首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Upper-ocean fluxes of particulate organic carbon (POC) and biogenic silica (bSi) are calculated from four US JGOFS cruises along 170°W using a thorium-234 based approach. Both POC and bSi fluxes exhibit large variability vs. latitude during the seasonal progression of diatom dominated blooms. POC fluxes at 100 m of up to 50 mmol C m−2 d−1 are found late in the bloom, and farthest south near the Ross Sea Gyre. Biogenic Si fluxes also peak late in the bloom as high as 15 mmol Si m−2 d−1, but this flux peak occurs at a different latitude, just south of the Antarctic Polar Front (APF), which is centered around 60°S along this cruise track. The ratios of both POC and bSi export relative to their production rates are large, suggesting an efficient biological pump at these latitudes. The highest relative bSi/POC flux ratios at 100 m are found just south of the APF, coincident with a bSi/POC flux peak seen in 1000 m traps during this same program by Deep-Sea Research II (Honjo et al., Deep-Sea Research II 47, 3521–3548). These data suggest that efficient export at these latitudes can support the high accumulation rates of bSi found in the sediments under and south of the APF, despite the generally low biomass and productivity levels in this region.  相似文献   

2.
We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89-88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50-150 mg C m−2 d−1 (mean 93 mg C m−2 d−1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03-0.3 mg Chl m−3 in the upper 20 m and <0.02 mg Chl m−3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7-5.3 × 105, mean 4.1 × 105 cells ml−1 in the upper 20 m and 1.3-3.7 × 105, mean 1.9 × 105 cells ml−1 below) and Chl concentrations were closely correlated (r = 0.75). Mineral nutrients (3 μmol NO3 l−1, 0.45 μmol PO4 l−1, 4-5 μmol SiO4 l−1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ∼30-105 (mean 53) mg C m−3 and PON ∼5.4-14.9 (mean 8.2) mg N m−3 with no clear vertical trend. The vertical flux of POC in the upper 30-100 m water column was ∼37-92 (mean 55) mg C m−2 d−1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m−2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m−2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m−2 d−1, being on the order of 3% and 20% of the expected food-saturated ingestion rates of C. hyperboreus and C. glacialis, respectively. The stage structure of these copepods, dominated by adult females, and their unsatisfied grazing capacity during peak productive period suggest allochthonous origin of these species from productive shelf areas, supported by their long life span and the prevailing surface currents in the Arctic Ocean. We propose that the grazing capacity of the expatriated mesozooplankton population would match the potential seasonal increase of primary production in the future decreased ice perspective, diminishing the likelihood of algal blooms.  相似文献   

3.
An aggregate flux event was observed by ship and by four underwater gliders during the 2008 sub-polar North Atlantic spring bloom experiment (NAB08). At the height of the diatom bloom, aggregates were observed as spikes in measurements of both particulate backscattering coefficient (bbp) and chlorophyll a fluorescence. Optical sensors on the ship and gliders were cross-calibrated through a series of simultaneous profiles, and bbp was converted to particulate organic carbon. The aggregates sank as a discrete pulse, with an average sinking rate of ∼75 m d−1; 65% of aggregate backscattering and 90% of chlorophyll fluorescence content was lost between 100 m and 900 m. Mean aggregate organic carbon flux at 100 m in mid-May was estimated at 514 mg C m−2 d−1, consistent with independent flux estimates. The use of optical spikes observed from gliders provides unprecedented coupled vertical and temporal resolution measurements of an aggregate flux event.  相似文献   

