首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc–Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources(input) and arc or back-arc magmas(output) in the Philippine Sea Plate–Ryukyu Arc–Okinawa Trough system(PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Okinawa Trough lavas: sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt(MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and subcontinental lithospheric mantle(SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the "seafloor spreading" process in the southwest segment, "rift propagation" process in the middle segment, and "crustal extension" process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.  相似文献   

2.
Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous,and lower in High Field Strength Elements (HFSE).These rocks are higher in Large Ion Lithophile Elements (LILE),thorium and uranium contents,positive lead anomalies,negative Nb-Ta anomalies,and enrichment in Light Rare Earth Elements (LREE).Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB),and rhyolites from the northern Okinawa Trough have the highest 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios.The NECS shelf margin basalts have lower 87 Sr/ 86 Sr ratios,ε N d and σ 18 O than the northern Okinawa Trough silicic rocks.According to 40 K– 40 Ar isotopic ages of basalts from the NECS shelf margin,rifting of the Okinawa Trough may have been active since at least 3.65–3.86 Ma.The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere.The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough,and the formation of basaltic magmas closely relates to the thinning of continental crust.The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough,which could have been generated by the interaction of basaltic melt with an enriched crustal component.From the Ryukyu island arc to East China,the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE),suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate,and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.  相似文献   

3.
The Okinawa Trough(OT) is a back-arc basin at an initial spreading stage that is under the influence of subduction of the Philippine Sea Plate. In this study, we analyzed the geochemical compositions of basaltic glass in the OT and discussed the effects of different magmatic sources, evolution, and subducted components in basalts. Our results showed that the middle and southern regions of the OT exhibit characteristics consistent with an iron-rich tholeiite series. Trace element proportions conform to the typical spider diagram pattern characteristic of back-arc basin basalts, rich in large ion lithophile elements(LILEs) including Rb, Ba, Pb, U, and Th, while depleted in high field-strength elements(HFSEs) including Nb, Ta, Zr, Hf, and Ti. The distribution of rare earth elements(REEs) is also consistent with enrichment by right-leaning light rare earth elements(LREEs).The addition of enriched mantle type I(EMI) materials as well as mantle heterogeneity may have led to variable degrees of enrichment in different regions. The magma source of the middle trough has undergone crystallization towards pyroxene, while development of plagioclase was restricted partly, and the crystallization of spinel and olivine ceased altogether. At the same time, crystallization of the southern OT magma source was dominated by olivine and including the formation of plagioclase, pyroxene, and magnetite(or titanomagnetite). Finally, the results of this study showed that 90% Th, 95% Ba in the southern basalt, 50%–70% Th and 70%–90% Ba in the middle basalt originated from subducted component. Different subducted component influence may be due to different subduction zone structural feature.  相似文献   

4.
The major elements, trace elements, K-Ar age and Sr-Nd-Pb isotopic systems of the Cenozoic volcanic rocks in Daheishan Island and Cishan, Penglai, Shandong Province are measured. The volcanic rocks ( olivine-nephelinite and nepheline-basanite ) in DaheishanIsland erupted periodically in an interval of 0.32 Ma, from 8.72 Mm 8.39 Ma, 8.08 Ma to 7.73Ma. The volcanic rocks are all rich in light REEs. They are similar to the OIB-type alkali basalt in the trace elements normalized model by primordial mantle: rich in high field elements such as Nb and Ta, and imcompatible elements such as Cs, Rb, Ba, Th, U. The volcanic rocks show a depletion of K and Rb elements. It is suggested by the trace elements that the olivine-nephelinite in Daheishan Island is originated fi‘om deep resources under the continental mantle, ε Nd (0) values of the volcanic rocks in Daheishan Island and Cishan are 5.31 - 8.51 and 7.33 respectively, suggesting that the volcanic rocks are from the depleted mantle resources, which have higher Sm/Nd ratios than the CHUR. ^143Nd /^144Nd ratios of Daheishan Island olivine-nephelinite and Cishan alkali basalts are 0.512 910 - 0.513 074 and 0.513 014 resoeetivelv. The ^87Sr /^86Sr of Daheishan lsland volcanic rocks are lower than that of Cishan, 0.703 427 - 0.703 482 and 0.703 895 respectively. The Daheishan Island olivinenephelinite has the Pb isotopic values as follows: ^206Pb /^204pb= 18.028 9 ~17.972 8,^207Pb /^204Pb= 15,435 8 - 15.402 2 and ^208Pb /^204Pb=38.087 6 - 37.997 5, lower than those of Cishan basanite. The Cishan basanite has ^206Pb / ^204Pb = 18.240 1, ^208Pb /^204Pb = 15.564 5 and ^208Pb /^204Pb=38.535. The authors suggest that the olivine-nephelinite in Daheishan Island is similar to the E-type MORB or Hawaii OIB, and the alkali basalts in Cishan similar to the Kerguelen OIB. The dominant mantle components of DM PREMA and perhaps DM( Dupal type ) are the dominant mantle components for volcanic rocks in Daheishan Island and Cishan. The PREMA component plays an important role.  相似文献   

