首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arabian Sea oxygen minimum zone (OMZ) impinges upon the Indian continental margin at bathyal depths (150-1500 m) producing changes in ambient oxygen availability and sediment geochemistry across the seafloor. The influence of these environmental changes upon the epi-benthic megafaunal assemblage was investigated by video survey at six stations spanning the OMZ core (540 m), lower boundary (800-1100 m) and below the OMZ (2000 m), between September and November 2008. Structural changes in the megafaunal assemblage were observed across the six stations, through changes in both megafaunal abundance and lebensspuren (biogenic traces). Most megafauna were absent in the OMZ core (540 m), where the assemblage was characterised by low densities of fishes (0.02-0.03 m−2). In the lower OMZ boundary, megafaunal abundance peaked at 800 m, where higher densities of ophiuroids (0.20-0.44 m−2) and decapods (0.11-0.15 m−2) were present. Total abundance declined with depth between 800 and 2000 m, as the number of taxa increased. Changes in the megafaunal assemblage were predicted by changes in abundance of seven taxonomic groups, correlated to both oxygen availability and sediment organic matter quality. Lebensspuren densities were highest in the OMZ boundary (800-1100 m) but traces of large infauna (e.g., echiurans and enteropneusts) were only observed between 1100 and 2000 m station, where the influence of the OMZ was reduced. Thus, changes in the megafaunal assemblage across the Indian margin OMZ reflect the responses of specific taxa to food availability and oxygen limitation.  相似文献   

2.
Faunal communities at the deep-sea floor mainly rely on the downward transport of particulate organic material for energy, which can come in many forms, ranging from phytodetritus to whale carcasses. Recently, studies have shown that the deep-sea floor may also be subsidized by fluxes of gelatinous material to the benthos. The deep-sea scyphozoan medusa Periphylla periphylla is common in many deep-sea fjords in Norway and recent investigations in Lurefjorden in western Norway suggest that the biomass of this jellyfish currently exceeds 50000 t here. To quantify the presence of dead P. periphylla jellyfish falls (hereafter termed jelly-falls) at the deep seafloor and the standing stock of carbon (C) and nitrogen (N) deposited on the seafloor by this species, we made photographic transects of the seafloor, using a ‘Yo-Yo’ camera system during an opportunistic sampling campaign in March 2011. Of 218 seafloor photographs taken, jelly-falls were present in five, which resulted in a total jelly-fall abundance of 1×10-2 jelly-falls m−2 over the entire area surveyed. Summed over the entire area of seafloor photographed, 1×10-2 jelly-falls m−2 was equivalent to a C- and N-biomass of 13 mg C m−2 and 2 mg N m−2. The contribution of each jelly-fall to the C- and N-amount of the sediment in the immediate vicinity of each fall (i.e. to sediment in each 3.02 m2 image in which jelly-falls were observed) was estimated to be 568±84 mg C m−2 and 88±13 mg N m−2. The only megafaunal taxon observed around or on top of the jelly-falls was caridean shrimp (14±5 individuals jelly-fall−1), and shrimp abundance was significantly greater in photographs in which a jelly-fall was found (14±5 individuals image−1) compared to photographs in which no jelly-falls were observed (1.4±0.7 individuals image−1). These observations indicate that jelly-falls in this fjord can enhance the sedimentary C- and N-amount at the deep-sea floor and may provide nutrition to benthic and demersal faunas in this environment. However, organic enrichment from the jelly-falls found in this single sampling event and associated disturbance was highly localized.  相似文献   

3.
A litter bag experiment was performed on a wrack-loaded beach in Hornsund (southern Spitsbergen) to study the decay rate of stranded macroalgae and their colonization by meiofauna. The average monthly loss of macroalgal dry mass was 45 ± 5%. The composition of the wrack-associated fauna was similar to those reported from other world regions. Nematodes composed of bacterivorous rhabditids and monhysterids were the numerically dominant taxon (>99% of the community). High nematode densities averaging 35,000 ind. per litter bag (6,500 ind g−1 dwt) indicate their skills for rapid colonization and successful exploitation of the short-lived habitat established on an Arctic beach. We suggest that stranded macroalgae may play a role as a potential hotspot for nematodes and microbial processes in the Arctic coastal ecosystem. It is also suggested that wrack position on the beach profile which resulted in different wrack-age and moisture content may affect the composition and diversity of the wrack-associated meiofauna.  相似文献   

