首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the period 1991–1996 the WOCE hydrographic section A1E/AR7E between Greenland and Ireland was repeated five times. The observed thermohaline changes altered the baroclinic structure along the eastern margin of the subpolar gyre significantly. Between June 1995 and August 1996 an overall increase of the temperature and thickness and a decrease of the density of the Subpolar Mode Water (SPMW) layer were observed, accompanied by an increase of its salinity east of the Reykjanes Ridge and a decrease of its salinity in the Irminger Sea. The changes were most pronounced in the Iceland Basin, where the Subarctic Front retreated westwards, coinciding with a strong weakening of the Westerlies as determined by the North Atlantic Oscillation. They are related to a local reduction of the Ekman upwelling and the ocean-to-atmosphere heat flux on the one hand and to the advection of anomalies from the subtropics on the other hand.The eastward spreading of the different Labrador Sea Water (LSW) vintages led to a corresponding cooling of the LSW in the Irminger Sea and in the Iceland Basin in the period 1991–1996. The renewal of the LSW in the Rockall Trough occurred more sporadically, indicating that the North Atlantic Current (NAC) impedes the southward spreading of LSW in the eastern Atlantic. The changes in 1996 seem to have also counteracted this spreading.  相似文献   

2.
基于德国Max-Planck气象研究所的最新大气海洋环流模式(ECHAM5/MPI-OM),对控制试验(control run)下热盐环流(THC)年际及年代际变化进行了分析,揭示了年代际变率的产生机制。研究表明:(1)THC年际振荡的主导周期是4 a,年代际振荡的主导周期是24 a,THC的年代际振荡信号最强,是第一主成分。(2)THC的年代际振荡机制为:首先从大西洋径向翻转环流(MOC)强度最小开始,由于MOC强度处于较弱状态,从低纬度向高纬度输送的热量偏少,副极地海区海表温度出现负异常,持续5 a之后,北大西洋副极地海区海表温度达到最大负异常。此时副极地流环中心(北大西洋)的表层海水变冷,密度增加,海表面下降,产生从副极地流环边缘指向副极地流环的中心的压强梯度力,根据地转平衡关系,北大西洋副极地海区的上层海洋会出现一个气旋式的环流异常(副极地流环得到加强),北大西洋暖流(NAC)同时得到加强。在副极地海区海表温度达到最大负异常的3 a之后,副极地流环和NAC达到最强。由此,作为NAC延伸的法鲁海峡入流水增强,更多的高盐法鲁海峡入流水进入格陵兰-冰岛-挪威海(GIN)海域,使GIN海域层结稳定性减弱。1 a后,GIN海域深层对流增强,格陵兰-苏格兰海脊溢流水增加。在GIN海域深层对流达到最强的3 a之后,MOC强度达到最大。整个状态翻转过程完成的时间大约为12 a,THC年代际振荡的整个周期大约是24 a。  相似文献   

3.
The sensitivity of the North Atlantic gyre circulation to high latitude buoyancy forcing is explored in a global, non-eddy resolving ocean general circulation model. Increased buoyancy forcing strengthens the deep western boundary current, the northern recirculation gyre, and the North Atlantic Current, which leads to a more realistic Gulf Stream path. High latitude density fluxes and surface water mass transformation are strongly dependent on the choice of sea ice and salinity restoring boundary conditions. Coupling the ocean model to a prognostic sea ice model results in much greater buoyancy loss in the Labrador Sea compared to simulations in which the ocean is forced by prescribed sea ice boundary conditions. A comparison of bulk flux forced hindcast simulations which differ only in their sea ice and salinity restoring forcings reveals the effects of a mixed thermohaline boundary condition transport feedback whereby small, positive temperature and salinity anomalies in subpolar regions are amplified when the gyre spins up as a result of increased buoyancy loss and convection. The primary buoyancy flux effects of the sea ice which cause the simulations to diverge are ice melt, which is less physical in the diagnostic sea ice model, and insulation of the ocean, which is less physical with the prognostic sea ice model. Increased salinity restoring ensures a more realistic net winter buoyancy loss in the Labrador Sea, but it is found that improvements in the Gulf Stream simulation can only be achieved with the excessive buoyancy loss associated with weak salinity restoring.  相似文献   

