首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
根据ECMWF和CFSV2的数据,本文选择了3个影响我国南海的典型台风过程,分析了海表温度SST在台风期间的变化。结果表明,台风期间SST下降,台风路径右侧的降温幅度明显高于左侧。在过境2d左右,SST下降幅度最为明显,其中201509号台风威马逊降温中心右侧最大异常值可达-2.5762℃,左侧为-1.441℃,降温中心呈明显的右偏性。在此基础上,对SST异常与有效波高,热通量以及风速的相关性进行研究。统计表明,台风期间的SST异常与有效波高和风速的相关性较高,相关系数高达0.6-0.7;与热通量相关性最低,相关系数为0.2-0.4,且台风的最大风速越大,相关系数就越高。通过计算台风期间风向海表波浪输入动能发现,风应力越大,风向波浪输入的动能以及动能下传的深度也越大。海洋内部的混合就越剧烈,故而由混合引起的海表降温幅度较大。可见SST异常与风速以及波浪要素确实有很高的相关性。  相似文献   

2.
针对台风"杰拉华"过程,使用中尺度大气模式(WRF),采用不同时间分辨率的TRMM/TMI海表面温度观测资料作为大气模式底边界条件,设计数值试验,研究不同时间分辨率SST对台风模拟的影响;同时,通过分析HadISST1资料得到东中国海近50 a SST变化趋势,根据计算得到的SST(海表温度)变化趋势重构SST,并以重构的SST作为模式底边界条件,通过定量分析水文要素的变化,研究台风"杰拉华"过程对重构SST的响应情况。数值试验结果表明:SST时间精度的提高对台风"杰拉华"的路径后报误差减小贡献较小,但台风强度精度有明显提高。在根据SST长期变化趋势改变SST条件后,海平面气压显著降低,海面10 m风速、潜热通量、波浪能密度明显加大,有较明显增幅。  相似文献   

3.
利用POM及其与WRF的耦合模式对"格美"台风影响下的该海区进行了5组数值模拟试验,在对结果分析的基础上,得到了西北太平洋西边界流系源区对此次台风过程的响应。研究表明:在台风影响下,最大风速区及热通量输送决定了海表温度(SST)降温中心范围,热通量的输送对SST的降低贡献超过16.7%;受此次台风影响的混合层(OML)加深、维持的时间为42 h,热通量对OML的加深有正作用,但不如风应力的贡献明显。台风移动方向右侧,OML加深范围更大,且SST最大降低区并不是OML最大加深区。此次台风过程对黑潮南向流的影响较弱,主要增加了海洋混合层的北向流流量。利用耦合模式,考虑了海气间的相互作用,在台风中心附近模拟出由于低压引起的海面升高现象。  相似文献   

4.
台风"苏力"是2013年最强的台风之一。本文利用再分析资料、卫星遥感资料及ARGO浮标数据等分析了台风过境所引起的海表面温度(SST)、海表面高度异常(SLA)以及海洋次表层温、盐的变化规律,给出了上层海洋对台风响应的基本特征。台风所经过的海域都存在着明显的降温,在冷涡区域引起了6~7℃的海表温度的冷却,降温区域集中在路径的右侧。台风造成SLA降低,最大为20cm左右。海表温度的变化滞后于海面高度的变化。ARGO浮标数据显示,台风引起了海面的显著降温,最大降温幅度为5℃,位于冷涡内,且位于路径的右侧。路径左侧的SST的降低相对较小,为1.5~2.5℃。台风的扰动导致次表层水涌升到表层,改变了表层的盐度和密度,引起混合层加深。  相似文献   