4.
Five photographic transects, covering some 830 m2 of seafloor in total, were analyzed to characterize the megabenthic community along a bathymetric gradient covering water depths from 1200 to 5500 m in the eastern Fram Strait. Megafaunal densities ranged between 11 and 38 ind. m−2. The highest densities were found at 1650 m and the lowest densities occurred at 3000 m depth. The number of taxa and morphotypes ranged between 4 at 5500 m and 27 at 1650 m water depth. Ophiocten gracilis, a small white unidentified amphipod, Kolga hyalina, and Bathycrinus carpenteri were the dominant and characteristic species on the slope and continental rise. Elpidia heckeri dominated in the Molloy Hole, the deepest depression known in the Arctic Ocean. Megafaunal zonation patterns appeared to be mainly controlled by food availability, as indicated by phytodetrital matter measured at the seafloor, and by benthic biomass in the sediments, as indicated by sediment-bound particulate proteins and phospholipids. By contrast, physical factors, including water depth and seabed properties such as sediment porosity and hard substrata (e.g., dropstones), appear to play a secondary role in determining megabenthic zonation patterns along the bathymetric HAUSGARTEN gradient.  相似文献   

5.
Dense water formation and circulation in the Barents Sea   总被引:1,自引:0,他引:1  
Dense water masses from Arctic shelf seas are an important part of the Arctic thermohaline system. We present previously unpublished observations from shallow banks in the Barents Sea, which reveal large interannual variability in dense water temperature and salinity. To examine the formation and circulation of dense water, and the processes governing interannual variability, a regional coupled ice-ocean model is applied to the Barents Sea for the period 1948-2007. Volume and characteristics of dense water are investigated with respect to the initial autumn surface salinity, atmospheric cooling, and sea-ice growth (salt flux). In the southern Barents Sea (Spitsbergen Bank and Central Bank) dense water formation is associated with advection of Atlantic Water into the Barents Sea and corresponding variations in initial salinities and heat loss at the air-sea interface. The characteristics of the dense water on the Spitsbergen Bank and Central Bank are thus determined by the regional climate of the Barents Sea. Preconditioning is also important to dense water variability on the northern banks, and can be related to local ice melt (Great Bank) and properties of the Novaya Zemlya Coastal Current (Novaya Zemlya Bank). The dense water mainly exits the Barents Sea between Frans Josef Land and Novaya Zemlya, where it constitutes 63% (1.2 Sv) of the net outflow and has an average density of 1028.07 kg m−3. An amount of 0.4 Sv enters the Arctic Ocean between Svalbard and Frans Josef Land. Covering 9% of the ocean area, the banks contribute with approximately 1/3 of the exported dense water. Formation on the banks is more important when the Barents Sea is in a cold state (less Atlantic Water inflow, more sea-ice). During warm periods with high throughflow more dense water is produced broadly over the shelf by general cooling of the northward flowing Atlantic Water. However, our results indicate that during extremely warm periods (1950s and late 2000s) the total export of dense water to the Arctic Ocean becomes strongly reduced.  相似文献   

