首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The effect of dissolved petroleum hydrocarbons in the environment on phytoplankton biomass measured as chlorophyll a was studied near the oil tanker route in the southern Bay of Bengal. In the transect from 5° N, 77° E to 5° N, 87° E the concentrations of dissolved petroleum hydrocarbons were negatively correlated with phytoplankton biomass, whereas in the 0° N, 87° E to 1° N, 79° E transect they were positively correlated with phytoplankton biomass. The mean petroleum hydrocarbon concentrations in the two transects were 12·12 ± 4·67 μg litre−1 and 11·23 ± 4·5 μg litre−1, respectively.It is surmised that the effect of dissolved petroleum hydrocarbons on phytoplankton biomass varies depending on the nature rather than the quantity of petroleum hydrocarbons present. Culture studies with unialgal Nitzschia sp. in seawater collected from selected stations in the study area as well as in artificial seawater spiked with the water-soluble petroleum hydrocarbon fraction of light Arabian Crude support this.  相似文献   

2.
Nitrogen loadings to coastal waters have increased over the last century, resulting in deterioration in water quality. In this study we investigated the distributions and seasonality of dissolved organic nitrogen (DON), and its relationship to total dissolved nitrogen (TDN), for two anthropogenically influenced estuarine systems in southwest England. Concentrations of DON in both estuaries were generally < 80 μM. DON showed non-conservative distributions, resulting from external and internal inputs and in situ reactivity. DON contributed 38 ± 22% (range 4–79%, Yealm) and 36 ± 17% (range 4–84%, Plym) to the TDN pool, with lower values generally observed in the fresher samples relative to the more saline samples. DON was a larger fraction of the TDN pool during the summer and autumn relative to winter and spring, indicating the influence of bacterioplankton release on nitrogen cycling in the estuaries. Ammonification and nitrification were observed in the estuaries, processes which were reproduced in incubation experiments using bioreactors. The bioreactor experiments showed that 12% h− 1 of the DON flux from the River Plym may be available to bacteria, indicating significant removal of DON during the residence time of the water in the estuary (a few days). The bioavailable nature of the DON means that this N fraction significantly adds to the eutrophication burden of the receiving coastal waters, and therefore cannot be ignored in environmental assessments.  相似文献   

3.
Concurrent distributions of dissolved and suspended particulate organic carbon (DOC and POCsusp), nitrogen (DON and PONsusp) and phosphorus (DOP and POPsusp), and of suspended particulate inorganic phosphorus (PIPsusp), are presented for the open ocean water column. Samples were collected along a three-station transect from the upper continental slope to the abyssal plain in the eastern North Pacific and from a single station in the Southern Ocean. The elemental composition of surface sedimentary organic matter (SOM) was also measured at each location, and sinking particulate organic matter (POMsink) was measured with moored sediment traps over a 110-d period at the abyssal site in the eastern North Pacific only. In addition to elemental compositions, C : N, C : P and N : P ratios were also calculated. Surface and deep ocean concentrations of dissolved organic matter (DOM) and inorganic nutrients between the two sites displayed distinct differences, although suspended POM (POMsusp) concentrations were similar. Concentrations of DOM and POMsusp displayed unique C, N and P distributions, with POMsusp concentrations generally about 1–2 orders of magnitude less than the corresponding DOM concentrations. These differences were likely influenced by different biogeochemical factors: whereas the dissolved constituents may have been influenced more by the physical regime of the study site, suspended particulate matter may have been controlled to a greater extent by biological and chemical alteration. Up to 80% of total particulate P in POMsusp, POMsink and SOM consisted of PIP. For all organic matter pools measured, elemental ratios reveal that organic P is preferentially remineralized over organic C and organic N at both sites. Increases in C : P and N : P ratios with depth were also observed for DOM at both sites, suggesting that DOP is also preferentially degraded over C and N as a function of depth. A simple one-dimensional vertical eddy diffusion model was applied to estimate the contributions of dissolved and suspended particulate organic C, N and P fluxes from the upper mixed layer into the permanent thermocline. Estimated vertical DOM fluxes were 28–63% of the total organic matter fluxes; POMsusp and POMsink fluxes were 8–20 and 28–52% of the total.  相似文献   