4.
A time series of a standard hydrographic section in the northern Rockall Trough spanning 23 yr is examined for changes in water mass properties and transport levels. The Rockall Trough is situated west of the British Isles and separated from the Iceland Basin by the Hatton and Rockall Banks and from the Nordic Seas by the shallow (500 m) Wyville–Thompson ridge. It is one pathway by which warm North Atlantic upper water reaches the Norwegian Sea and is converted into cold dense overflow water as part of the thermohaline overturning in the northern North Atlantic and Nordic Seas. The upper water column is characterised by poleward moving Eastern North Atlantic Water (ENAW), which is warmer and saltier than the subpolar mode waters of the Iceland Basin, which also contribute to the Nordic Sea inflow. Below 1200 m the deep Labrador Sea Water (LSW) is trapped by the shallowing topography to the north, which prevents through flow but allows recirculation within the basin. The Rockall Trough experiences a strong seasonal signal in temperature and salinity with deep convective winter mixing to typically 600 m or more and the formation of a warm fresh summer surface layer. The time series reveals interannual changes in salinity of ±0.05 in the ENAW and ±0.04 in the LSW. The deep water freshening events are of a magnitude greater than that expected from changes in source characteristics of the LSW, and are shown to represent periodic pulses of newer LSW into a recirculating reservior. The mean poleward transport of ENAW is 3.7 Sv above 1200 dbar (of which 3.0 Sv is carried by the shelf edge current) but shows a high-level interannual variability, ranging from 0 to 8 Sv over the 23 yr period. The shelf edge current is shown to have a changing thermohaline structure and a baroclinic transport that varies from 0 to 8 Sv. The interannual signal in the total transport dominates the observations, and no evidence is found of a seasonal signal.  相似文献   

5.
Between 1996 and the mid-2000s the upper waters (200–700 m) of the Rockall Trough became warmer (+0.72 °C), saltier (+0.088) and reduced in nitrate and phosphate (−2.00 µM and −0.14 µM respectively). These changes, out-with calculated errors, can be explained by the varying influence of southern versus subpolar water masses in the basin as the Subpolar Gyre weakened and contracted. Upper water properties strongly correlate with a measure of the strength of the Subpolar Gyre (the first principal component of sea surface height over the Subpolar North Atlantic) prior to the mid-2000s. As the gyre weakens, the upper layers of the trough become warmer (r−0.85), more saline (r−0.86) and reduced in nitrate and phosphate (r+0.81 and r+0.87 respectively). Further the proportion of subpolar waters in the basin decreases from around 50% to less than 20% (r+0. 88). Since the mid−2000s the Subpolar Gyre has been particularly weak. During this period temperatures decreased slightly (−0.21 °C), salinities remained near constant (35.410±0.005) and phosphate levels low and stable (0.68±0.02 µM). These relative lack of changes are thought to be related to the maximum proportion of southern water masses within the Rockall Trough having been reached. Thus the upper water properties are no longer controlled by changes in the relative importance of different water masses in the basin (as prior to the mid-2000s), but rather a different process. We suggest that when the gyre is particularly weak the interannual changes in upper water properties in the Rockall Trough reflect changes in the source properties of the southern water masses. Since the early-2000s the Subpolar Gyre has been weaker than observed since 1992, or modelled since 1960–1970. Hence upper waters within the Rockall Trough may be warmer, saltier and more depleted in nitrate and phosphate than at any time in the last half century.  相似文献   

6.
Wyville Thomson Ridge Overflow Water (WTOW), which is the only part of the outflow from the Norwegian Sea not to directly enter the Iceland Basin, is shown to be a significant water mass in the northern Rockall Trough. It is found primarily at intermediate depths (600–1200 m) beneath the northward flowing warm Atlantic waters, and above recirculating Mediterranean influenced waters and Labrador Sea Water (LSW). The bottom of the WTOW layer can be identified by a mid-depth inflexion point in potential temperature–salinity plots. An analysis of historical data reveals that WTOW has been present in all but eight of the last 31 years at 57.5°N in the Rockall Trough. A denser component of WTOW below 1500 m has also been present, although it appears to be less persistent (12 out of the 31 years) and limited to the west of the section. The signature of intermediate WTOW was absent in two periods, the mid-1980s and early 1990s, both of which coincided with a freshening, and probable increase in volume, of LSW in the trough. Potential temperature–salinity diagrams from historical observations indicate that WTOW persists at least as far south as 55°N (and as far west as 20°W in the Iceland Basin) although its signature is quickly lost on leaving the Rockall Trough. We suggest that a transport of WTOW down the western side of the trough exists, with WTOW at intermediate depths entering the eastern trough either via a cyclonic recirculation, or as a result of eddy activity. Further, WTOW is seen on the Rockall–Hatton Plateau and in the deep channels connecting with the Iceland Basin, suggesting additional possible WTOW transport pathways. These suggested transport routes remain to be confirmed by further observational or modelling studies.  相似文献   