6.
Alterations in sea ice and primary production are expected to have cascading influences on the food web in high Arctic marine ecosystems. This study spanned four years and examined the spring phytoplankton production bloom in Disko Bay, West Greenland (69°N, 53°W) (using chlorophyll a concentrations as a proxy) under contrasting sea ice conditions in 2001 and 2003 (heavy sea ice) and 2002 and 2004 (light sea ice). Satellite-based observations of chlorophyll a, sea ice and sea surface temperature were used together with in situ depth profiles of chlorophyll a fluorescence collected at 24 sampling stations along the south coast of Disko Island (5-30 km offshore) in May 2003 and 2004. Chlorophyll a and sea surface temperatures were also obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS: EOS-Terra and AQUA satellites) between March 2001 and July 2004. Daily SMMR/SSMI sea ice data were obtained in the same years. An empirical regional algorithm was developed to calibrate ratios of remotely sensed measurements of water leaving radiance with in situ chlorophyll a fluorescence. The optimal integration depth was 0-4 m, explaining between 70% and 91% of the variance. The spatial development of the phytoplankton bloom showed that the southwestern corner of the study area had the earliest and the largest spring phytoplankton bloom. The eastern part of Disko Bay, influenced by meltwater outflow from the glaciers, shows no signs of an early phytoplankton bloom and followed the general pattern of an accelerated bloom soon after the disappearance of sea ice. In all four years the coupling between phytoplankton and sea ice was bounded by average open water between 50% and 80%, likely due to the combined availability of light and stable open water. The daily incremental growth in both mean chlorophyll a density (chlorophyll a per volume water, μg l−1) and abundance (density of chlorophyll a extrapolated to ice free areas, tons) estimated by linear regression (chlorophyll a vs. day) between 1 April and 15 May was highest in 2002 and 2004 (light ice years) and lowest in 2001 and 2003 (heavy ice years). In years with late sea ice retreat the chlorophyll a attained only slightly lower densities than in years with early sea ice retreat. However, the abundance of chlorophyll a in light ice years was considerably larger than in heavy ice years, and there was an obvious effect of more open water for light-induced stimulation of primary production. This observation demonstrates the importance of estimating chlorophyll a abundance rather than density in sea ice covered areas. This study also presents the first regional calibration of MODIS chlorophyll a data for Arctic waters.  相似文献   

7.
大气环流优势模态对北极海冰变化的响应Ⅰ.北极涛动   总被引:1,自引:0,他引:1  
王宏  周晓  黄菲 《海洋学报》2015,37(11):57-67
利用美国冰雪中心海冰密集度数据,分析了1979-2012年北极海冰面积的时间变化特征,发现北极海冰具有显著的年代际变化特征,分别在1997和2007年前后存在两次年代际转型突变点,相应的大气环流优势模态——北极涛动(AO)也存在显著的时空变化。1979-1996年阶段海冰下降趋势较弱并以较强的年际振荡为主,AO模态较强且显示出低频振荡特征;1997-2006年阶段北极海冰快速减退趋势占优,同时伴随着较弱的年际振荡,AO模态减弱且振荡周期缩短;2007-2012年阶段海冰范围较快下降同时具有极强的年际振荡,方差变化是前两个阶段的2~3倍,AO不仅强度加强,空间结构也发生了变化,极涡中心分别向格陵兰岛和白令海峡一侧延伸,这种结构有利于极地冷空气入侵欧洲和北美。利用ECHAM5大气模式进行的数值试验结果也证实了较强振荡的海冰强迫对AO模态的改变具有决定作用。  相似文献   

8.
Deep-seafloor communities, especially those from the ice-covered Arctic, are subject to severe food limitation as the amount of particulate organic matter (POM) from the surface is attenuated with increasing depth. Here, we use naturally occurring stable isotope tracers (δ15N) to broaden our rudimentary knowledge of food web structure and the response of benthic organisms to decreasing food supplies along the bathymetric transect (~1300–5600 m water depth) of the deep-sea observatory HAUSGARTEN. Encompassing five trophic levels, the HAUSGARTEN food web is among the longest indicating continuous recycling of organic material typical of food-limited deep-sea ecosystems. The δ15N signatures ranged from 3.0‰ for Foraminifera to 21.4‰ (±0.4) for starfish (Poraniomorpha tumida). The majority of organisms occupied the second and third trophic level. Demersal fish fed at the third trophic level, consistent with results from stomach contents analysis. There were significant differences in the δ15N signatures of different functional groups with highest δ15N values in predators/scavengers (13.2±0.2‰) followed by suspension feeders (11.2±0.2‰) and deposit feeders (10.2±0.3‰). Depth (=increasing food limitation) affected functional groups in different ways. While the isotopic signatures of predators/scavengers did not change, those of suspension feeders increased with depth, and the reverse was found for deposit feeders. In contrast to the results of other studies, the δ15N signatures in POM samples obtained below 800 m did not vary significantly with depth indicating that changes in δ15N values are unlikely to be responsible for the depth-related δ15N signature changes observed for benthic consumers. However, the δ15N signatures of sediments decreased with increasing depth, which also explains the decrease found for deposit feeders. Suspension feeders may rely increasingly on particles trickling down the HAUSGARTEN slope and carrying higher δ15N signatures than the decreasing POM supplies, which elevates the δ15N value of their tissues. Our results imply that a depth-stratified approach should be taken to avoid a misinterpretation of data obtained at different depths.  相似文献   

