首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caribbean reefs have been unevenly surveyed, with many areas lacking baseline data. In this study, the current status of Orbicella reefs, a structurally complex forereef habitat, was quantified in an understudied region, the Eastern Caribbean. During 2011 the same observers surveyed benthic assemblages, coral juvenile density, herbivorous fishes, and invertebrates at 30 Orbicella reefs in four Eastern Caribbean areas: Antigua, Barbados, St Lucia, and St Vincent and the Grenadines (hereafter St Vincent). Not all Orbicella forereefs were functionally the same in the Eastern Caribbean. Benthic communities and herbivorous fishes varied greatly among islands. Hard coral had the highest overall percent cover on most reefs in this study, with an average cover of 22%, and was greater than fleshy macroalgal cover at 83% of the sites. Overall, coral juvenile density was low but was positively associated with higher densities of Diadema antillarum, highlighting the importance of herbivory on the reefs. Nearshore coral reefs in Barbados were in a better state than other areas, exhibiting higher coral cover dominated by spawning corals, higher densities of coral juveniles exhibiting higher coral cover dominated by spawning corals, higher densities of coral juveniles and D. antillarum. Low biomass of herbivorous fishes at a majority of the coral reef sites is of major concern for the functioning of these reefs. Conservation of parrotfishes and other herbivores is necessary given the abundance of algae on most of these reefs and the beneficial effect of their presence on coral juveniles. This is the first comprehensive study that compares the state of Orbicella reefs in the Eastern Caribbean, providing valuable information that will be useful in creating realistic targets for future management and conservation.  相似文献   

2.
Effective conservation requires knowledge of the effects of habitat on distribution and abundance of organisms. Although the structure of coral reef fish assemblages is strongly correlated with attributes of reef structure, data relating reef types to fish assemblages are scarce. In this study we describe the influence of gross habitat characteristics and seasonality on coral reef fish assemblages of fringing and patch reefs in Kenya. Results showed that total fish abundance was not significantly different between the reefs; however, the fringing reef had higher species diversity during both the northeast (42 spp.) and southeast (36 spp.) monsoon seasons when compared to the patch reef. The more fished species (e.g. Siganus sutor and Lethrinus mahsena) were more abundant on the patch reef in both seasons. Statistical analysis indicated common species between the reefs were more abundant on the fringing reef. Seasons affected abundance of the more vagile species (S. sutor), whereas the reef‐attached sky emperor, L. mahsena was affected more by reef type than by seasons. No significant interaction effects of habitat and seasons were found, indicating independence of habitat and environmental variability in affecting fish assemblages on the reefs. Smaller sized fish dominated the fringing reef more than the patch reef, whereas the skewness index (Sk) indicated a normal‐sized frequency distribution on the patch reef. Trophic structure of the fishes varied more within than between reefs, whereas fish assemblage structure was affected more by seasons on the fringing reef. These results suggest that conservation measures such as marine protected area (MPA) design and setting should consider effects of reef morphology and environmental variability on coral‐reef fish assemblage structure.  相似文献   

3.
Much of coral reef ecology has focused on how human impacts change coral reefs to macroalgal reefs. However, macroalgae may not always be a good indicator of reef decline, especially on reefs with significant sea urchin populations, as found in Kenya and Hawaii. This study tests the effects of trophic interactions (i.e. herbivory by fishes and sea urchins) and spatial competition (between algae and coral) on algal community structure of reefs surrounding two Hawaiian Islands that vary in their level of human impacts. Reef‐building organisms (corals and crustose coralline algae) were less abundant and turf algae were more abundant on Maui as compared to Lanai, where human impacts are lower. In contrast to previous studies, we found no evidence that macroalgae increased with human impacts. Instead, low turf and macroalgal abundance were best explained by the interactive effects of coral cover and sea urchin abundance. Fishing sea urchin predators appeared to have cascading effects on the benthic community. The absence of sea urchin predators and high sea urchin densities correspond to a disproportionately high abundance of turf and crustose coralline algae. We propose that high turf algal abundance is a better indicator of reef decline in Hawaii than high macroalgal abundance because turf abundance was highest on reefs with low coral cover and few fish. The results of this study emphasize that understanding changes in community composition are context‐dependent and that not all degraded reefs look the same.  相似文献   