4.
Observations of primary productivity, 234Th, and particulate organic carbon (POC) were made from west to east across the northern North Pacific Ocean (from station K2 to Ocean Station Papa) during September–October 2005. Primary productivities in this region varied longitudinally from approximately 236 to 444 mgC m−2d−1 and clearly indicate the West High East Low (WHEL) trend. We estimated east-west variations in the POC flux from the surface layer (0–100 m) by using 234Th as a tracer. POC fluxes in the western region (44–53 mgC m−2d−1) were higher than those in the eastern region (21–34 mgC m−2d−1). However, the export ratios (e-ratios) ranged from approximately 8% to 16% and did not show the WHEL trend. Contrary to our expectation, no relation between POC flux (or e-ratio) and diatom biomass (or dominance) was apparent in autumn in the northern North Pacific.  相似文献   

5.
We examined the impact of a cyclonic eddy and mode-water eddy on particle flux in the Sargasso Sea. The primary method used to quantify flux was based on measurements of the natural radionuclide, 234Th, and these flux estimates were compared to results from sediment traps in both eddies, and a 210Po/210Pb flux method in the mode-water eddy. Particulate organic carbon (POC) fluxes at 150 m ranged 1–4 mmol C m−2 d−1 and were comparable between methods, especially considering differences in integration times scales of each approach. Our main conclusion is that relative to summer mean conditions at the Bermuda Atlantic Time-series Study (BATS) site, eddy-driven changes in biogeochemistry did not enhance local POC fluxes during this later, more mature stage of the eddy life cycle (>6 months old). The absence of an enhancement in POC flux puts a constraint on the timing of higher POC flux events, which are thought to have caused the local O2 minima below each eddy, and must have taken place >2 months prior to our arrival. The mode-water eddy did enhance preferentially diatom biomass in its center, where we estimated a factor of three times higher biogenic Si flux than the BATS summer average. An unexpected finding in the highly depth-resolved 234Th data sets is narrow layers of particle export and remineralization within the eddy. In particular, a strong excess 234Th signal is seen below the deep chlorophyll maxima, which we attribute to remineralization of 234Th-bearing particles. At this depth below the euphotic zone, de novo particle production in the euphotic zone has stopped, yet particle remineralization continues via consumption of labile sinking material by bacteria and/or zooplankton. These data suggest that further study of processes in ocean layers is warranted not only within, but below the euphotic zone.  相似文献   

6.
Direct measurements of new production and carbon export in the subtropical North Atlantic Ocean appear to be too low when compared to geochemical-based estimates. It has been hypothesized that episodic inputs of new nutrients into surface water via the passage of mesoscale eddies or winter storms may resolve at least some of this discrepancy. Here, we investigated particulate organic carbon (POC), particulate organic nitrogen (PON), and biogenic silica (BSiO2) export using a combination of water column 234Th:238U disequilibria and free-floating sediment traps during and immediately following two weather systems encountered in February and March 2004. While these storms resulted in a 2–4-fold increase in mixed layer NO3 inventories, total chlorophyll a and an increase in diatom biomass, the systems were dominated by generally low 234Th:238U disequilibria, suggesting limited particle export. Several 234Th models were tested, with only those including non-steady state and vertical upwelling processes able to describe the observed 234Th activities. Although upwelling velocities were not measured directly in this study, the 234Th model suggests reasonable rates of 2.2–3.7 m d?1.Given the uncertainties associated with 234Th derived particle export rates and sediment traps, both were used to provide a range in sinking particle fluxes from the upper ocean during the study. 234Th particle fluxes were determined applying the more commonly used steady state, one-dimensional model with element/234Th ratios measured in sediment traps. Export fluxes at 200 m ranged from 1.91±0.20 to 4.92±1.22 mmol C m?2 d?1, 0.25±0.08 to 0.54±0.09 mmol N m?2 d?1, and 0.22±0.04 to 0.50±0.06 mmol Si m?2 d?1. POC export efficiencies (Primary Production/Export) were not significantly different from the annual average or from time periods without storms, although absolute POC fluxes were elevated by 1–11%. This increase was not sufficient, however, to resolve the discrepancy between our observations and geochemical-based estimates of particle export. Comparison of PON export rates with simultaneous measurements of NO3? uptake derived new production rates suggest that only a fraction, <35%, of new production was exported as particles to deep waters during these events. Measured bSiO2 export rates were more than a factor of two higher (p<0.01) than the annual average, with storm events contributing as much as 50% of annual bSiO2 export in the Sargasso Sea. Furthermore it appears that 65–95% (average 86±14%) of the total POC export measured in this study was due to diatoms.Combined these results suggest that winter storms do not significantly increase POC and PON export to depth. Rather, these storms may play a role in the export of bSiO2 to deep waters. Given the slower remineralization rates of bSiO2 relative to POC and PON, this transport may, over time, slowly decrease water column silicate inventories, and further drive the Sargasso Sea towards increasing silica limitation. These storm events may further affect the quality of the POC and PON exported, given the large association of this material with diatoms during these periods.  相似文献   