5.
赤道海洋对罕见台风“画眉”的响应   总被引:3,自引:0,他引:3  
利用GHRSST L4、QuikSCAT、OAFLUX以及SeaWiFS L3资料分析了近赤道罕见台风"画眉"生成前后海表温度SST及其感热通量、潜热通量和叶绿素a浓度的变化。在台风"画眉"生成之前,中南半岛沿岸海表平均温度较其他区域低,并且在南海盛行东北风,在台风生成区有一明显的气旋性涡旋存在。南海北部地区潜热通量和感热通量均较大,而在台风的生成区域仅感热通量较大。台风"画眉"使其路径右侧的区域发生海表温度降低,相对于其他强度较强的台风降温较小,海表温度在马来半岛以东洋面以及马六甲海峡降低明显,降低约2—2.5℃。与高纬度的台风类似,台风"画眉"使中南半岛沿岸以及马来半岛与苏门答腊岛之间的地区叶绿素a浓度相对于台风前增大0.6 mg.m 3以上。  相似文献   

6.
使用中尺度大气模式WRF(Weather Research and Forecasting Model),采用TRMM/TMI海温观测资料,进行不同时间分辨率海温对台风"梅花"过程的影响试验;同时,通过HadISST1资料分析得到东中国海近50年海温变化分布情况;根据温度变化率计算了SST分布整体变化后的"梅花"过程响应情况;定量计算了水文要素受影响情况。数值试验显示,与使用NCEP/NCAR的SST试验相比,使用日平均SST试验结果的台风路径偏差减少6.7%,台风强度偏差减少55.1%,后报精度明显提高。SST整体增加后,海面向大气辐射通量显著增加,海面气压与风速在台风衰减不同阶段对下垫面SST变化的敏感性不同,台风波浪能和风暴潮由于SST增加造成的台风影响,也有不同程度的增加。  相似文献   

7.
对1982—2015年间过境琼东上升流区的台风及其引起的海表温度(SST)变化进行统计分析,并探究SST变化的影响因素和热量输送机制。结果显示,与开阔大洋显著不同,琼东上升流区SST变化存在降温、基本不变和升温三种类型。在42例台风中,3种类型分别为19例、20例和3例。平均升温(2.1℃)大于平均降温(-1.5℃)。SST变化与台风参量相关性分析显示,与台风过境时长相比,台风强度和台风入射角度对SST变化幅度影响更大。台风在外海引起的非线性海面孤立波向近岸的热输送可能是SST升温的重要机制,观测的SST上升与台风入射角度的关系与理论结果吻合。台风过境琼东上升流区引起的SST变化特征取决于台风局地热输送和外海热输送的相对大小。  相似文献   

8.
海洋表层温度对台风"蔷薇"路径和强度预测精度的影响   总被引:1,自引:0,他引:1  
基于中尺度大气模式WRF(Weather Research and Forecasting Model),首先对2007年3次船舶辐射通量观测进行模拟,以检验WRF对长波和短波辐射通量的模拟能力,结果表明使用中国近海海洋环境数值预报系统环流模式POM(Princeton Ocean Model)模拟的高时空分辨率的海洋表层温度能够显著改进短波辐射通量的模拟,而对长波辐射通量模拟的改进不明显。然后,将业务化运行的中国近海海洋环境数值预报系统后报的逐时海洋表面温度(SST)作为WRF底边界条件,对2008年15号强台风"蔷薇"(Jangmi)过程进行了数值后报试验。结果表明,与使用NCEP/NCAR的SST试验后报的台风中心位置偏差相比,使用高时空分辨率的SST能够较为显著地改善"蔷薇"的路径模拟,台风中心位置模拟偏差减少11%,尤其在台风减弱阶段,台风中心位置模拟偏差减少37%。台风强度在台风发展的不同阶段对下垫面SST的变化敏感性不同。台风路径附近的海表面温度下降会导致海洋向大气输送的热量减少从而减弱台风强度。  相似文献   