4.
The carbon to nitrogen (C:N) stoichiometry of phytoplankton production varied significantly during the spring–summer bloom in the North Water Polynya (NOW), from April through July 1998. The molar ratio of particulate organic carbon (POC) to nitrogen (PON) production by phytoplankton (ΔPOC:ΔPON) increased from 5.8 during April through early June to 8.9 in late June and July. The molar dissolved inorganic carbon (DIC) to nitrate+nitrite (NO3) drawdown ratio (ΔDIC: ΔNO3) increased from 6.7 in April and May, to 11.9 in June (no estimate for July because of ice melting). The discrepancy between ΔPOC:ΔPON and ΔDIC:ΔNO3 was likely due to dissolved organic carbon (DOC) production. Increased ΔPOC:ΔPON of phytoplankton and surface water ΔDIC:ΔNO3 throughout the phytoplankton blooms resulted from changes in physical properties of the upper water column, such as reduced thickness of the surface mixed layer that exposed phytoplankton to increased photosynthetically available radiation (PAR), accompanied by NO3 depletion. This is expected to have significant effects on the cycling of carbon (C) and nitrogen (N) in pelagic ecosystems, as the increased C:N ratio of organic matter decreases its quality as substrate for grazers and microbial communities. Based on ΔPOC:ΔPON, the ratio of POC to chlorophyll a (Chl) production (ΔPOC:ΔChl) and the relationship between Chl yields and NO3 depletion, we estimate that 71±17% and 46±20% of the depleted NO3 went to PON production in the euphotic zone over the polynya from April to early June, and late June to July, respectively. The remaining NO3 was likely channelled to dissolved organic nitrogen (DON) and heterotrophic bacteria, which were not returned to the dissolved inorganic nitrogen (DIN) pool through recycling during the course of the study. Hence, the autotrophic production of organic N and its recycling by the microbial food web were not coupled temporally.  相似文献   

5.
The bioavailability and bacterial degradation rates of dissolved organic matter (DOM) were determined over a seasonal cycle in Loch Creran (Scotland) by measuring the decrease in dissolved organic carbon (DOC), nitrogen (DON) and phosphorous (DOP) concentrations during long-term laboratory incubations (150 days) at a constant temperature of 14 °C. The experiments showed that bioavailable DOC (BDOC) accounted for 29 ± 11% of DOC (average ± SD), bioavailable DON (BDON) for 52 ± 11% of DON and bioavailable DOP (BDOP) for 88 ± 8% of DOP. The seasonal variations in DOM concentrations were mainly due to the bioavailable fraction. BDOP was degraded at a rate of 12 ± 4% d– 1 (average ± SD) while the degradation rates of BDOC and BDON were 7 ± 2% d– 1 and 9 ± 2% d– 1 respectively, indicating a preferential mineralization of DOP relative to DON and of DON relative to DOC. Positive correlations between concentration and degradation rate of DOM suggested that the higher the concentration the faster DOM would be degraded. On average, 77 ± 9% of BDOP, 62 ± 14% of BDON and 49 ± 19% of BDOC were mineralized during the residence time of water in Loch Creran, showing that this coastal area exported C-rich DOM to the adjacent Firth of Lorne. Four additional degradation experiments testing the effect of varying temperature on bioavailability and degradation rates of DOM were also conducted throughout the seasonal cycle (summer, autumn, winter and spring). Apart from the standard incubations at 14 °C, additional studies at 8 °C and 18 °C were also conducted. Bioavailability did not change with temperature, but degradation rates were stimulated by increased temperature, with a Q10 of 2.6 ± 1.1 for DOC and 2.5 ± 0.7 for DON (average ± SD).  相似文献   