7.
Silica cycling in the upper 175 m of the North Pacific Subtropical Gyre was examined over a two year period (January 2008-December 2009) at the Hawaii Ocean Time-series (HOT) station ALOHA. Silicic acid concentrations in surface waters ranged from 0.6 to 1.6 ??M, exhibiting no clear seasonal trends. Biogenic silica concentrations and silica production rates increased by an order of magnitude each summer following stratification of the upper 50 m reaching values of 157 nmol Si L−1 and 81 nmol Si L−1 d−1, in 2008 and 2009, respectively. Sea surface height anomalies together with analyses of variability in isothermal surfaces at 150-175 m indicated that the summer periods of elevated biogenic silica were associated with anticyclonic mesoscale features during both years. Lithogenic silica concentrations increased in the spring during the known period of maximum atmospheric dust concentrations with maximum values of 36 nmol Si L−1 in the upper 10 m. Dust deposition would enhance levels of dissolved iron in surface waters, but there was no response of diatom biomass or silica production to increases in near-surface ocean lithogenic silica concentrations suggesting iron sufficiency of diatom silica production rates.Low ambient silicic acid concentrations restricted silica production rates to an average of 43% of maximum potential rates. Si sufficiency only occurred during the summer period when diatom biomass was elevated suggesting that bloom diatoms are adapted to exploit low silicic acid concentrations. Annual silica production at HOT is estimated to be 63 mmol Si m−2 a−1 with summer blooms contributing 29% of the annual total. Diatoms are estimated to account for 3-7% of total phytoplankton primary productivity, but 9-20% of organic carbon export confirming past suggestions that diatoms are relatively minor contributors to primary productivity and autotrophic biomass, but important contributors to new and export production in oligotrophic open-ocean ecosystems.Annual silica production at HOT is nearly 4-fold lower than estimates at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea from the 1990s, but annual silica export at the base of the euphotic zone is similar between the two gyres indicating very different balances between silica production and its loss in surface waters. On a relative basis, BATS is a more productive system with respect to silica, where biogenic silica is recycled with high efficiency in surface waters; in contrast the NPSG is a lower productivity system with respect to silica, but where lower recycling efficiency leads to a much higher fraction of new silica production. The two gyres show contrasting long-term trends in diatom biomass as biogenic silica concentrations at HOT have been increasing since 1997, but they have been decreasing at BATS suggesting very different forcing of decadal trends in the contribution of diatoms in carbon cycling between these gyres. Combining the data from both gyres indicates that globally subtropical gyres produce 13 Tmol Si a−1, which is only 51% of previous estimates reducing the contribution of subtropical gyres to 5-7% of global annual marine silica production.  相似文献   