9.
基于中尺度大气模式WRF(Weather Research and Forecasting Model),首先对2007年3次船舶辐射通量观测进行模拟,以检验WRF对长波和短波辐射通量的模拟能力,结果表明使用中国近海海洋环境数值预报系统环流模式POM(Princeton Ocean Model)模拟的高时空分辨率的海洋表层温度能够显著改进短波辐射通量的模拟,而对长波辐射通量模拟的改进不明显。然后,将业务化运行的中国近海海洋环境数值预报系统后报的逐时海洋表面温度(SST)作为WRF底边界条件,对2008年15号强台风"蔷薇"(Jangmi)过程进行了数值后报试验。结果表明,与使用NCEP/NCAR的SST试验后报的台风中心位置偏差相比,使用高时空分辨率的SST能够较为显著地改善"蔷薇"的路径模拟,台风中心位置模拟偏差减少11%,尤其在台风减弱阶段,台风中心位置模拟偏差减少37%。台风强度在台风发展的不同阶段对下垫面SST的变化敏感性不同。台风路径附近的海表面温度下降会导致海洋向大气输送的热量减少从而减弱台风强度。  相似文献   

10.
连续台风对海表温度和海表高度的影响   总被引:1,自引:0,他引:1  
利用多卫星观测资料,分析了2008年9月3个连续台风前后的海表温度(SST)和海表高度距平(SSHA)的时空变化特征,并探讨了影响其变化的主要因子。结果表明:(1)3个台风引起了强烈的上升流(1×10-5~150×10-5 m/s),海表显著降温(1~6 ℃),海表高度也有不同程度降低(10~50 cm);(2)台风引起的SST最大降温中心与SSHA负值或中尺度冷涡的区域中心十分吻合,同时台风使得先前存在的海洋中尺度冷涡得到加强;(3)同一区域台风对SST影响程度大小受台风的强度、移动速度以及台风对海面强迫时间等因素控制;(4)在原先SSHA为正值的海域,3个台风连续强迫下使得局地洋面形成一个SSHA为负值的中尺度涡,这与单一"打转"台风强迫海洋生成中尺度涡的现象不同。因此,对于西北太平洋海域而言,频发的台风在中尺度涡生消演变过程中的影响应不容忽视。  相似文献   

11.
A mesoscale coupled atmosphere–ocean model has been developed based on the GRAPES(Global and Regional Assimilation and Prediction System) regional typhoon model(GRAPES_TYM) and ECOM-si(estuary, coast and ocean model(semi-implicit)). Coupling between the typhoon and ocean models was conducted by exchanging wind stress, heat, moisture fluxes, and sea surface temperatures(SSTs) using the coupler OASIS3.0. Numerical prediction experiments were run with and without coupling for the case of Typhoon Muifa in the western North Pacific. To investigate the impact of using more accurate SST information on the simulation of the track and the intensity of Typhoon Muifa, experiments were also conducted using increased SST resolution in the initial condition field of the control test. The results indicate that increasing SST resolution in the initial condition field somewhat improved the intensity forecast, and use of the coupled model improved the intensity forecast significantly, with mean absolute errors in maximum wind speed within 48 and 72 h reduced by 32% and 20%, respectively. Use of the coupled model also resulted in less pronounced over-prediction of the intensity of Typhoon Muifa by the GRAPES_TYM. Moreover, the effects of using the coupled model on the intensity varied throughout the different stages of the development of Muifa owing to changes in the oceanic mixed layer depth. The coupled model had pronounced effects during the later stage of Muifa but had no obvious effects during the earlier stage. The SSTs predicted by the coupled model decreased by about 5–6°C at most after the typhoon passed, in agreement with satellite data. Furthermore, based on analysis on the sea surface heat flux, wet static energy of the boundary layer, atmospheric temperature, and precipitation forecasted by the coupled model and the control test, the simulation results of this coupled atmosphere–ocean model can be considered to reasonably reflect the primary mechanisms underlying the interactions between tropical cyclones and oceans.  相似文献   

12.
利用Argo剖面浮标分析上层海洋对台风“布拉万”的响应   总被引:9,自引:2,他引:7  
In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth(MLD), and the cooling of mixed layer temperature(MLT) were observed. The changes in mixed layer salinity(MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×104 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is required for the anomalies in the subsurface to be restored to pretyphoon conditions than for the anomalies in the mixed layer.  相似文献   