5.
Research on seamounts provides some of the best constraints for understanding intraplate volcanism, and samples from seamounts reveal crucial evidence about the geochemical makeup of the oceanic mantle. There are still many seamounts in the West Pacific Seamount Province(WPSP) that have not been studied, meaning their ages and geochemistry remain unknown. A better understanding of these seamount trails and their evolutionary history, investigated with age and geochemistry data, will enable better understanding of the geological processes operating underneath the Pacific Ocean Plate. Here, new ~(40)Ar/~(39) Ar ages and trace element and Sr-Nd-Pb isotopic data for seven basalt rocks from four seamounts in the WPSP are provided. Chemically, these rocks are all Oceanic Island Alkali basalt(OIA type); analysis of olivine phenocrysts shows that the magmas experienced strong olivine fractionation and changed from olivine + plagioclase to olivine + plagioclase + clinopyroxene cotectic during their evolution. Rare earth element(REE) patterns and a spider diagram of the samples in this study show OIB(Ocean Island Basalt) like behavior. The range of ~(87)Sr/~(86) Sr values is from 0.704 60 to 0.706 24, the range of ~(206)Pb/~(204) Pb values is from 18.241 to 18.599, and the range of ~(143)Nd/~(144) Nd values is from 0.512 646 to 0.512 826; together, these values indicate magma sources ranging from EMI to EMII. Finally, new ~(40)Ar/~(39) Ar age data show that these seamounts formed at ~97 and ~106 Ma, indicating that some may have undergone the same formation processes as seamounts in the eastern part of the Magellan Seamount Trail, but other seamounts likely have different origins.  相似文献   

6.
Some of the islets in the eastern Beibu Gulf are covered by Quaternary volcano strata. The rock samples from these islets mainly consist of quartz tholeiites (at Shenjiandao), olivine tholeiites (at Linshidao and Xieyang- dao) and alkali basalts (at Yangpubi and Jianshidao), and basically represent four periods of the Quaternary volcanism of Hainan Island and its adjacent regions. Except for the samples from Shenjiandao, most of the Quaternary volcanics of these islets belong to alkali magma series. The trace element characteristics of all of these samples show they are OIB (oceanic island basalt) -like, which implies that their deep geodynamic setting may be related to a mantle plume. The Sr-Nd-Pb isotopic compositions show that the mantle source beneath the Quaternary strata can be regarded as a result of binary mixing between a depleted, DMM (de- pleted MORB mantle)-like source and an enriched mantle type 2 (EM2). The EM2 may be originated from the Hainan mantle plume, and has been metasomatized by carbonaceous fluids released from ancient re- cycled oceanic crust at an asthenospheric mantle level. These features, together with typical trace element ratios, reflect that the parent magma was not subjected to crustal contamination during its ascent to the surface. This study provides further petrological and geochemical evidence for the existence of the Hainan mantle plume.  相似文献   