6.
Wind-driven cyclonic eddies are hypothesized to relieve nutrient stress and enhance primary production by the upward displacement of nutrient-rich deep waters into the euphotic zone. In this study, we measured nitrate (NO3), particulate carbon (PC), particulate nitrogen (PN), their stable isotope compositions (δ15N-NO3, δ13C-PC and δ15N-PN, respectively), and dissolved organic nitrogen (DON) within Cyclone Opal, a mature wind-driven eddy generated in the lee of the Hawaiian Islands. Sampling occurred in March 2005 as part of the multi-disciplinary E-Flux study, approximately 4–6 weeks after eddy formation. Integrated NO3 concentrations above 110 m were 4.8 times greater inside the eddy (85.8±6.4 mmol N m−2) compared to the surrounding water column (17.8±7.8 mmol N m−2). Using N-isotope derived estimates of NO3 assimilation, we estimated that 213±59 mmol m−2 of NO3 was initially injected into the upper 110 m Cyclone Opal formation, implying that NO3 was assimilated at a rate of 3.75±0.5 mmol N m−2 d−1. This injected NO3 supported 68±19% and 66±9% of the phytoplankton N demand and export production, respectively. N isotope data suggest that 32±6% of the initial NO3 remained unassimilated. Self-shading, inefficiency in the transfer of N from dissolved to particulate export, or depletion of a specific nutrient other than N may have led to a lack of complete NO3 assimilation. Using a salt budget approach, we estimate that dissolved organic nitrogen (DON) concentrations increased from eddy formation (3.8±0.4 mmol N m−2) to the time of sampling (4.0±0.09 mmol N m−2), implying that DON accumulated at rate of 0.83±1.3 mmol N m−2 d−1, and accounted for 22±15% of the injected NO3. Interestingly, no significant increase in suspended PN and PC, or export production was observed inside Cyclone Opal relative to the surrounding water column. A simple N budget shows that if 22±15% of the injected NO3 was shunted into the DON pool, and 32±6% is unassimilated, then 46±16% of the injected NO3 remains undocumented. Alternative loss processes within the eddy include lateral exchange of injected NO3 along isopycnal surfaces, remineralization of PN at depth, as well as microzooplankton grazing. A 9-day time series within Cyclone Opal revealed a temporal depletion in δ15N-PN, implying a rapid change in the N source. A change in NO3 assimilation, or a shift from NO3 fueled growth to assimilation of a 15N-deplete N source, may be responsible for such observations.  相似文献   

7.
As part of a study of estuarine selenium cycling, we measured the concentration, chemical form (speciation), and distribution of particulate selenium under various river flow conditions in the North San Francisco Bay (from the Golden Gate to the Sacramento and San Joaquin Rivers). We also conducted laboratory studies on the accumulation of selenium by phytoplankton, the critical first step in the transformation of dissolved to particulate selenium. Total particulate selenium concentration in the North SF Bay was relatively constant between high and low flow periods, ranging spatially from 0.05 to 0.35 nmol l−1 and comprising between 5 and 12% of the total water column selenium inventory. Mean concentrations were generally highest in the Carquinez Strait–Suisun Bay region (salinity 0–17) and lowest in Central Bay. However, selenium content of suspended particles varied with river flow, with higher content during low flow (9.76 ± 4.17 nmol g−1; mean ± sd; n = 67) compared to high flow (7.10 ± 4.24 nmol g−1; n = 39). Speciation analyses showed that most particulate selenium is organic selenide (45 ± 27%), with a smaller proportion (typically <30%) of adsorbed selenite + selenate and a varying proportion (35 ± 28%) of elemental selenium. Based on the amount of elemental selenium in the seston (total suspended material), we calculate that resuspension of estuarine sediments could contribute 29–100% of particulate selenium in the water column. While selenium content of SF Bay seston (>0.4 μm) is relatively unenriched compared to phytoplankton (13.6–155 nmol g−1 dry weight) on a mass basis, when normalized to carbon or nitrogen, seston contains a similar selenium concentration to SF Bay sediments or phytoplankton cultures. SF Bay seston is thus comprised of selenium-rich phytoplankton and phyto-detritus, but also inorganic clay mineral particles that effectively “dilute” total particulate selenium. Selenium concentrations in algal cultures (11 species) exposed to 90 nmol l−1 selenite show relatively large differences in selenium accumulation, with the diatoms, chlorophytes and cryptophytes generally having lower selenium cell content (3.8 ± 2.7 × 10−9 nmol selenium cell−1) compared to the dinoflagellates (193 ± 73 × 10−9 nmol selenium cell−1). Because phytoplankton are such a rich (but variable) source of selenium, their dynamics could have a profound effect on the particulate selenium inventory in the North SF Bay.  相似文献   