7.
风生近惯性内波破碎引起的跨等密度面混合在海洋内部混合中起重要作用。然而其参数化对海洋模式的模拟影响仍有待进一步认识。本文给出的是在模块化海洋模式(MOM)中海洋表面边界层以下引入一个考虑风驱动近惯性内波破碎引起的跨等密度面混合参数化方案的研究工作。模拟结果显示,该方案有效改善MOM4模拟的上层1 000 m以上的温盐偏差,特别是在北太平洋和北大西洋的通风地区。数值试验表明,风生近惯性内波破碎有可能是维持海洋通风过程的重要机制之一,它使得海洋通风区的位温变冷,盐度变淡,整层等位密面加深。维持的通风过程使得北太平洋副极地大涡的影响延伸到副热带大涡。从而模拟的北太平洋中层水源头及其副热带大涡东侧的温盐更接近观测实际。同时,模拟的北大西洋经圈翻转环流强度也更为合理。  相似文献   

8.
Recent decadal salinity changes in the Greenland-Scotland overflow-derived deep waters are quantified using CTD data from repeated hydrographic sections in the Irminger Sea. The Denmark Strait Overflow Water salinity record shows the absence of any net change over the 1980s–2000s; changes in the Iceland–Scotland Overflow Water (ISOW) and in the deep water column (σ0 > 27.82), enclosing both overflows, show a distinct freshening reversal in the early 2000s. The observed freshening reversal is a lagged consequence of the persistent ISOW salinification that occurred upstream, in the Iceland Basin, after 1996 in response to salinification of the northeast Atlantic waters entrained into the overflow. The entrainment salinity increase is explained by the earlier documented North Atlantic Oscillation (NAO)-induced contraction of the subpolar gyre and corresponding northwestward advance of subtropical waters that followed the NAO decline in the mid-1990s and continued through the mid-2000s. Remarkably, the ISOW freshening reversal is not associated with changes in the overflow water salinity. This suggests that changes in the NAO-dependent relative contributions of subpolar and subtropical waters to the entrainment south of the Iceland–Scotland Ridge may dominate over changes in the Nordic Seas freshwater balance with respect to their effect on the ISOW salinity.  相似文献   

9.
Many of the changes observed during the last two decades in the Arctic Ocean and adjacent seas have been linked to the concomitant abrupt decrease of the sea level pressure in the central Arctic at the end of the 1980s. The decrease was associated with a shift of the Arctic Oscillation (AO) to a positive phase, which persisted throughout the mid 1990s. The Arctic salinity distribution is expected to respond to these dramatic changes via modifications in the ocean circulation and in the fresh water storage and transport by sea ice. The present study investigates these different contributions in the context of idealized ice-ocean experiments forced by atmospheric surface wind-stress or temperature anomalies representative of a positive AO index.Wind stress anomalies representative of a positive AO index generate a decrease of the fresh water content of the upper Arctic Ocean, which is mainly concentrated in the eastern Arctic with almost no compensation from the western Arctic. Sea ice contributes to about two-third of this salinification, another third being provided by an increased supply of salt by the Atlantic inflow and increased fresh water export through the Canadian Archipelago and Fram Strait. The signature of a saltier Atlantic Current in the Norwegian Sea is not found further north in both the Barents Sea and the Fram Strait branches of the Atlantic inflow where instead a widespread freshening is observed. The latter is the result of import of fresh anomalies from the subpolar North Atlantic through the Iceland-Scotland Passage and enhanced advection of low salinity waters via the East Icelandic Current. The volume of ice exported through Fram Strait increases by 20% primarily due to thicker ice advected into the strait from the northern Greenland sector, the increase of ice drift velocities having comparatively less influence. The export anomaly is comparable to those observed during events of Great Salinity Anomalies and induces substantial freshening in the Greenland Sea, which in turn contributes to increasing the fresh water export to the North Atlantic via Denmark Strait. With a fresh water export anomaly of 7 mSv, the latter is the main fresh water supplier to the subpolar North Atlantic, the Canadian Archipelago contributing to 4.4 mSv.The removal of fresh water by sea ice under a positive winter AO index mainly occurs through enhanced thin ice growth in the eastern Arctic. Winter SAT anomalies have little impact on the thermodynamic sea ice response, which is rather dictated by wind driven ice deformation changes. The global sea ice mass balance of the western Arctic indicates almost no net sea ice melt due to competing seasonal thermodynamic processes. The surface freshening and likely enhanced sea ice melt observed in the western Arctic during the 1990s should therefore be attributed to extra-winter atmospheric effects, such as the noticeable recent spring-summer warming in the Canada-Alaska sector, or to other modes of atmospheric circulations than the AO, especially in relation to the North Pacific variability.  相似文献   