9.
Unprecedented summer-season sampling of the Arctic Ocean during the period 2006-2008 makes possible a quasi-synoptic estimate of liquid freshwater (LFW) inventories in the Arctic Ocean basins. In comparison to observations from 1992 to 1999, LFW content relative to a salinity of 35 in the layer from the surface to the 34 isohaline increased by 8400±2000 km3 in the Arctic Ocean (water depth greater than 500 m). This is close to the annual export of freshwater (liquid and solid) from the Arctic Ocean reported in the literature.Observations and a model simulation show regional variations in LFW were both due to changes in the depth of the lower halocline, often forced by regional wind-induced Ekman pumping, and a mean freshening of the water column above this depth, associated with an increased net sea ice melt and advection of increased amounts of river water from the Siberian shelves. Over the whole Arctic Ocean, changes in the observed mean salinity above the 34 isohaline dominated estimated changes in LFW content; the contribution to LFW change by bounding isohaline depth changes was less than a quarter of the salinity contribution, and non-linear effects due to both factors were negligible.  相似文献   

10.
The HAUSGARTEN observatory is located in the eastern Fram Strait (Arctic Ocean) and used as long-term monitoring site to follow changes in the Arctic benthic ecosystem. Linear inverse modelling was applied to decipher carbon flows among the compartments of the benthic food web at the central HAUSGARTEN station (2500 m) based on an empirical data set consisting of data on biomass, prokaryote production, total carbon deposition and community respiration. The model resolved 99 carbon flows among 4 abiotic and 10 biotic compartments, ranging from prokaryotes up to megafauna. Total carbon input was 3.78±0.31 mmol C m−2 d−1, which is a comparatively small fraction of total primary production in the area. The community respiration of 3.26±0.20 mmol C m−2 d−1 is dominated by prokaryotes (93%) and has lower contributions from surface-deposit feeding macro- (1.7%) and suspension feeding megafauna (1.9%), whereas contributions from nematode and other macro- and megabenthic compartments were limited to <1%. The high prokaryotic contribution to carbon processing suggests that functioning of the benthic food web at the central HAUSGARTEN station is comparable to abyssal plain sediments that are characterised by strong energy limitation. Faunal diet compositions suggest that labile detritus is important for deposit-feeding nematodes (24% of their diet) and surface-deposit feeding macrofauna (∼44%), but that semi-labile detritus is more important in the diets of deposit-feeding macro- and megafauna. Dependency indices on these food sources were also calculated as these integrate direct (i.e. direct grazing and predator–prey interactions) and indirect (i.e. longer loops in the food web) pathways in the food web. Projected sea-ice retreats for the Arctic Ocean typically anticipate a decrease in the labile detritus flux to the already food-limited benthic food web. The dependency indices indicate that faunal compartments depend similarly on labile and semi-labile detritus, which suggests that the benthic biota may be more sensitive to changes in labile detritus inputs than when assessed from diet composition alone. Species-specific responses to different types of labile detritus inputs, e.g. pelagic algae versus sympagic algae, however, are presently unknown and are needed to assess the vulnerability of individual components of the benthic food web.  相似文献   

11.
Fresh water flowing from the Arctic Ocean via the East Greenland Current influences deep water formation in the Nordic Seas as well as the salinity of the surface and deep waters flowing from there. This fresh water has three sources: Pacific water (relatively fresh cf. Atlantic water), river runoff, and sea ice meltwater. To determine the relative amounts of the three sources of fresh water, in May 2002 we collected water samples across the East Greenland Current in sections from 81.5°N to the Irminger Sea south of Denmark Strait. We used nitrate-phosphate relationships to distinguish Pacific waters from Atlantic waters, salinity to obtain the sum of sea ice melt water and river runoff water, and total alkalinity to distinguish the latter. River runoff contributed the largest part of the total fresh water component, in some regions with some inventories exceeding 12 m. Pacific fresh water (Pacific source water S ∼ 32 cf. Atlantic source water S ∼ 34.9) typically provided about 1/3 of the river runoff contribution. Sea ice meltwater was very nearly non-existent in the surface waters of all sections, likely at least in part as a result of the samples being collected before the onset of the melt season. The fresh water from the Arctic Ocean was strongly confined to near the Greenland coast. We thus conjecture that the main source of fresh water from the Arctic Ocean most strongly impacting deep convection in the Nordic Seas would be sea ice as opposed to fresh water in the liquid phase, i.e., river runoff, Pacific fresh water, and sea ice meltwater.  相似文献   

