

15.
A 2-yr record of downward particle flux was obtained with moored sediment traps at several depths of the water column in two regions characterized by different primary production levels (mesotrophic and oligotrophic) of the eastern subtropical North Atlantic Ocean. Particle fluxes, of ∼71–78% biogenic origin (i.e. consisting of CaCO3, organic matter and opal) on average, decrease about six-fold from the mesotrophic site (highest fluxes in the North Atlantic) nearer the Mauritanian margin (18°30′N, 21°00′W) to the remote, open-ocean, oligotrophic site (21°00′N, 31°00′W). This decrease largely reflects the difference in total primary production between the two sites, from ∼260 to ∼110 g organic C m−2 yr−1. At both sites, temporal variability of the downward particle flux seems to be linked to westward surface currents, which are likely to transport seaward biomass-rich water masses from regions nearer the coast. The influence of coastal upwelling is marked at the mesotrophic site. The large differences between the 1991 and 1992 records at that site, where carbon export is large, underscore the interest of long-term studies for export budget estimates. The different productivity regimes at the two sites seem to induce contrasting downward modes of transport of the particulate matter, as shown in particular by the faster settling rates and the higher E ratio (particulate organic carbon export versus total primary production) estimated at the mesotrophic site.  相似文献   

16.
This study quantifies diapycnal mixing and vertical heat transfer in the Pacific side of the Arctic Ocean, where sea-ice cover has disappeared between July and September in the last few decades. We conducted microstructure measurements in the open water region around the Canada Basin from late summer to fall in 2009 and 2010 using R/V Mirai. In the study domain, the dissipation rate of turbulent kinetic energy, ε, is typically as low level as O(10?10) W kg?1, resulting in vertical heat diffusivity of O(10?7) m2 s?1, which is close to the molecular diffusivity of heat, suggesting comparatively little predominance of mechanical turbulent mixing. An exception is the case at the Barrow Canyon, where the strong baroclinic throughflow generates substantial vertical mixing, producing ε > O(10?7) W kg?1, because of the shear flow instability. Meanwhile, in the confluence region, where the warm/salty Pacific water and the cold/fresh Arctic basin water encounter, the micro-temperature profiles revealed a localized enhancement in vertical diffusivity of heat, reaching O(10?5) m2 s?1 or greater. In this region, an intrusion of warm Pacific water creates a horizontally interleaved structure, where the double-diffusive mixing facilitates vertical heat transfer between the intruding Pacific water and the surrounding basin waters.  相似文献   

17.
Fourteen temperature sections collected between July 2002 and May 2006 are analyzed to obtain estimates of the meridional heat transport variability of the South Atlantic Ocean. The methodology proposed in Part I is used to calculate the heat transport from temperature data obtained from high-density XBT profiles taken along transects from Cape Town, South Africa to Buenos Aires, Argentina. Salinity is estimated from Argo profiles and CTD casts for each XBT temperature observation using statistical relationships between temperature, latitude, longitude, and salinity computed along constant-depth surfaces. Full-depth temperature/salinity profiles are obtained by extending the profiles to the bottom of the ocean using deep climatological data. The meridional transport is then determined by using the standard geostrophic method, applying NCEP-derived Ekman transports, and requiring that salt flux through the Bering Straits be conserved. The results from the analysis indicate a mean meridional heat transport of 0.54 PW (PW=1015 W) with a standard deviation of 0.11 PW. The geostrophic component of the heat flux has a marked annual cycle following the variability of the Brazil Malvinas Confluence Front, and the geostrophic annual cycle is 180° out of phase with the annual cycle observed in the Ekman fluxes. As a result, the total heat flux shows significant interannual variability with only a small annual cycle. Uncertainties due to different wind products and locations of the sections are independent of the methodology used.  相似文献   