8.
Export of particles was studied at the equator during an El Nin˜o warm event (October 1994) as part of the French ORSTOM/FLUPAC program. Particulate mass, carbon (organic and inorganic) (C), nitrogen (N), and phosphorus (P) export fluxes were measured at the equator in the western and central Pacific during two 6–7 day-long time-series stations located in the warm pool (TS-I at 0°, 167°E) and in the equatorial HNLC situation (TS-II at 0°, 150°W), using drifting sediment traps deployed for 48 h at four depths (between, approximately, 100 and 300 m).The particulate organic carbon (POC) fluxes at the base of the euphotic zone (0.1 % light level), were approximately four times lower at TS-I than at TS-11 (4.1 vs. 17.0 mmol C m-2 day-1). Conversely, fluxes measured at 300 m were similar at both sites (3.6vs. 3.7 mmol C m−2 day−1 at TS-I and TS-11, respectively). This change in export fluxes was in good agreement with food-web dynamics in the euphotic zone characterized by an increase in plankton biomasses and metabolic rates and a shift towards larger size from TS-1 to TS-II. The POC flux profiles indicated high remineralization (up to 78%) of the exported particles at TS-II, between 100 and 200 m in the Equatorial Undercurrent. According to zooplankton ingestion estimates from 100 – 300 m, 60% of this POC loss could be accounted for by zooplankton grazing. At TS-I, no marked increase of flux with depth was observed, and we assume that loss of particles was compensated by in-situ particle production by zooplankton. Fluxes of particulate nitrogen and phosphorus followed the same general patterns as the POC fluxes. The elemental and pigment composition of the exported particles was not very different between the two stations. In particular, the POCYN flux molar ratio at the base of the euphotic zone was low, 6.9 and 6.2 at TS-1 and TS-II, respectively.For particulate inorganic carbon (mainly carbonate) flux, values at the base of the euphotic zone averaged 0.9 mmol C m-2 day-1 at TS-I and 2.3 mmol C m-2 day-1 at TS-11 (corresponding to a 2.6-fold increase) and showed low depth changes at both stations.POC export flux (including active flux associated with the interzonal migrants) at the 0.1 % light level depth represented only 8% of primary production (1°C uptake) measured at TS-1 and 19% at TS-II. For the time and space scales considered in the present study, new primary production, as measured by the 15N method, was in good agreement with the total export flux in the HNLC situation, thus leading to negligible dissolved organic carbon (DOC) or nitrogen (DON) losses from the photic zone. Conversely, export flux was found to be only 50% (C units) and 60% (N) of new production in the oligotrophic system, either because of an overestimation by the 15N method or of a significant export of DOC and DON.Comparison with other oceanic regions shows that export flux in the warm pool was within the same range as in the central gyres. On the other hand, comparison with EgPac data in the central Pacific suggests that there is no straightforward relation between the magnitude of the export and surface nitrate concentrations.  相似文献   

9.
Macroalgae biomass and concentrations of nitrogen, phosphorus and chlorophyll a were determined weekly or biweekly in water and sediments, during the spring-summer of 1985 in a hypertrophic area of the lagoon of Venice. Remarkable biomass production (up to 286 g m−2 day−1, wet weight), was interrupted during three periods of anoxia, when macroalgal decomposition (rate: up to 1000 g m−2 day−1) released extraordinary amounts of nutrients. Depending on the macroalgae distribution in the water column, the nutrients released in water varied from 3·3 to 19·1 μg-at litre−1 for total inorganic nitrogen and from 1·8 to 2·7 μg-at litre−1 for reactive phosphorus. Most nutrients, however, accumulated in the surficial sediment (up to 0·640 and to 3·06 mg g−1 for P and N respectively) redoubling the amounts already stored under aerobic conditions, Phytoplankton, systematically below 5 mg m−3 as Chl. a, sharply increased up to 100 mg m−3 only after the release of nutrients in water by anaerobic macroalgal decomposition. During the algal growth periods, the N:P atomic ratio in water decreased to 0·7, suggesting that nitrogen is a growth-limiting factor. This ratio for surficial sediment was between 6·6 and 13·1, similar to that of macroalgae (8·6–12·0).  相似文献   