8.
We utilized 234Th, a naturally occurring radionuclide, to quantify the particulate organic carbon (POC) export rates in the northern South China Sea (SCS) based on data collected in July 2000 (summer), May 2001 (spring) and November 2002 (autumn). Th-234 deficit was enhanced with depth in the euphotic zone, reaching a subsurface maximum at the Chl-a maximum in most cases, as commonly observed in many oceanic regimes. Th-234 was in general in equilibrium with 238U at a depth of ∼100 m, the bottom of the euphotic zone. In this study the 234Th deficit appeared to be less significant in November than in July and May. A surface excess of 234Th relative to 238U was found in the summer over the shelf of the northern SCS, most likely due to the accumulation of suspended particles entrapped by a salinity front. Comparison of the 234Th fluxes from the upper 10 m water column between 2-D and traditional 1-D models revealed agreement within the errors of estimation, suggesting the applicability of the 1-D model to this particular shelf region. 1-D model-based 234Th fluxes were converted to POC export rates using the ratios of bottle POC to 234Th. The values ranged from 5.3 to 26.6 mmol C m−2d−1 and were slightly higher than those in the southern SCS and other oligotrophic areas. POC export overall showed larger values in spring and summer than in autumn, the seasonality of which was, however, not significant. The highest POC export rate (26.6 mmol C m−2d−1) appeared at the shelf break in spring (May), when Chl-a increased and the community structure changed from pico-phytoplankton (<2 μm) dominated to nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–200 μm) dominated.  相似文献   

9.
The common assumption that the ratio between particulate organic carbon (POC) and particulate 234Th obtained from shallow sediment traps and filterable particles are representative of the ratio in the total particle settling flux should be treated with caution in view of well-known biases associated with tethered shallow sediment traps and the decoupling between size and settling velocity of many natural particle regimes. To make progress toward reliably constraining the POC / 234Th ratio on truly settling particles, we have tested here a settling collection technique designed to remove any hydrodynamic bias; split flow-thin cell fractionation (SPLITT). These first results from a North Sea fjord and an open Baltic Sea time-series station indicates that the POC / 234Th ratio on the more complete particle-settling spectrum, isolated with SPLITT, was higher than the POC / 234Th ratio obtained simultaneously from tethered shallow sediment traps in seven out of seven parallel deployments with an average factor of 210%. The POC / 234Th ratio from the SPLITT was either in the same range or higher than that obtained on filtered “bulk” particles. To explain this novel data we hypothesize that the slowest settling fraction is organic-matter rich and does not strongly complex 234Th (i.e., high POC / 234Th). We suggest that this ultra-slow sinking fraction is better collected by SPLITT than with tethered sediment traps because of minimized hydrodynamic bias.This was tested using the ratio of POC / Al as a tracer of detrital mineral-ballast influenced settling velocity. The higher POC / Al ratios in SPLITT samples relative to in traps is consistent with the hypothesis that SPLITT is better suited for collecting also the slow-settling component of sinking particles. This important slow-settling component appears to here consist primarily of non-APS/TEP components of plankton exudates or other less-strongly 234Th-complexing organic matter. Further applications of the SPLITT technique are likely to return increasingly new insights on the composition (including “truly settling” POC / 234Th) of the total spectrum of particles settling out of the upper ocean.  相似文献   

10.
In this study at the Bermuda Atlantic Time-series Study (BATS) site we demonstrate that the polonium–lead disequilibrium system may perform better as a tracer of organic carbon export under low-flux conditions (in this case, <2.5 mmol C m?2 d?1) than under bloom conditions in an oligotrophic setting. With very few exceptions, the POC flux predictions calculated from the water-column 210Po deficit were within a factor of 2 of the POC flux caught in surface-tethered sediment traps. However, we found higher correlation between size-fractionated particulate 210Po activity and POC concentration in November 2006 (r=0.93) than in January (r=0.79) and during the spring bloom in March 2007 (r=0.80). We suggest that this is due to the ability of polonium to distinguish between bulk mass flux and organic carbon export under oligotrophic and lithogenic-driven flux regimes. Further, we found that the POC/Po ratio on particles was largely independent of size class between 10 and 100 μm (P=0.13) during each season, supporting the notion that export in this oligotrophic system is driven by sinking aggregates of smaller cells and not by large, individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号