12.
Pteropods in Southern Ocean ecosystems   总被引:1,自引:0,他引:1  
To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group.Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m−3 (max = 800 ind m−3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m−3 (max = 2681 ind m−3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m−3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed <5% to total zooplankton in the Lazarev Sea, but 15% (max = 93%) to macrozooplankton in the East Antarctic. In addition to regional density distributions we have synthesized data on vertical distributions, seasonal cycles, and inter-annual density variation.Trophically, gymnosome are specialist predators on thecosomes, while thecosomes are considered predominantly herbivorous, capturing food with a mucous web. The ingestion rates of L. retroversa australis are in the upper range for sub-Antarctic mesozooplankton (31.2-4196.9 ng pig ind−1 d−1), while those of L. helicina antarctica and C. pyramidata are in the upper range for all Southern Ocean zooplankton, in the latter species reaching 27,757 ng pig ind−1 d−1 and >40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes.Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also contribute significantly to organic carbon flux through the production of fast sinking faecal pellets and mucous flocs, and rapid sinking of dead animals ballasted by their aragonite shells. Quantification of these contributions requires data on mucous web production rates, egestion rates, assimilation efficiencies, metabolic rates, and faecal pellet morphology for application to sediment trap studies.Based on the available data, pteropods are regionally significant components of the Southern Ocean pelagic ecosystem. However, there is an urgent need for focused research on this group in order to quantify how a decline in pteropod densities may impact on Southern Ocean ecosystems.  相似文献   

13.
王坤  毕海波  黄珏 《海洋科学》2022,46(4):44-54
北极海冰作为一个巨大的淡水资源库, 每年向全球输送大量淡水资源, 从北极输出的海冰在向南输送的过程中融化, 对海洋水循环与水环境产生影响, 进而影响全球气候变化, 弗雷姆海峡作为北极海冰输出的主要通道, 对其研究显得尤为重要。为了解弗雷姆海峡海冰长期输出量, 利用美国冰雪数据中心(NSIDC)发布的海冰密集度、海冰厚度与海冰漂移速度数据, 计算得到 1979 年至 2019 年弗雷姆海峡海冰输出面积通量与 2010 至 2019 年弗雷姆海峡海冰输出体积通量, 并在此基础上分析弗雷姆海峡近 40 a 海冰输出量的变化状况以及弗雷姆海峡海冰输出的年际变化、季节变化, 并分析了影响弗雷姆海峡海冰输出量的可能原因。结果表明: 近 40 a 弗雷姆海峡年均海冰输出面积通量为 7.83×105 km2,近 10 a 弗雷姆海峡海冰年均输出体积通量为 1.34×106 km3, 从长期来看, 弗雷姆海峡海冰输出面积通量呈略微增加趋势, 弗雷姆海峡海冰输出体积通量在 2010—20...  相似文献   