10.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

11.
Phytoplankton community composition, productivity and biomass characteristics of the mesohaline lower Neuse River estuary were assessed monthly from May 1988 to February 1990. An incubation method which considered water-column mixing and variable light exposure was used to determine phytoplankton primary productivity. The summer productivity peaks in this shallow estuary were stimulated by increases in irradiance and temperature. However, dissolved inorganic nitrogen loading was the major factor controlling ultimate yearly production. Dynamic, unpredictable rainfall events determined magnitudes of seasonal production pulses through nitrogen loading, and helped determine phytoplankton species composition. Dinoflagellates occasionally bloomed but were otherwise present in moderate numbers; rainfall events produced large pulses of cryptomonads, and dry seasons and subsequent higher salinity led to dominance by small centric diatoms. Daily production was strongly correlated (r = 0·82) with nitrate concentration and inversely correlated (r = −0·73) with salinity, while nitrate and salinity were inversely correlated (r = −0·71), emphasizing the importance of freshwater input as a nutrient-loading source to the lower estuary. During 1989 mean daily areal phytoplankton production was 938 mgC m−2, mean chlorophyll a was 11·8 mg m−3, and mean phytoplankton density was 1·56 × 103 cells ml−1. Estimated 1989 annual areal phytoplankton production for the lower estuary was 343 gC m−2.  相似文献   

12.
This study addresses sources and diagenetic state of early-season dissolved organic matter (DOM) in the Northeast Water Polynya (NEWP) area northeast of Greenland from distributions of humic substance fluorescence (HSfl), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) in the water column inside and outside the NEWP area. The water masses of the polynya area had acquired their spring/summer temperature–salinity characteristics at the time of sampling, and also had individual, different DOM signatures. DOC concentrations were variable within and among water masses in the polynya area, indicating patchy local sources and sinks of DOC. PySW and polynya intermediate water (PyIW) had higher average DON concentrations and average lower C:N ratios than polynya bottom water (PyBW), indicating a larger fraction of fresh DOM in PySW and PyIW than in PyBW. Ice-covered, polynya area surface waters (PySW) had higher DOC concentrations (113±14 μM, n=68) than surface water (SW) outside the polynya area (96±18 μM, n=6). The DOM C:N ratios in a low-salinity, ice-melt subgroup of PySW samples indicate labile material, and these low-salinity surface waters appeared to have a local DOC and DON source. In contrast, HSfl was significantly lower inside than outside the NEWP area. Despite the lower HSfl values within the NEWP area, the PySW values were high when compared to open-ocean water. There were no local terrestrial sources for HSfl to the NEWP area and the East Greenland Current is therefore proposed as a likely source of allochtonous HSfl. When HSfl was used as a conservative tracer, up to 70% of the water in PySW and PyIW was found to be derived from SW, which contains a high fraction of water from the East Greenland Current. Similarly, a mixing model based on HSfl indicated that 80% of early-season DOC and 90–100% of early-season DON in PySW and PyIW were derived from SW, indicating a potentially high fraction of terrestrially-derived, relatively refractory DOM in the early-season NEWP area.  相似文献   

13.
Determination of the actual mercury concentration in Mediterranean basin seawater was achieved by means of an instrument based on fluorescence spectrometry developed for this purpose, during a field study aboard the oceanographic ship “L.F. Marsili”, between August 1980 and May 1982.Dissolved ·total’ and ·reactive’ mercury and mercury associated with particulate matter were determined on surface and subsurface waters in the Tyrrhenian Sea from La Spezia to Sicily.Concentrations in the range 1.4–19.7 ng l−1 for ·total dissolved mercury’, 0.5–5.9 ng l−1 for ·reactive dissolved mercury’ and 0.3–8.0 ng l−1 for mercury associated with the particulate matter, were measured on surface and subsurface waters in the Tyrrhenian Sea from La Spezia to Sicily.Even if the mean value of the total mercury concentration (dissolved + particulate) was found to be about twice as high as those observed for the oceans, the difference does not seem to be as high as predicted by the model proposed by Buffoni and co-workers to explain the large difference of mercury levels between tunas caught, respectively, in the Mediterranean and in the Oceans.  相似文献   