4.
As coral reef ecosystems decline in health worldwide, reef‐associated fishes are being impacted by changes to their coral reef habitats. While previous studies have shown coral reef structure to affect the demography of reef fishes, changes in reef conditions may also impact the behavior of reef fishes as they cope with altered habitats. In this study, we examined spatial patterns of intraspecific behavioral variation in the bicolor damselfish (Stegastes partitus) across the fringing reefs of Curaçao (Caribbean Sea), and explored how this behavioral variation associated with physical and social conditions on the reef. Principal components analysis (PCA) condensed physical parameters of the reef into principal component 1 (PC1), comprising depth, coral cover (%), rugosity, and average hole size (cm2), and principal component 2 (PC2), which represented the number of holes. PC1, but not PC2, increased spatially across the reef as the habitat transitioned from coral rubble in the shallows to live coral on the reef slope. This transition in reef structure was paralleled by changes in social conditions including decreases in bicolor damselfish density in habitats with higher PC1 values. The behavior of bicolor damselfish also varied spatially with greater aggression and more frequent shelter use in habitats with lower PC1 values. Path analysis revealed robust associations between this behavioral variation and physical habitat conditions of the reef, indicating that physical – rather than social – habitat variation is the primary determinant of these spatial patterns of intraspecific behavioral variation. Taken as a whole, this coupling between physical reef structure and behavior suggests that reef fish may show altered behaviors on coral reefs degraded by anthropogenic impacts.  相似文献   

5.
Although bioerosion is among the most destructive forces on coral reefs, indirect effects influencing the bioerosion dynamics are understudied. Here, I assess the hypothesis that coral reef grazers indirectly facilitate proliferation of bioeroding sponges by removing epibiotic fleshy seaweeds from the Great Barrier Reef. This study quantifies the degree of spatial correlation between the distribution of bioeroding sponges and the distribution of grazing pressure, as evidenced by the abundance of seaweed and parrotfish bite marks. While the sponge tissue area was negatively correlated with seaweed coverage, the number of parrotfish bite marks was associated with less algae and more sponge tissue. Several factors derived from grazing on seaweeds may facilitate sponge growth: increases in the availability of light may favor primary production by symbiotic zooxanthellae and thereby increase growth of bioeroding sponges; on the other hand, sponge settlement may be facilitated on grazed substrates. All these factors are likely related, and contribute to an increasing erosion of coral reefs. Similar processes have recently been described in Mediterranean ecosystems, suggesting that the interactions I document here, could be widespread.  相似文献   

6.
Ian Bell 《Marine Ecology》2013,34(1):43-55
This paper describes the food selection of hawksbill turtles, Eretmochelys imbricata, using reefs of the Far Northern Section of the Great Barrier Reef Marine Park (nGBR) during 2006 and 2007. A total of 467 gastric lavage and 71 buccal cavity ingesta items were collected from 120 individual E. imbricata, comprising adult female and immature turtles of both sexes. Nineteen E. imbricata that were captured in 2006 were recaptured and sampled again in 2007. Within the total pooled buccal and lavage sample (n = 538), the occurrence of food items was dominated (72.7%) by only three algal taxonomic divisions: Rhodophyta (red algae; 53.7%, n = 289); Chlorophyta (green algae; 11.0%, n = 59) and algae from the division of Phaeophyceae (brown algae; 8.0%, n = 43). The remaining total (buccal and lavage) ingesta sample comprised sponges (10.4%, n = 56), soft corals and a wide variety of possibly nutritionally important invertebrate species (12.6%, n = 68), and a small percentage (5.4%, n = 22) of inorganic material. Generally, E. imbricata were considered to be primarily a sponge‐feeding specialist and secondarily an omnivorous species; within coral reef habitats and in various parts of the world this is the case. However, this study has shown that E. imbricata found foraging on reefs of the nGBR are primarily algivorous and secondarily omnivorous. A feeding strategy that relies on a predominantly algal diet may infer important benefits to the species if the impacts of climate change and ocean acidification inhibit coral growth, while promoting algal density and distribution within the Great Barrier Reef ecosystem.  相似文献   