7.
Total platinum-group elements (PGEs) abundances in basalts from the spreading axis of Mariana Trough ranged from 0.418×10~(-9) to 1.022×10~(-9), and primitive mantle-normalized PGE patterns are of positive slope showing the relative enrichment of PPGE (platinum,palladium,rhodium) and gold relative to IPGE. Compared with other mantle-originated rocks, these basalts have lower PGE contents and wider ranges of primitive mantle-normalized ratios of palladium content to iridium one,palladium content to platinum one and palladium content to gold one exhibiting relative platinum and iridium depletion. Characteristics of PGE patterns indicated that the studied Mariana Trough basalts originated from low partial melting, and the MORB mantle beneath the spreading center had been contaminated by the arc-island mantle. In the aspect of trace elements, Mariana Trough basalts showed the enrichment of LILE, lead and LREE, indicating that they had been influenced by subduction compositions. All these demonstrated that Mariana Trough basalts are products of partial melting from a mixed mantle (the contamination of MORB mantle by arc-island mantle).  相似文献   

8.
The sedimentation rates in the Okinawa Trough during the Late Quaternary   总被引:3,自引:0,他引:3  
On the basis of accelerator mass spectrometer radiocarbon (AMS ^14C) dating, sedimentation rates of 11 cores collected from the northern to southern Okinawa Trough are discussed. The sedimentation rates in the Okinawa Trough roughly range from 11 to 39cm/ka, and the average is 23.0cm/ka. China's continental matter is the main sediment source of the middle Okinawa Trough and has important contribution to the northern and southern Okinawa Trough. The sedimentation rates during the marine oxygen isotope (MIS) 2 are uniformly higher than those during MIS 1 in the northern and middle Okinawa Trough while they are on the contrary in the southern Okinawa Trough. Sedimentation rates in the Okinawa Trough can be one of the proxies of sediment source and an indicator of cooling events.  相似文献   

9.
Serpentinites, which contain up to 13 wt% of water, are important reservoirs for chemical recycling in subduction zones. In the past two decades, forearc mantle serpentinites were identified in different locations around the world. Here, we present petrology and whole rock chemistry of ultramafic and mafic rocks dredged from the Hahajima Seamount, which is located 24–40 km west to the junction of the Izu-Bonin Trench and the Mariana Trench. Nearly all the collected samples are extensively hydrated, and olivine grains in ultramafic rocks are replaced by serpentine minerals, with only one sample preserving remaining trace of orthopyroxene. Our new results show that the Hahajima serpentinized peridotite samples are all MgO-rich(~42 wt%), but have low contents in Al_2O_3, CaO, rare earth and high field strength elements, which is consistent with the overall depleted character of their mantle protoliths. Model calculations indicate that these Hahajima peridotite samples were derived from 10%–25% partial melting of the presumed fertile mantle source, which is generally lower than those of peridotites from Torishima Forearc Seamount, Conical Seamount and South Chamorro Seamount(mostly25%). All the serpentinites from these four forearc seamounts show strong enrichment in fluid-mobile and lithophile elements(Li, Sr, Pb and U). In details, Hahajima Seamount serpentinites do not have obvious enrichment in Cs and Rb, and display remarkably high abundances of U. These observations indicate that the serpentinization of Hahajima peridotites occurred by addition of seawater or low temperature seawater-derived hydrothermal fluid, without or with little contribution from slab-derived fluids. The geochemical signature of serpentinites from Hahajima Seamount could be interpreted as the result of the combination of extensive partial melting and subsequent percolation of seawater through the mantle wedge.  相似文献   

10.
Hydrothermal chimney is a product of hydrothermal activity on the seabed. Chimney samples dredged from Jade hydrothermal area in Izena depression of the Okinawa Trough, are characterized by relatively enriched light rare earth elements (LREE) and strongly positive Eu anomalies. ^87Sr/^86Sr and ^143Nd/^144Nd of these samples are exactly between those of seawater and of acidic pumice, averaged at 0.708928 and 0.512292, respectively. These characteristics imply that the main source of hydrothermal sulfide at Jade area is possibly the undersurface acidic rocks. The mineralizing mechanism can be summarized as follows: Large amount of mineralized material would be leached out and LREE-enriched hydrothermal solution would be subsequently produced as a result of thermo-chemical exchange reaction between acidic volcanic rocks and heated seawater that penetrated in advance from upper water mass. The spurting out from the seabed and quickly crystallizing in the seawater of hydrothermal solution are responsible for the formation of Cu-Zn sulfide and barite-amorphous SiO2 minerals that are characterized by enriched LREE and positively strong Eu anomalies.  相似文献   