18.
In the framework of the German contribution to the Joint Global Ocean Flux Study (JGOFS), deep-water fluxes of particle-associated trace elements were measured in the northeast Atlantic Ocean. The sinking particles were collected almost continuously from 1992 to 1996 at three time-series stations, L1 (33°N/22°W), L2 (47°N/20°W), and L3 (54°N/21°W), using sediment traps. The focus of the present study is the temporal variability of the particle-associated elemental fluxes of Al, Ca, Cd, Co, Cu, Fe, Mn, Ni, P, Pb, Ti, V, and Zn at a depth of 2000 m.A clear seasonality of the fluxes that persisted for several years was documented for the southernmost station (L1) at stable oligotrophic conditions in the area of the North Atlantic Subtropical Gyre East (NASTE). At L2 and L3, an episodic nature of the elemental fluxes was determined. Mesoscale eddies are known to frequently cause temporal and spatial variability in the flux of biogenic components in that area. These events modified the simple seasonal pattern controlled by the annual cycle at L2, in the North Atlantic Drift Region (NADR), and at L3, which was influenced by the Atlantic Arctic province (ARCT). All stations were characterized by an additional episodic lithogenic atmospheric supply reaching the deep sea.The integrated annual fluxes during the multi-year study revealed similar flux magnitudes for lithogenic elements (Al, Co, Fe, Ti, and V) at L2 and L3 and roughly twofold fluxes at L1. Biogenic elements (Cd, P, and Zn) showed the opposite trend, i.e., two to fourfold higher values at L2 and L3 than at L1. For Mn, Ni, and Cu, the spatial differences were smaller, perhaps because of the intermediate behavior, between lithogenic and biogenic, of these elements. Similarly, among the three study sites, there were no noticeable differences in the total annual flux of Pb.The respective lithogenic fractions of the deep-sea fluxes of Cd, Co, Cu, Mn, Ni, V, and Zn were subtracted based on the amount of Al, with the average composition of the continental crust as reference. This procedure allowed estimation of the labile trace element fraction (TEexc) of the particles, i.e., TE taken up or scavenged during particle production and sedimentation. The ratios of TEexc/P clearly demonstrated an enrichment of TE over labile P from biogenic surface material to the deep sea for Zn (factor 4–6), Mn (12–27), Ni (3–5), and Cu (9–25); an intermediate status for Co (0.5–2.2); and depletion for Cd vs. P (0.2–0.4). Surprisingly, the recycling behavior of excess Co was found to be similar to that of P. Hence, Coexc behaved like a biogenic element; this is in contrast to total Co, which is dominated by the refractory lithogenic fraction.Moreover, it is argued that these excess elemental fluxes caused a loss of the dissolved elements in upper waters, since their transport reaches the deep-sea waters at 2000 m, a depth far below of deep-winter mixing and upwelling. The annual amount of excess TE exported from surface waters was estimated to be 1.3×109 mol Zn y?1, 4.4×109 mol Mn y?1, 4.9×108 mol Ni y?1, 2.2×107 mol Cd y?1, 7.4×108 mol Cu y?1, and 2.7×107 mol Co y?1 for the whole North Atlantic Ocean. Important primary sources that could replenish these losses are the aeolian and fluvial supply processes.  相似文献   

19.
The effects of tropical instability waves (TIW) within the eastern equatorial Pacific during the boreal fall of 2005 were observed in multiple data sets. The TIW cause oscillations of the sea surface temperature (SST), meridional currents (V), and 20 °C isotherm (thermocline). A particularly strong 3-wave packet of ~15-day period TIW passed through the Galápagos Archipelago in Sep and Oct 2005 and their effects were recorded by moored near-surface sensors. Repeat Argo profiles in the archipelago showed that the large temperature (>5 °C) oscillations that occurred were associated with a vertical adjustment within the water column. Numerical simulations report strong oscillations and upwelling magnitudes of ~5.0 m d?1 near the Tropical Atmosphere Ocean (TAO) buoy at 0°, 95°W and in the Archipelago at 92°W and 90°W. A significant biological response to the TIW passage was observed within the archipelago. Chlorophyll a measured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) increased by >30% above 1998–2007 mean concentrations within the central archipelago. The increases coincide with coldest temperatures and the much larger increases within the archipelago as compared to those of 95°W indicate that TIW induced upwelling over the island platform itself brought more iron-enriched upwelling waters into the euphotic zone.  相似文献   

20.
The structure of the annual-mean shallow meridional overturning circulation(SMOC) in the South China Sea(SCS) and the related water movement are investigated,using simple ocean data assimilation(SODA) outputs.The distinct clockwise SMOC is present above 400 m in the SCS on the climatologically annual-mean scale,which consists of downwelling in the northern SCS,a southward subsurface branch supplying upwelling at around 10°N and a northward surface flow,with a strength of about 1×10~6 m~3/s.The formation mechanisms of its branches are studied separately.The zonal component of the annual-mean wind stress is predominantly westward and causes northward Ekman transport above 50 m.The annual-mean Ekman transport across 18°N is about 1.2×10~6 m~3/s.An annual-mean subduction rate is calculated by estimating the net volume flux entering the thermocline from the mixed layer in a Lagrangian framework.An annual subduction rate of about 0.66×10~6m~3/s is obtained between 17° and 20°N,of which 87% is due to vertical pumping and 13% is due to lateral induction.The subduction rate implies that the subdution contributes significantly to the downwelling branch.The pathways of traced parcels released at the base of the February mixed layer show that after subduction water moves southward to as far as 11°N within the western boundary current before returning northward.The velocity field at the base of mixed layer and a meridional velocity section in winter also confirm that the southward flow in the subsurface layer is mainly by strong western boundary currents.Significant upwelling mainly occurs off the Vietnam coast in the southern SCS.An upper bound for the annual-mean net upwelling rate between 10° and 15°N is 0.7×10~6m~3/s,of which a large portion is contributed by summer upwelling,with both the alongshore component of the southwest wind and its offshore increase causing great upwelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号