10.
The influence of changes in the rate of deep water formation in the North Atlantic subpolar gyre on the variability of the transport in the Deep Western Boundary Current is investigated in a realistic hind cast simulation of the North Atlantic during the 1953–2003 period. In the simulation, deep water formation takes place in the Irminger Sea, in the interior of the Labrador Sea and in the Labrador Current. In the Irminger Sea, deep water is formed close to the boundary currents. It is rapidly exported out of the Irminger Sea via an intensified East Greenland Current, and out of the Labrador Sea via increased southeastward transports. The newly formed deep water, which is advected to Flemish Cap in approximately one year, is preceded by fast propagating topographic waves. Deep water formed in the Labrador Sea interior tends to accumulate and recirculate within the basin, with a residence time of a few years in the Labrador Sea. Hence, it is only slowly exported northeastward to the Irminger Sea and southeastward to the subtropical North Atlantic, reaching Flemish Cap in 1–5 years. As a result, the transport in the Deep Western Boundary Current is mostly correlated with convection in the Irminger Sea. Finally, the deep water produced in the Labrador Current is lighter and is rapidly exported out of the Labrador Basin, reaching Flemish Cap in a few months. As the production of deep-water along the western periphery of the Labrador Sea is maximum when convection in the interior is minimum, there is some compensation between the deep water formed along the boundary and in the interior of the basin, which reduces the variability of its net transport. These mechanisms which have been suggested from hydrographic and tracer observations, help one to understand the variability of the transport in the Deep Western Boundary Current at the exit of the subpolar gyre.  相似文献   

11.
A numerical simulation with a coupled sea-ice model of the Arctic and North Atlantic oceans is used to study the influence that the interannual variations in the Siberian river discharge have on the distribution and propagation of freshwater in this region. In numerical experiments we compared simulations with the use of observational data on the discharge of the most significant Siberian rivers (Ob, Yenisei, and Lena) against the results of climatic seasonally average variations of their discharges. This comparison showed that the interannual variations may have significant consequences despite their smallness when compared with oceanic-scale water transport. These consequences include (1) the intensification of either cyclonic or anticyclonic components of motion of the subsurface Arctic Ocean waters and, as a result, the redistribution of freshwater fluxes from Arctic regions between the Fram Strait and the straits of the Canadian Archipelago. A change in the store of fresh Arctic Ocean waters due to interannual variations in the Ob, Yenisei, and Lena discharges is approximately ±400 km3, whereas the volume of water redirected in this regard, which forms a link between some straits, reaches 15 thousand km3. On the other hand, (2) insignificant changes in the propagation direction of freshwaters are multiply enhanced in the process of their motion in the North Atlantic as part of the subpolar gyre because of their smaller or larger involvement in the processes of vertical mixing. As a result of this, anomalies of freshwater develop considerably far from the river mouths, like in the region of the Azores islands, and are 5–6 times larger than the maximum values of the accumulated variability volumes of the river discharge.  相似文献   

12.
Year-long Lagrangian trajectories within the Labrador Sea Water of the eastern North Atlantic Ocean are analysed for basic flow statistics. Root-mean-square velocities at 1750 m depth are about 2 cm/s, except within the North Atlantic Current, where they are twice as large. These values are consistent with previous Eulerian measurements and extend those results to a much larger domain of the eastern basin. Mean flow estimates in boxes large enough to contain about 1 float-year of data indicate that Labrador Sea Water, having crossed the Mid- Atlantic Ridge (not resolved) near 50–55°N, presumably with the North Atlantic Current, partially recirculates to the north in the subpolar gyre, as well as entering the subtropical gyre and continuing south and west. The circulation of this water mass, as defined by the 1 yr average velocities, is stronger than traditional models of deep circulation would suggest, with an interior flow of roughly 1 cm/s. Mean speeds up to 3 cm/s were observed, with the highest values near the Azores Plateau. North of 45°N–55°N, mean eastward speeds closer to 0.2 cm/s were observed. Wind-generated barotropic fluctuations may be responsible for some part of the transport at this depth.  相似文献   