14.
For depths ranging between 650 and 1700 m we have compared recent (2007-2008) to older (from 1988 to 1992) data, searching for long-term changes in the distribution, abundance and composition of deep megafauna (fish and decapods) off the central Catalonian coasts (western Mediterranean). Overall, in the depth interval between 600 and 1100 m, we found higher abundance of fish in 1988-1992 than in 2007, a decrease simultaneous with an increase of decapod crustaceans. Older and more recent haul replicates (after 20 years) had similar assemblage composition in the depth range 1300-1700 m, whereas we found significant changes at 1000 m. Diversity of fish was greater in 1988-1992 than in 2007, while diversity of decapod crustaceans increased between the two periods. Thus, there was a reorganization in benthopelagic communities, rather than a loss of biodiversity. This was in agreement with long-term changes described for diversity of (neritic) zooplankton in the western Mediterranean. We found a dominance of plankton-suprabenthos feeders (e.g. fish such as Lepidion lepidion, Hymenocephalus italicus and Alepocephalus rostratus; the decapods Plesionika spp. and Sergestes arcticus) in 1988-1992. In 2007 by contrast, dominance of plankton-suprabenthos feeders decreased, and assemblages were increasingly composed of benthos-feeding decapods (e.g. Aristeus antennatus, Pontophilus norvegicus and some hermit crabs) preying for instance on polychaetes. These results coincided with low/negative North Atlantic Oscillation index (NAO) in 2007 and in the period immediately before (2004-2006) 2007 (increase of benthos feeders), and with high average NAO in 1988-1992 (decrease of benthos feeders, which in turn may enhance abundance of plankton feeders). The benthic decapod Calocaris macandreae and suprabenthos (small crustaceans, mostly peracarids, living on and just beneath the sediment surface) are key prey in food webs off Catalonian margins, acting as links between surface oceanographic processes and abundance of benthopelagic predators. A conceptual model is presented relating changes in climatic conditions with changes in deep-sea, benthic-suprabenthic food webs. Calocari macandreae was more abundant in 2007, after 3 years of negative NAO. Under negative/low NAO, rainfall and river discharges increase in the NW Mediterranean, which may enhance advective food inputs for macrobenthos. This fits well with the higher abundance of benthos feeders in 2007, as well as with the significant deepening of decapod crustacean assemblages in that same period. Suprabenthos, being short-lived and annual species, were more abundant under positive NAO conditions (1988-1992), probably enhancing the abundance or aggregation of suprabenthic/pelagic feeders.  相似文献   

15.
The megabenthic ecology of the cold water (<0 °C) area of the Faroe–Shetland Channel was investigated using an off-bottom towed camera platform WASP (wide angle seabed photography). A series of 10 photographic transects, approximately evenly spaced along the channel axis, were studied. Photographic transects allowed quantitative benthic diversity data to be obtained from this understudied yet commercially important area for oil and gas exploration. The sedimentary characteristics of the seabed changed dramatically from a region of ice-rafted boulders and gravel in the southwest to fine sediments more typical of the deep sea to the northeast. Despite the relatively low species richness of the megabenthos, variation in faunal composition with depth was apparent. Two distinct “communities” were identified, one in the south of the channel and the other in the north. Epibenthic megafaunal communities in the south were dominated by suspension and filter feeders and in the north by deposit feeders. Diversity and standing stock of megabenthos decreased to the northeast of the channel. Lebensspuren number and areal cover increased northwards in the Channel. The increase in bioturbation and deposit feeder abundance was concurrent with an increase in fine sediment quantity.  相似文献   

16.
We used non-destructive methods to study the bi-monthly changes in standing stock, turnover, and net aerial primary productivity (NAPP) of Spartina alterniflora in the Bahía Blanca Estuary, Argentina, from 2005 to 2007. Tillers were tagged and counted bimonthly and a weight:height relationship developed for the live and dead stems in a regularly flooded zone (low marsh, LM) and an irregularly flooded one (high marsh, HM). The annual tiller natality in year one compared to year two decreased from 440 ± 68 to 220 ± 58 new individuals m–2 yr–1 in the HM and from 500 ± 103 to 280 ± 97 new individuals m−2 yr−1 in the LM (μ ± 1 SE). Tiller mortality averaged 670 ± 70 individuals m−2 yr−1.  相似文献   