7.
Small grazing motile epifaunal invertebrates play an important ecosystem role on coral reefs, influencing both the abundance and composition of macroalgal communities and acting as a key food source for a range of predatory fishes. The first aim of this study was to investigate the associations between motile epifaunal communities and four common macroalgal species (Lobophora variegata, Dictyota divaricata, Microdictyon marinum and Halimeda opuntia) on fore‐reef environments in the Exuma Cays (Bahamas, wider Caribbean). Secondly, we investigated the implications of the well documented rise of Caribbean macroalgal cover on invertebrate densities by surveying sites inside and outside the Exuma Cays Land and Sea Park (ECLSP), where increases in parrotfish grazing intensity inside the marine reserves have led to reductions in macroalgal cover. Therefore, surveys compared similar reefs with significantly different macrolagal cover. Comparisons between macroalgal species revealed a four to fivefold difference in motile epifaunal densities per unit volume of macroalgae. Post‐hoc tests revealed that this difference was significant only for Lobophora, with no difference observed among the other species. As macroalgae provide both a refuge from predation and a food source for grazing epifauna, the higher densities of epifauna observed in Lobophora may be attributed to either refuge from visual predators through morphological features (high cover of overlapping blades close to the substrate) or lack of palatability for parrotfish grazing, providing a more stable refuge. Our results revealed no significant differences in diversity, density or community structure of motile epifauna per unit volume of macroalgae between sites inside and outside the ECLSP. Since canopy height and invertivore biomass did not vary systematically across reserve boundaries, this suggests that algal cover does not affect the density of epifaunal invertebrates. However, areal cover was consistently higher for all macroalgal species at sites outside the ECLSP than those inside the reserve. Therefore, when scaled by aerial cover of macroalgae, total abundance of epifauna was twofold higher outside the ECLSP. We suggest that the increasing abundance of macroalgae on Caribbean reefs may be having dramatic effects on epifaunal invertebrate populations and potentially their ecological functions.  相似文献   

8.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   

9.
Bioerosion is a natural process in coral reefs. It is fundamental to the health of these ecosystems. In the Eastern Tropical Pacific (ETP) coral reefs, the most important bioeroders are sponges, bivalves, sea urchins and the fish Arothron meleagris. In the 1980s, El Niño caused high coral mortality and an increase in macroalgal growth. As a result, greater sea urchin bioerosion occurred. This weakened the reef framework. Considering the high vulnerability of the ETP coral reefs, the goal of this study was to determine the current bioerosion impact of the sea urchin Diadema mexicanum along the western coasts of Mexico, El Salvador, Costa Rica and Panamá. The balance between coral bioaccretion and sea urchin bioerosion was also calculated. Between 2009 and 2010, in 12 coral reefs localities, D. mexicanum density, bottom cover and rugosity were quantified along band transects. The daily bioerosion rate was obtained from the amount of carbonates evacuated by sea urchins per unit time. The rate of coral accretion was calculated by multiplying the coral growth rate of the dominant genus by the density of their skeleton and by their specific coral cover. The localities were dissimilar (R = 0.765, P < 0.001) in terms of live coral cover, crustose calcareous algae, turf cover, rugosity index, and density and size of D. mexicanum. At all sites, with the exception of Bahía Culebra (Costa Rica), coral bioerosion was less than coral bioaccretion. Diadema mexicanum plays a dominant role in the balance of carbonates in the ETP, but this depends on reef condition (protection, overfishing, eutrophication) and so the impacts can be either positive or negative.  相似文献   