13.
Different physical mechanisms which cause interannual and interdecadal temperature anomalies in the upper mixed layer (UML) of the North Atlantic are investigated using the data of ORA-S3 reanalysis for the period of 1959–2011. It is shown that the annual mean heat budget in UML is mainly caused by the balance between advective heat transfer and horizontal turbulent mixing (estimated as a residual term in the equation of thermal balance). The local UML temperature change and contribution from the heat fluxes on the lower boundary of the UML to the heat budget of the upper layer are insignificant for the time scale under consideration. The contribution of the heat fluxes on the upper UML boundary to the low-frequency variability of the upper layer temperature in the whole North Atlantic area is substantially less than 30%. Areas like the northwestern part of the Northern Subtropical Anticyclonic Gyre (NSAG), where their contribution exceeds 30–60%, are exceptions. The typical time scales of advective heat transfer variability are revealed. In the NSAG area, an interannual variability associated with the North Atlantic Oscillation dominates, while in the North Atlantic subpolar gyre, an interdecadal variability of advective transfers with periods of more than 30 years prevails.  相似文献   

14.
A 700 km wide-angle reflection/refraction profile carried out in the central North Atlantic west of Ireland crossed the Erris Trough, Rockall Trough and Rockall Bank, and terminated in the western Hatton-Rockall Basin. The results reveal the presence of a number of sedimentary basins separated by basement highs. The Rockall Trough, with a sedimentary pile up to 5 km thick, is underlain by thinned continental crust 8–10 km thick. Some major fault block structures are identified, especially on the eastern margin of the Rockall Trough and in the adjacent Erris Trough. The Hatton-Rockall Basin is underlain by westward-thinning continental crust 22–10 km thick. Sedimentary strata are up to 5 km thick. The strata in the Rockall Trough and Hatton-Rockall Basin probably range in age from Late Palaeozoic to Cenozoic. However, the basins have different sedimentation histories and differ in structural style. The geometry of the crust and sediments suggests that the Rockall Trough originated by pure shear crustal stretching, associated with rift deposits and Cenozoic thermal sag strata. In contrast, the development of the Erris Trough, located on unthinned continental crust, was facilitated by shallow, brittle extension with little deep crustal attenuation. A two-layered crust occurs throughout the region. The lower crustal velocity in the Hatton-Rockall Basin is higher than that in the Rockall Trough. The velocity structure shows no indication of crustal underplating by upper mantle material in the region.  相似文献   

15.
利用一个较高分辨率的全球海洋环流模式在COADS 1945~1993年逐月平均资料的强迫下对海温和环流场进行了模拟,分析了北太平洋海温和环流场的年代际变化特征,同时诊断了1976-77年代际跃变过程中海温场变化的机制.模式模拟出了北太平洋海温年代际异常的主要模态以及1976-77年跃变前后的演变特征,模拟的北太平洋中部、加州沿岸和KOE区的海温异常的强度和演变趋势均和观测比较一致;同时,模式重现了分别始于20世纪70和80年代的中纬度海温异常信号沿等密度面向低纬地区的两次潜沉过程.在表层,流场的异常主要表现为与风应力异常基本符合Ekman关系的一个异常海洋涡旋,而整个上层海洋平均的流场异常则表现为两个海洋涡旋的异常,其中副热带海洋涡旋的异常的强度要显著于副极地海洋涡旋的异常,而副极地海洋涡旋异常出现的时间比副热带海洋涡旋晚3a左右的时间.对1976-77年前后3个区域上层海温各贡献项的诊断结果表明,北太平洋中部变冷主要是水平平流和热通量异常贡献的结果;而加州沿岸变暖主要归因于热通量的贡献;在KOE区,垂直平流、热通量和水平平流三者都起了重要作用,其中水平平流异常对这一区域海温年代际跃变出现的时间起了至关重要的作用.  相似文献   