13.
Impacts of sea spray on the boundary layer structure of Typhoon Imbudo   总被引:1,自引:1,他引:0  
High winds in a typhoon over the ocean can produce substantial amounts of spray in the lower part of the atmospheric boundary layer, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the consequent effects on the boundary layer structure and the evolution of the typhoon are largely unknown. The focus of this paper is on the role of sea spray on the storm intensity and the structure of the atmospheric boundary layer. The case study is Typhoon Imbudo in July 2003. The results show that sea spray tends to intensify storms by increasing the sea surface heat fluxes. Moreover, the effects of sea spray are mainly felt in boundary layer. Spray evaporation causes the atmospheric boundary layer to experience cooling and moistening. Sea spray can cause significant effects on the structure of boundary layer. The boundary-layer height over the eyewall area east to the center of Typhoon Imbudo was increased with a maximum up to about 550 m due to sea spray, which is closely related with the enhancements of the heat fluxes, upward motions, and horizontal winds in this region due to sea spray.  相似文献   

14.
通过对0505号"海棠"台风的高、低空气流场的分析,揭示了"海棠"台风浪成长、发展、消衰的机制和规律.结果表明:台风浪的大小和范围不仅与台风的强度、移速及周围大尺度天气系统有关,而且也受岛屿及海底地形等环境条件的影响.  相似文献   

15.
Category 5 typhoon Megi was the most intense typhoon in 2010 of the world. It lingered in the South China Sea (SCS) for 5 d and caused a significant phytoplankton bloom detected by the satellite image. In this study, the authors investigated the ocean biological and physical responses to typhoon Megi by using chlorophylla (chla) concentration, sea surface temperature (SST), sea surface height anomaly (SSHA), sea surface wind measurements derived from different satellites and in situ data. The chla concentration (>3 mg/m3) increased thirty times in the SCS after the typhoon passage in comparison with the mean level of October averaged from 2002 to 2009. With the relationship of wind stress curl and upwelling, the authors found that the speed of upwelling was over ten times during typhoon than pretyphoon period. Moreover, the mixed layer deepened about 20 m. These reveal that the enhancement of chla concentration was triggered by strong vertical mixing and upwelling. Along the track of typhoon, the maximum sea surface cooling (6-8℃) took place in the SCS where the moving speed of typhoon was only 1.4-2.8 m/s and the mixed layer depth was about 20 m in pretyphoon period. However, the SST drop at the east of the Philippines is only 1-2℃ where the translation speed of typhoon was 5.5-6.9 m/s and the mixed layer depth was about 40 m in pretyphoon period. So the extent of the SST drop was probably due to the moving speed of typhoon and the depth of the mixed layer. In addition, the region with the largest decline of the sea surface height anomaly can indicate the location where the maximum cooling occurs.  相似文献   

16.
This study deals with a unusual cooling event after Typhoon Mujigea passed over the northern South China Sea(SCS) in October 2015. We analyze the satellite sea surface temperature(SST) time series from October 3 to 18,2015 and find that the cooling process in the coastal ocean had two different stages. The first stage occurred immediately after typhoon passage on October 3, and reached a maximum SST drop of –2℃ on October 7 as the usual cold wake after typhoon. The second stage or the unusual extended cooling event occurred after 7d of the typhoon passage, and lasted for 5d from October 10 to 15. The maximum SST cooling was –4℃ and occurred after 12d of typhoon passage. The mechanism analysis results indicate that after landing and moving northwestward to the Yunnan-Guizhou Plateau(YGP), Typhoon Mujigea(2015) met the westerly wind front on October 5. The lowpressure and positive-vorticity disturbances to the front triggered meridional air flow and low-pressure trough,thus induced a katabatic cold jet downward from the Qinghai-Tibet Plateau(QTP) passing through the YGP to the northwestern SCS. The second cooling reached the maximum SST drop 4d later after the maximum air temperature drop of –9℃ on October 11. The simultaneous air temperature and SST observations at three coastal stations reveal that it is this katabatic cold jet intrusion to lead the unusual SST cooling event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号