10.
Tropical shallow-water habitats such as mangroves and seagrass beds are widely acknowledged as important juvenile habitats for various coral reef fish species, most of which are commercially important to fisheries. Spatio-temporal variability in ontogenetic habitat use by fish among these tropical coastal ecosystems has rarely been investigated, yet there are sufficient reasons to believe that this plays an important role. In the present study, we test the spatio-temporal variability in patterns of ontogenetic habitat use by some mangrove/seagrass-associated coral reef fishes (Lethrinus harak, Lethrinus lentjan, Lutjanus fulviflamma and Siganus sutor). Abundances of these four species were investigated during two years in Tanzanian coastal waters, using underwater visual census in mangrove, seagrass, shallow and deep mudflat, and shallow and deep coral reef habitats. The study covered four distinct seasons of the year and was done at two spatially separated (>40 km) locations. Averaged across locations, seasons and years, juveniles (≤10 cm length) of the four study species had significantly higher relative densities in shallow-water (mangroves and seagrass beds) than in deep-water habitats (deep mudflats or coral reefs), whereas the opposite pattern was found for the adults (>15 cm). These findings suggest a strong and general pattern of ontogenetic habitat shifts from shallow- to deep-water habitats. However, specific habitat-use patterns of juveniles as well as adults differed significantly in time and space. Various species showed subtle to considerable flexibility in juvenile as well as adult habitat use across seasons, years, or at different locations. Furthermore, for some species the data suggest presence of ontogenetic habitat shifts at one location but lack thereof at the other location. In summary, ontogenetic habitat use needs to be considered at various spatial and temporal scales for the interpretation of habitat utilization by fish during different life stages. This is important for conservation and management of these habitats, as essential habitats or seasons may be ignored or over-emphasized with respect to their importance for fish during different parts of their life cycle.  相似文献   

11.
Populations of tropical sea cucumbers, harvested for bêche‐de‐mer, are in a perilous state of conservation, yet there remains a paucity of information on the biology of many harvested species. We examined the population biology of the commercially important curryfish, Stichopus herrmanni, across 2 years on Heron Reef, a protected zone in the Great Barrier Reef (GBR) Marine Park. Stichopus herrmanni, a species recently listed as vulnerable to extinction, is a major target species for the fishery operating in the GBR. The size class distribution and density of S. herrmanni were documented for six sites across Heron Reef. There was distinct spatial variation in the size and density of S. herrmanni across sites, with no significant difference between the 2 years. The smallest individuals found were 10 cm long, some of the only juvenile S. herrmanni documented in nature. Juvenile and sub‐adult populations were found along the leeward reef edge of Heron Reef, a habitat characterized by shallow channels of sand between inter‐tidal coral reef and crustose coralline algae (CCA). Juvenile nurseries of sea cucumbers are rarely observed in nature, making this an important observation for understanding the recruitment and population biology of S. herrmanni. The presence of juveniles in the consolidated CCA habitat each year in autumn following the summer spawning period, and the absence of small individuals several months later in spring, suggests an ontogenetic migration or displacement of these individuals to adult habitat. The distribution of larger S. herrmanni suggests intra‐reef connectivity and migration into deeper lagoon areas. This study contributes to understanding the population dynamics of this vulnerable species, a consideration for fisheries management in light of increasing global harvest.  相似文献   