16.
We examine the effect of a northward shift in the position of the southern hemisphere subpolar westerly winds (SWWs) on the vertical and horizontal distribution of temperature and salinity in the world ocean. A northward shift of the SWWs causes a latitudinal contraction of the subpolar gyres in the southern hemisphere (SH). In the Indian and Pacific, this leads to subsurface warming in the subtropical thermocline. As the southern margins of the gyres move into latitudes characterised by warmer surface air temperature (SAT), the layers at mid-depth below 400 m depth become ventilated by warmer water. We characterize the approximation of the ventilated thermocline in our coarse resolution model using a set of passive tracer experiments, and illustrate how the northward shift in the SWWs causes an equatorward shift in the latitude of origin of water ventilating layers deeper than 400 m in the Indian and Pacific, leaving the total surface ventilation of the upper 1200 m unchanged. In contrast, the latitudinal constraint on the Antarctic Circumpolar Current posed by the Drake Passage causes a cooling and freshening throughout the Atlantic thermocline; here, subsurface thermocline water originates from higher latitudes under the wind shift. On longer timescales Atlantic cooling and freshening is reinforced by a reduction in North Atlantic Deep Water (NADW) formation and surface salinification of the Indian and Pacific Oceans. In effect, the latitude of zero wind stress curl in the SWWs regulates the relative importance of the “cold water route” via the Drake Passage and the “warm water route” associated with thermocline water exchange via the Indian Ocean. Thus, a more northward location of the SWWs corresponds with a reduced salinity contrast between the Indian/ Pacific Oceans and the Atlantic. This results in reduced NADW formation. Also, a more northward location of the SWWs facilitates the injection of cool fresh Antarctic Intermediate Water into the South Atlantic subtropical gyre. Beyond these changes, on a millennial timescale, the deep ocean warms throughout the water column in response to the wind shift. Global salinity stratification also becomes less stable, as more saline water remains at the surface and accumulates in the Indian and Pacific thermocline. The freshening of the deep ocean reflects a reduced stirring of the global ocean due to reduced net circulation arising from a misalignment between the westerlies and the topographically constrained ACC. Our results lend support to the idea that a more equatorward location of the SWW maximum during glacial climates contributed to cooler and fresher conditions in the Atlantic, inhibiting NADW.  相似文献   

17.
18.
On the basis of Argo data and historic temperature/salinity data from the World Ocean Database 2001 ( WOD01 ), origins and spreading pathways of the subsurface and intermediate water masses in the Indonesian Throughflow (ITF) region were discussed by analyzing distributions of salinity on representative isopyenal layers. Results were shown that, subsurface water mostly comes from the North Pacific Ocean while the intermediate water originates from both the North and South Pacific Ocean, even possibly from the Indian Ocean. Spreading through the Sulawesi Sea, the Makassar Strait, and file Flores Sea, the North Pacific subsurface water and the North Pacific Intermediate water dominate the western part of the Indonesian Archipelago. Furthermore as the depth increases, the features of the North Pacific sourced water masses become more obvious. In the eastern part of the waters, high sa- linity South Pacific subsurface water is blocked by a strong salinity front between Halmahera and New Guinea. Intermediate water in the eastern interior region owns salinity higher than the North Pacific intermediate water and the antarctic intermediate water ( AAIW), possibly coming from the vertical mixing between subsurface water and the AAIW from the Pacific Ocean, and possibly coming from the northward extending of the AAIW from the Indian Ocean as well.  相似文献   