17.
Moored sediment traps were deployed from January 2004 through December 2007 at depths of 550 and 800 m in San Pedro Basin (SPB), CA (33°33.0′N, 118°26.5′W). Additionally, floating sediment traps were deployed at 100 and 200 m for periods of 12-24 h during spring 2005, fall 2007, and spring 2008. Average annual fluxes of mass, particulate organic carbon (POC), ??13Corg, particulate organic nitrogen (PON), ??15N-PON, biogenic silica (bSiO2), calcium carbonate (CaCO3), and detrital material (non-biogenic) were coupled with climate records and used to examine sedimentation patterns, vertical flux variability, and organic matter sources to this coastal region. Annual average flux values were determined by binning data by month and averaging the monthly averages. The average annual fluxes to 550 m were 516±42 mg/m2 d for mass (sdom of the monthly averages, n=117), 3.18±0.26 mmol C/m2 d for POC (n=111), 0.70±0.05 mmol/m2 d for CaCO3 (n=110), 1.31±0.21 mmol/m2 d for bSiO2 (n=115), and 0.35±0.03 mmol/m2 d for PON (n=111). Fluxes to 800 and to 550 m were similar, within 10%. Annual average values of ??13Corg at 550 m were −21.8±0.2‰ (n=108), and ??15N averages were 8.9±0.2‰ (n=95). The timing of both high and low flux particle collection was synchronous between the two traps. Given the frequency of trap cup rotation (4-11 days), this argues for particle settling rates ≥83 m/d for both high and low flux periods. The moored traps were deployed over one of the wettest (2004-2005, 74.6 cm rainfall) and driest (2006-2007, 6.6 cm) rain years on record. There was poor correlation (Pearson's correlation coefficient, 95% confidence interval) of detrital mass flux with: Corg/N ratio (r=0.10, p=0.16); ??15N (r=−0.19, p=0.02); and rainfall (r=0.5, p=0.43), suggesting that runoff does not immediately cause increases in particle fluxes 15 km offshore. ??13Corg values suggest that most POC falling to the basin floor is marine derived. Coherence between satellite-derived chlorophyll a records from the trap location (±9 km2 resolution) and SST data indicates that productivity and export occurs within a few days of upwelling and both of these parameters are reasonable predictors of POC export, with a time lag of a few days to 2 weeks (with no time lag—SeaWiFS chlorophyll a and POC flux, r=0.25, p=0.0014; chlorophyll a and bSiO2 flux, r=0.28, p=0.0002).  相似文献   

18.
The influence of prolonged mouth closure on the population dynamics of the caridian shrimp, Palaemon peringueyi and the estuarine isopod, Exosphaeroma hylocoetes, in the littoral zone of temporarily open/closed Kasouga Estuary located on the south-eastern coastline of southern Africa was assessed monthly over the period October 2007 to September 2008. Prolonged mouth closure of the estuary contributed to hypersaline conditions (psu > 35) prevailing throughout the estuary for the last four months of the study. The high salinities coincided with a decrease in the areal extent (up to 80%) of the submerged macrophytes, mainly Ruppia maritima, within the littoral zone of the estuary. Total abundance and biomass values of the shrimp and isopod over the period of investigation ranged from 0 to 14.6 ind m−2, from 0 to 13.3 mg dwt m−2, from 12 to 1540 ind m−2 and from 0.1 to 2.16 mg dwt m−2, respectively. Maximum values of both the shrimp and isopod were recorded in the upper reaches of the estuary in close association with R. maritima. Over the course of the investigation, both the abundance and biomass values of the shrimp decreased significantly (P < 0.05 in both cases) which could be related to reduced habitat availability, R. maritima, that acts as a refuge against fish predation. Additionally, the decrease in abundance and biomass values could be attributed to reduced recruitment opportunities for the shrimp and the cessation of reproduction in the estuarine isopod. The establishment of a link to the marine environment following an overtopping event in September 2008 contributed to a decrease in salinity within the system although no recruitment of either the isopod or shrimp was recorded.  相似文献   