12.
The parrotfish Sparisoma viride often grazes live coral from edges undermined by the Caribbean encrusting and excavating sponge Cliona tenuis. To test whether parrotfish biting action has an effect on the dynamics of the sponge–coral interaction, we manipulated access of parrotfishes to the sponge–coral border in two species of massive corals. When parrotfish had access to the border, C. tenuis advanced significantly more slowly into the coral Siderastrea siderea than into the coral Diploria strigosa. When fish bites were prevented, sponge spread into S. siderea was further slowed down but remained the same for D. strigosa. Additionally, a thinner layer of the outer coral skeleton was removed by bioerosion when fish were excluded, a condition more pronounced in D. strigosa than in S. siderea. Thus, the speed of sponge‐spread and the extent of bioerosion by parrotfish was coral species‐dependent. It is hypothesized that coral skeleton architecture is the main variable associated with such dependency. Cliona tenuis spread is slow when undermining live S. siderea owing to the coral’s compact skeleton. The coral’s smooth and hard surface promotes a wide and shallow parrotfish bite morphology, which allows the sponge to overgrow the denuded area and thus advance slightly faster. On the less compact skeleton of the brain coral, D. strigosa, sponge spread is more rapid. This coral’s rather uneven surface sustains narrower and deeper parrotfish bites which do not facilitate the already fast sponge progress. Parrotfish corallivory thus acts synergistically with C. tenuis to further harm corals whose skeletal architecture slows sponge lateral spread. In addition, C. tenuis also appears to mediate the predator–prey fish–coral interaction by attracting parrotfish biting.  相似文献   

13.
Estimates of abundance and size of three commercially exploited grunt species indicate ontogenetic changes in habitat utilization concentrate their juveniles within the lagoon of the Bay of La Parguera, Puerto Rico. Eleven biotopes, defined by four benthic structures (reef, mangrove, vegetation beds and unconsolidated sediments) and three geographic zones (inner lagoon, outer lagoon and bank shelf) were sampled randomly by visual surveys. French, bluestriped and white grunt (Haemulon flavolineatum, Haemulon sciurus and Haemulon plumeri) were common in the bay and appeared to exhibit similar life history patterns of cross-shelf migration and habitat selection. Recently settled grunts were dispersed over vegetated and unconsolidated soft-bottom sediments of the bay. The juvenile stage occurred in highest densities in shallow lagoon biotopes among the submerged prop-roots of mangrove stands and on inshore reefs. Length data indicates that grunts migrate offshore to adult habitat via increasingly deep reefs. Indices of biotope nursery function based on standing stock estimates of juveniles identified three biotopes, all within the inner lagoon as essential habitat for juveniles of 5–10 cm length interval. This concentration of juveniles within biotopes of the lagoon could represent a bottleneck to recruitment for grunt stocks. Evidence that quantity and quality of lagoon nurseries may limit recruitment indicates that these areas represent a key component of a marine protected area designed to restore fisheries within the bay.  相似文献   

14.
Benthic structure of coral reefs determines the availability of refuges and food sources. Therefore, structural changes caused by natural and anthropogenic disturbances can have negative impacts on reef‐associated communities. During the 1990s, coral reefs from Bahía Culebra were considered among the most diverse ecosystems along the Pacific coast of Costa Rica; however, recently they have undergone severe deterioration as consequence of chronic stressors such as El Niño‐Southern Oscillation and harmful algal blooms. Reef fish populations in this area have also been intensely exploited. This study compared reef fish assemblages during two periods (1995–1996 and 2014–2016), to determine whether they have experienced changes as a result of natural and anthropogenic disturbances. For both periods, benthic composition and reef fish abundance were recorded using underwater visual censuses. Live coral cover (LCC) decreased from 43.09 ± 18.65% in 1995–1996 to 1.25 ± 2.42% in 2014–2016 (U = 36, p < 0.05). Macroalgal cover (%) in 2014–2016 was sixfold higher than mean values reported for the Eastern Tropical Pacific region. Mean (±SD) fish species richness in 1995–1996 (36.67 ± 14.20) was higher than in 2014–2016 (23.00 ± 9.14; U = 20, p < 0.05). Over 40% of reef fish orders observed in 1995–1996 were not detected in the 2014–2016 surveys, including large‐bodied predators. Reduction in abundance of fish predators such as sharks, grunts, and snappers is likely attributed to changes in habitat structure. Herbivorous such as parrotfishes and pufferfishes increased their abundance at sites with low LCC, probably in response to predators decline and increased algal cover. These findings revealed significant degradation and drastic loss of structural complexity in coral reefs from Bahía Culebra, which now are dominated by macroalgae. The large reduction in structural complexity of coral reefs has resulted in the loss of diversity and key ecological roles (e.g., predation and herbivory), thus potentially reducing the resilience of the entire ecosystem.  相似文献   