19.
Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the major conclusions:
1.
Excess freshwater in high latitudes must be transported to the evaporative lower latitudes, as is well known. The calculations here show that the northern hemisphere transports most of its high latitude freshwater equatorward through North Atlantic Deep Water (NADW) formation (as in [Rahmstorf, S., 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12, 799-811]), in which saline subtropical surface waters absorb the freshened Arctic and subpolar North Atlantic surface waters (0.45 ± 0.15 Sv for a 15 Sv overturn), plus a small contribution from the high latitude North Pacific through Bering Strait (0.06 ± 0.02 Sv). In the North Pacific, formation of 2.4 Sv of North Pacific Intermediate Water (NPIW) transports 0.07 ± 0.02 Sv of freshwater equatorward.In complete contrast, almost all of the 0.61 ± 0.13 Sv of freshwater gained in the Southern Ocean is transported equatorward in the upper ocean, in roughly equal magnitudes of about 0.2 Sv each in the three subtropical gyres, with a smaller contribution of <0.1 Sv from the Indonesian Throughflow loop through the Southern Ocean. The large Southern Ocean deep water formation (27 Sv) exports almost no freshwater (0.01 ± 0.03 Sv) or actually imports freshwater if deep overturns in each ocean are considered separately (−0.06 ± 0.04 Sv).This northern-southern hemisphere asymmetry is likely a consequence of the “Drake Passage” effect, which limits the southward transport of warm, saline surface waters into the Antarctic [Toggweiler, J.R., Samuels, B., 1995a. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research I 42(4), 477-500]. The salinity contrast between the deep Atlantic, Pacific and Indian source waters and the denser new Antarctic waters is limited by their small temperature contrast, resulting in small freshwater transports. No such constraint applies to NADW formation, which draws on warm, saline subtropical surface waters .
2.
The Atlantic/Arctic and Indian Oceans are net evaporative basins, hence import freshwater via ocean circulation. For the Atlantic/Arctic north of 32°S, freshwater import (0.28 ± 0.04 Sv) comes from the Pacific through Bering Strait (0.06 ± 0.02 Sv), from the Southern Ocean via the shallow gyre circulation (0.20 ± 0.02 Sv), and from three nearly canceling conversions to the NADW layer (0.02 ± 0.02 Sv): from saline Benguela Current surface water (−0.05 ± 0.01 Sv), fresh AAIW (0.06 ± 0.01 Sv) and fresh AABW/LCDW (0.01 ± 0.01 Sv). Thus, the NADW freshwater balance is nearly closed within the Atlantic/Arctic Ocean and the freshwater transport associated with export of NADW to the Southern Ocean is only a small component of the Atlantic freshwater budget.For the Indian Ocean north of 32°S, import of the required 0.37 ± 0.10 Sv of freshwater comes from the Pacific through the Indonesian Throughflow (0.23 ± 0.05 Sv) and the Southern Ocean via the shallow gyre circulation (0.18 ± 0.02 Sv), with a small export southward due to freshening of bottom waters as they upwell into deep and intermediate waters (−0.04 ± 0.03 Sv).The Pacific north of 28°S is essentially neutral with respect to freshwater, −0.04 ± 0.09 Sv. This is the nearly balancing sum of export to the Atlantic through Bering Strait (−0.07 ± 0.02 Sv), export to the Indian through the Indonesian Throughflow (−0.17 ± 0.05 Sv), a negligible export due to freshening of upwelled bottom waters (−0.03 ± 0.03 Sv), and import of 0.23 ± 0.04 Sv from the Southern Ocean via the shallow gyre circulation.
3.
Bering Strait’ssmall freshwater transport of <0.1 Sv helps maintains the Atlantic-Pacific salinity difference. However, proportionally large variations in the small Bering Strait transport would only marginally impact NADW salinity, whose freshening relative to saline surface water is mainly due to air-sea/runoff fluxes in the subpolar North Atlantic and Arctic. In contrast, in the Pacific, because the total overturning rate is much smaller than in the Atlantic, Bering Strait freshwater export has proportionally much greater impact on North Pacific salinity balances, including NPIW salinity.
  相似文献   

20.
Various statistical methods (empirical orthogonal function (EOF), rotated EOF, singular value decomposition (SVD), principal oscillation pattern (POP), complex EOF (CEOF) and joint CEOF) were applied to low-pass filtered (>7 years) sea surface temperature (SST), subsurface temperature and 500 hPa geopotential height in order to reveal standing and propagating features of decadal variations in the North Pacific. Four decadal ocean-atmosphere covariant modes were found in this study. The first mode is the well-known ENSO-like mode associated with the “Pacific-North American” atmospheric pattern, showing SST variations reversed between the tropics and the extratropics. In the western tropical Pacific, subsurface temperature variations were found to be out of phase with the SST variations. The other three modes are related to the oceanic general circulation composed of the subtropical gyre, the Alaskan gyre and the subpolar gyre, respectively. The 1988/89 event in the northern North Pacific was found to be closely associated with the subtropical gyre mode, and the atmospheric pattern associated with this mode is the Arctic Oscillation. An upper ocean heat budget analysis suggests that the surface net heat flux and mean gyre advection are important to the Alaskan gyre mode. For the subpolar gyre mode, the mean gyre advection, local Ekman pumping and surface net heat flux play important roles. Possible air-sea interactions in the North Pacific are also discussed. The oceanic signals for these decadal modes occupy a thick layer in the North Pacific, so that accumulated heat content may in turn support long-term climate variations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号