19.
Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the major conclusions:
1.
Excess freshwater in high latitudes must be transported to the evaporative lower latitudes, as is well known. The calculations here show that the northern hemisphere transports most of its high latitude freshwater equatorward through North Atlantic Deep Water (NADW) formation (as in [Rahmstorf, S., 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12, 799-811]), in which saline subtropical surface waters absorb the freshened Arctic and subpolar North Atlantic surface waters (0.45 ± 0.15 Sv for a 15 Sv overturn), plus a small contribution from the high latitude North Pacific through Bering Strait (0.06 ± 0.02 Sv). In the North Pacific, formation of 2.4 Sv of North Pacific Intermediate Water (NPIW) transports 0.07 ± 0.02 Sv of freshwater equatorward.In complete contrast, almost all of the 0.61 ± 0.13 Sv of freshwater gained in the Southern Ocean is transported equatorward in the upper ocean, in roughly equal magnitudes of about 0.2 Sv each in the three subtropical gyres, with a smaller contribution of <0.1 Sv from the Indonesian Throughflow loop through the Southern Ocean. The large Southern Ocean deep water formation (27 Sv) exports almost no freshwater (0.01 ± 0.03 Sv) or actually imports freshwater if deep overturns in each ocean are considered separately (−0.06 ± 0.04 Sv).This northern-southern hemisphere asymmetry is likely a consequence of the “Drake Passage” effect, which limits the southward transport of warm, saline surface waters into the Antarctic [Toggweiler, J.R., Samuels, B., 1995a. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research I 42(4), 477-500]. The salinity contrast between the deep Atlantic, Pacific and Indian source waters and the denser new Antarctic waters is limited by their small temperature contrast, resulting in small freshwater transports. No such constraint applies to NADW formation, which draws on warm, saline subtropical surface waters .
2.
The Atlantic/Arctic and Indian Oceans are net evaporative basins, hence import freshwater via ocean circulation. For the Atlantic/Arctic north of 32°S, freshwater import (0.28 ± 0.04 Sv) comes from the Pacific through Bering Strait (0.06 ± 0.02 Sv), from the Southern Ocean via the shallow gyre circulation (0.20 ± 0.02 Sv), and from three nearly canceling conversions to the NADW layer (0.02 ± 0.02 Sv): from saline Benguela Current surface water (−0.05 ± 0.01 Sv), fresh AAIW (0.06 ± 0.01 Sv) and fresh AABW/LCDW (0.01 ± 0.01 Sv). Thus, the NADW freshwater balance is nearly closed within the Atlantic/Arctic Ocean and the freshwater transport associated with export of NADW to the Southern Ocean is only a small component of the Atlantic freshwater budget.For the Indian Ocean north of 32°S, import of the required 0.37 ± 0.10 Sv of freshwater comes from the Pacific through the Indonesian Throughflow (0.23 ± 0.05 Sv) and the Southern Ocean via the shallow gyre circulation (0.18 ± 0.02 Sv), with a small export southward due to freshening of bottom waters as they upwell into deep and intermediate waters (−0.04 ± 0.03 Sv).The Pacific north of 28°S is essentially neutral with respect to freshwater, −0.04 ± 0.09 Sv. This is the nearly balancing sum of export to the Atlantic through Bering Strait (−0.07 ± 0.02 Sv), export to the Indian through the Indonesian Throughflow (−0.17 ± 0.05 Sv), a negligible export due to freshening of upwelled bottom waters (−0.03 ± 0.03 Sv), and import of 0.23 ± 0.04 Sv from the Southern Ocean via the shallow gyre circulation.
3.
Bering Strait’ssmall freshwater transport of <0.1 Sv helps maintains the Atlantic-Pacific salinity difference. However, proportionally large variations in the small Bering Strait transport would only marginally impact NADW salinity, whose freshening relative to saline surface water is mainly due to air-sea/runoff fluxes in the subpolar North Atlantic and Arctic. In contrast, in the Pacific, because the total overturning rate is much smaller than in the Atlantic, Bering Strait freshwater export has proportionally much greater impact on North Pacific salinity balances, including NPIW salinity.
  相似文献   

20.
The scale of landscape pattern formation of an ecological community may provide clues as to the processes influencing its spatial and temporal dynamics. We conducted an examination of the spatial organization of an annual seagrass (Halophila decipiens) in an open ocean setting at two spatial scales and growing seasons to identify the relative influence of external (hurricanes) versus internal (clonal growth) factors. Visual surveys of seagrass cover were conducted over 2 years within three replicate 1 km2 study areas each separated by ∼25 km in an inshore–offshore transect along the southwest coast of Florida at depths between ∼10 and 30 m. A towed video sled allowed observations of seagrass cover of 1 m2 areas approximately every 6 m over thousands of meters of evenly spaced transects within the study areas (coarse scale). The towed video revealed that 17.5% of the seafloor was disturbed irrespective of location or sample time. Randomly selected 10 × 10 m quadrats within the larger, 1 km2 study areas were completely surveyed for seagrass cover by divers at 0.625 m2 resolution (fine scale). The coarse-scale observations were tested using both conventional geostatistics and an application of a time-series technique (Runs test) for scale of seagrass cover contiguity. Fine-scale observations were examined using conventional geostatistics and a least squares approach (cumulative logistic).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号