15.
Changes in the relative abundance of benthic groups on the barrier fore reef at Carrie Bow Cay, Belize, point to a significant reduction of corals and an expansion of the sponge community in 1995–2009. Fifty‐one species are now present in the four geomorphological zones of this reef: the low‐relief spur‐and‐groove zone, the inner reef slope, the outer ridge, and the fore‐reef slope (to a depth of 30 m). Five species are new additions to the sponge fauna reported for Belize, and six species account for 42.6% of the total assemblage: Niphates erecta (9.60%), Aiolochroia crassa (8.8%), Niphates digitalis (6.9%), Callyspongia plicifera (6.63%), Aplysina archeri (5.37%) and Xestospongia muta (5.37%). Species richness, average density, diversity and evenness indexes are statistically similar in these four zones but some species appear to be more dominant in certain areas. In the same 30 years, coral cover has decreased by more than 90%, while the octocoral cover has greatly increased (by as much as 10‐fold in the low‐relief spur‐and‐groove zone). Thus the Carrie Bow fore reef appears to be undergoing a transition from coral dominance in the late 1970s to algae dominance today, with other benthic groups such as sponges and octocorals showing signs of gradual recovery.  相似文献   

16.
The present study explored ontogenetic shifts in habitat associations by coral reef fishes between recently settled juvenile and adult life stages (Moorea Island: Tiahura and Papetoai sites). Visual censuses highlighted four ontogenetic patterns in habitat associations: (1) no change in habitat associations between the juvenile and adult stages; (2) a decrease in the number of habitats used by adults compared to juveniles; (3) an increase in the number of habitats used during the adult stage; and (4) use of nursery areas by juveniles followed by an extensive movement to an entirely different adult habitat. The comparative analysis of spatial distribution of fish at Tiahura and Papetoai highlighted no-spatial variability in ontogenetic patterns (i.e., 10 of the 15 recorded species have spatial consistency in ontogenetic patterns). Overall, the shifts in habitat associations are of interest in the perspective of understanding flexibility and adaptation capability of coral reef fish, at least at the settlement time.  相似文献   

17.
Although flatfish species utilise a wide range of habitats as adults, several species are confined to a very limited habitat as juveniles. Recruitment levels are dependent on the quality and quantity of these nursery areas and changes therein. In the Baltic Sea, these shallow environments are often subject to influxes of drifting macroalgae, which add structure to otherwise bare sandy substrate. Structure, such as vegetation, alters predator–prey interactions of a wide range of fauna and in an array of marine, freshwater, and terrestrial systems. The aim of our study was to assess the inhibition potential of drifting macroalgae on the foraging efficiency of juvenile flatfish (young of the year Scophthalmus maximus L., young of the year- and group 1 + Platichthys flesus L.) through a series of microcosm experiments. Our results show that foraging success is restricted by drift algae as predation efficiency of all predator species and size classes was negatively affected by the presence of macroalgae. Overall, there was a reduction in predation success by 80 ± 12% due to structural effects and/or the induced changes in water chemistry associated with the algae. Flatfish depend on shallow sandy areas as feeding and nursery grounds during their juvenile stage and frequently occurring macroalgal assemblages drastically change the features of the otherwise bare substrate, setting the stage for small-scale, localised processes potentially affecting population dynamics.  相似文献   