11.
冲绳海槽是因菲律宾海板块俯冲于欧亚板块之下,在陆壳上发育起来的一个初始的弧后盆地,是研究弧后扩张作用早期盆地演化、岩浆作用和壳幔过程的天然实验室。尽管迄今对冲绳海槽已经做了大量的调查研究工作,但仍存在一些颇有争议或亟待解决的科学问题,如:冲绳海槽酸性浮岩与基性玄武岩之间的成因联系,冲绳海槽不同区段构造背景对岩浆作用的控制,冲绳海槽岩浆源区地幔的特征,俯冲板块组分(流体+熔体)对地幔楔部分熔融的贡献等。本文在系统收集和整理(剔除了一些存疑数据)了迄今已有冲绳海槽火山岩主量元素、微量元素(包括稀土元素)与Sr-Nd-Pb同位素数据的基础上,通过对资料的系统分析,进一步确认了酸性浮岩与基性玄武岩的岩浆同源性;认为在冲绳海槽北段与中段主要分布有酸性浮岩和中性安山岩,应该是两段区域目前正处于裂谷阶段的反映,而南段广泛分布的基性玄武岩说明在构造性质上已接近成熟性弧后盆地;冲绳海槽的火山岩岩浆源区具有II型富集地幔(EMII型)Dupal异常特征,岩浆源于流行地幔(PREMA)和EMII型地幔端元混合的源区地幔,其中EMII约占比15%,PREMA贡献率在85%左右;源于俯冲的菲律宾海板块(俯冲洋壳或沉积物)的流/熔体的加入是导致冲绳海槽下伏地幔具有EMII型特征的原因,这一点不同于Dupal异常源于壳幔相互作用的观点。  相似文献   

12.
冲绳海槽岩浆源的三分量混合模型   总被引:1,自引:0,他引:1  
综合分析了冲绳海槽玄武岩中微量元素的地球化学特征,发现最少要求三分量混合作用来解释其岩浆源成分,并通过最大方差因子分析估算了3个分量的贡献比例。亏损型地幔是海槽岩浆源的主体,但其中舍有富集型地幔的成分,尤其是海槽中部玄武岩岩浆源中这种富集型地幔成分的特征表现得更为明显。俯冲组分是岩浆源中的另一个主要成分,贡献量为20%左右,是造成海槽区玄武岩中Pb强烈富集的重要原因。  相似文献   

13.
对采自太平洋洋中脊(277组)、印度洋洋中脊(159组)、马里亚纳海槽(53组)、马里亚纳岛弧(39组)、中南劳海盆(72组)共600组玄武岩数据进行了独立成分分析,从Sr-Nd-Pb五维同位素比值空间提取出占样本方差99%的3个独立成分(IC1,IC2,IC3),并利用这3个独立成分(ICs)与微量元素比值之间的相关性来讨论独立成分的起源。分析结果表明:IC1可以将马里亚纳海槽玄武岩与太平洋洋中脊及马里亚纳岛弧玄武岩区分,并且IC1值与(La/Sm)N比值呈正相关。IC2可以将马里亚纳海槽和马里亚纳岛弧玄武岩区分,而且IC2值与Ba/Th比值呈正相关;IC3可以将弧后盆地和洋中脊玄武岩区分,同时IC3值与Th/Nb呈负相关。分析独立成分的统计特征和微量元素比值特征可知,IC1与印度洋型MORB地幔的富集组分相关,IC2与太平洋板块俯冲产生的含水流体相关,IC3与再循环俯冲沉积物熔体相关。根据ICs地理分布特点,我们认为:1)马里亚纳海槽北部比南部受到更多印度洋型MORB地幔富集组分的影响,表明印度洋型MORB地幔可能从北部置换太平洋型MORB地幔;2)海槽北部地幔源区则是受到再循环沉积物熔体的影响较大,而中部和南部地幔源区可能受到更多俯冲流体的影响。  相似文献   