18.
Tuna-farming is expanding worldwide, necessitating the monitoring/managing of its effects on the natural environment. In Japan, tuna-farming is conducted on coral reefs that have been damaged by mass-bleaching events and crown-of-thorns starfish (COTS) outbreaks. This study focused on the coral community on an artificial substrate of tuna-farm to reveal the possible effects of tuna-farming on the natural environment. Corals flourished on ropes suspended in the farm in the Amami Islands, southern Japan. These were moored 3 m below the sea-surface in 50-m-deep water. The coral community on the rope was analyzed and compared with those on natural substrata on two adjacent COTS-damaged reefs and with that in a protected reef. Corals were monitored throughout a year. Sixty coral species grew on the ropes, that corresponds to 27.3% of the 220 species known from Amami. The coral community was unique, dominated by massive faviid corals. On the ropes, the water temperature rarely exceeded 30.0 °C and no corals on the rope were severely bleached or covered by sedimentation during the observations. The tuna-farm infrastructure provided corals with a suitable habitat, and species-rich coral communities were established. These coral communities are an important node connecting tuna-farms and the natural environment.  相似文献   

19.
山东半岛东端以岩基海岸为主,而浅海多为岩礁底质,适宜大型藻类生长。为探究该海域的大型藻类群落结构特征,于2018年11月(秋)、2019年2月(冬)、5月(春)和8月(夏)对山东荣成马山里海域的三个典型生境(草床区、天然礁区和泥沙区)中的大型藻类进行了调查。结果显示:三种生境共鉴定出大型藻类23种,其中红藻门15属15种,褐藻门3属4种,绿藻门3属4种。物种数最高值出现在天然礁区(22种),最低值出现在泥沙区(12种)。生物量最高值为春季草床区(1567.44±21.29)g.m-2、最低值为秋季的泥沙区(594.45±107.06)g.m-2。大型藻类优势种在不同生境、不同季节不同:草床生境为小珊瑚藻,在四个季节中均占绝对优势;礁区为绿藻向红藻、褐藻变化;泥沙区为从红藻到褐藻变化。Pielow均匀度指数的最高值在三个生境中相近且均出现在冬季;多样性指数最高值、最低值分别出现在礁区与泥沙区;Margalef丰富度指数的最高值出现在秋季的礁区,而最低值出现在夏季的泥沙区;聚类与排序结果表明,大型藻类群落结构在不同生境不同季节差异都显著。结果表明,生境特征和季节性变化是影响底栖大型海藻群落结构的主要因素。  相似文献   

20.
Surgeonfish and parrotfish play an important role in structuring the benthic communities of coral reefs. However, despite their importance, little is known about their distribution patterns in the north sector of the Mesoamerican Reef System. This study evaluated the distribution of these fish in 34 sites in four habitats (lagoon, front, slopes and terrace) along a depth gradient (c 0.5–20 m). These herbivorous fish were assessed by visual censuses. Species dominance was evaluated for each habitat using SIMPER analysis. Habitat characteristics data were collected to determine the relationship between habitat conditions and spatial variations in herbivorous fish (using abundance and biomass as a proxy) via redundancy analysis. The herbivorous fish assemblage had a low density (fish per 100 m2) and biomass (g·100 m?2) in comparison with assemblages in similar studies. In contrast, species richness was high compared with other studies in the Caribbean. Spatial variation of the abundance, biomass and size of herbivorous fish was strongly related to coral and seagrass cover, as well as to depth and rugosity. These four variables were critical in controlling the distribution patterns of the herbivorous fish assemblages. No associations were found between fish and macroalgae or any other benthic group. The present study indicates that the species richness of surgeonfish and parrotfish was not regionally affected by the dominance of macroalgae in the habitats studied. Seagrass beds and the coral reef matrix need to be preserved for the herbivorous fish assemblages to remain healthy and capable of controlling excess macroalgae growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号