14.
冲绳海槽有孔虫壳体的微量元素Sr,Nd同位素地球化学   总被引:6,自引:1,他引:6  
钙质生物壳的微量元素组合和Sr,Nd同位素组成是识别海底混合源沉积物中生物源物质相对贡献的重要参数.冲绳海槽有孔虫壳体强烈富集Sr,P,Mn和Ba,富集Li,U,Th,Sc,Co,Pb,Zn,Cr,Rb,Y,Sb和轻稀土元素,弱富集V,Ga,Zr,Nb,Cd和中稀土元素,相对贫Ge,Mo,In,Sn,Cs,Hf,Ta,W,Tl,Bi和重稀土元素,海水中微量元素的背景含量和生物活动对微量元素的选择性吸收是有孔虫壳体中微量元素发生富集和贫化的主要机制,冲绳海槽有孔虫壳体的稀土元素配分模式与海水和太平洋有孔虫的有明显差异,表现出中稀土元素相对富集,并具有微弱的负Ce异常.有孔虫壳体的Sr,Nd同位素比值也与大洋海水不同,分别为0.709769和0.512162,前者略高于大洋海水,后者略低于大洋海水,表明冲绳海槽海水明显受大陆河水影响.  相似文献   

15.
借助冲绳海槽火山岩地球化学分析结果,讨论了海槽不同区段岩浆的温度、压力、密度和黏度等物理化学参数,以确定海槽岩浆的物理性质及其对海槽不同区段岩浆演化过程的影响.海槽北段的岩浆相对于中段表现出高压力、低温度的特征.由于海槽岩浆挥发分含量较高,北段岩浆的密度和黏度要高于中段的.但总的来说,海槽岩浆具有低密度、低黏度的特点,因此岩浆更容易穿透岩石圈,而且有利于岩浆结晶分异作用的进行.对海槽岩浆相对运移速度的研究显示,在外部条件及含水量相同的前提下,在海槽中段岩浆上升速度要大于北段的,这从岩浆物理化学性质的角度解释了为何海槽中段火山活动要强于北段的.  相似文献   

16.
We present new major element, ICP-MS trace element, and Sr–Nd–Pb isotope data of basalts from four locations along the Carlsberg Ridge (CR), northern Indian Ocean. The basalts are low-K tholeiites with 7.52–9.51 wt% MgO, 49.40–50.60 wt% SiO2, 0.09–0.27 wt% K2O, 2.55–2.90 wt% Na2O, and 0.60–0.68 Mg#. Trace element contents of the basalts show characteristics similar to those of average normal MORB, such as LREE depleted patterns with (La/Sm)N ratio of 0.55–0.69; however, some samples are enriched in large-ion lithophile elements such as K and Rb, suggesting probable modification of the mantle source. Poor correlations between the compatible elements [e.g. Ni, Cr, and Sr (related to olivine, clinopyroxene and plagioclase, respectively)] and the incompatible elements (e.g. Zr and Y), and positive correlations in the Zr versus Zr/Y and Nb versus Nb/Y plots suggest a magmatic evolution controlled mainly by mantle melting rather than fractional crystallization. Our results extend the CR basalt range to higher radiogenic Pb isotopes and lower 143Nd/144Nd. These basalts and basalts from the northern Indian Ocean Ridge show lower 143Nd/144Nd and higher 87Sr/86Sr values than those of the depleted mantle (DM), defining a trend towards pelagic sediment composition. The Pb isotopic ratios of basalts from CR 3–4°N lie along the compositional mixing lines between the DM and the upper continental crust. However, the low radiogenic Pb of basalts from CR 9–10°N lie on the mixing line between the DM and lower continental crust. Since the Pb isotopic ratio of MORB would decrease if the source mantle was contaminated by continental lithospheric mantle, we suggest that CR contains continental lithospheric material, resulting in heterogeneous mantle beneath different ridge segments. The continental lithospheric material was introduced into the asthenosphere before or during the breakup of the Gondwana. These results support the long-term preservation of continental material in the oceanic mantle which would significantly influence the isotopic anomaly of the Indian Ocean MORB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号