14.
Cathodic stripping voltammetry (CSV) is used to determine total (after UV-irradiation) and labile dissolved metal concentrations as well as complexing ligand concentrations in samples from the river Scheldt estuary. It was found that even at high added concentrations of catechol (1 m for copper and 0·4 m for iron) and of APDC (1 m for zinc) only part of the dissolved metal was labile (5–58% for copper, 34–69% for zinc, 10–38% for iron); this discrepancy could be explained by the low solubility of iron which is largely present as colloidal material, and by competition for dissolved copper and zinc by organic complexing ligands. Ligand concentrations varied between 28 and 206 n for copper and between 22 and 220 n for zinc; part of the copper complexing ligands could be sub-divided into strong complexing sites with concentrations between 23 and 121 n and weaker sites with concentrations between 44 and 131 n . Values for conditional stability constants varied between (logK′ values) 13·0 and 14·8 for strong and between 11·5 and 12·1 for weaker copper complexing ligands, whereas for zinc the values were between 8·6 and 10·6. The average products of ligand concentrations and conditional stability constants (a-coefficients) were 6 × 102 for zinc and 6 × 106 for copper.The dissolved zinc concentration was found to co-vary with the zinc complexing ligand concentration throughout the estuary. It is argued that the zinc concentration is regulated, in this estuary at least, by interactions with dissolved organic complexing ligands. A similar relationship was apparent between the dissolved copper and the strong copper complexing ligand concentration. The total copper complexing ligand concentrations were much greater than the dissolved copper concentrations, suggesting that only strongly complexed copper is kept in solution.These results provide evidence for the first time that interactions of copper and zinc with dissolved organic complexing ligands determine the geochemical pathway of these metals.  相似文献   

15.
A red tide due toGymnodinium nagasakiense was observed in August 1988 in Tanabe Bay, Wakayama Prefecture, Japan. The maximum cell concentration ofG. nagasakiense reached 1×105 cells ml–1 at the surface water. From May to September 1988, the following were monitored: water temperature, salinity, chlorophylla, D.O., dissolved nutrients (NO2–N, NO3–N, NH4–N, PO4–P DON, DOP), particulate nutrients (PON, POP) and three dissolved selenium species [Se(IV), Se(VI), Organic Se]. Dissolved inorganic nitrogen (NO3–N, NH4–N) decreased but PON, POP, DON, DOP and inorganic phosphate increased at the peak of the bloom. The concentration of organic selenium increased up to the bloom initiation period which started on 5 July, and then the concentration of Se(IV) increased as the concentration of organic selenium decreased at the peak of the bloom (3 August). The strong relationship was found between the concentration of Se(IV) and the cell concentration ofG. nagasakiense (r 2=0.98). The Se(IV) requirement ofG. nagasakiense was 2.89×10–17 moles cell–1, which was agreed well with 4.4×10–17 moles cell–1 found in a laboratory experiment onG. nagasakiense using selenium spiked artificial sea water medium. The average ratio of Se(IV) to dissolved inorganic nitrogen (DIN) during the red tide bloom was 11441, the ratio of Se(IV) to DIN at the surface with the maximum cell concentration ofG. nagasakiense of 1×105 cells ml–1 was 1137. These results suggested that selenium may play an important role in red tide outbreak ofG. nagasakiense.  相似文献   

16.
We present an overview of the spatial distributions of phytoplankton pigments along transects between the UK and the Falkland Islands. These studies, undertaken as a component of the UK Atlantic Meridional Transect (AMT) programme, provided the first post-launch validation data for the NASA SeaWiFS satellite. Pigment data are used to characterise basin-scale variations in phytoplankton biomass and community composition over 100° of latitude, and to compliment the definition of hydrographic oceanic provinces. A summary of the key pigment characteristics of each province is presented.Concentrations of total chlorophyll a (totCHLa = chlorophyll a, CHLa + divinyl CHLa, dvCHLa) were greatest in high latitude temperate waters (>37°N and >35°S), and in the Canary Current Upwelling system. In these regions, the total carotenoid (totCAR) budget was dominated by photosynthetic carotenoids (PSCs). High accessory pigment diversity was observed of which fucoxanthin (FUC), 19'–hexanoyloxyfucoxanthin (HEX), and diadinoxanthin (DIAD) were most abundant, indicating proliferation of large eukaryotes and nanoflagellates. In contrast, tropical and sub-tropical waters exhibited concentrations of totCHLa below 500 ng l−1, with the North Atlantic Sub-tropical East gyre (NASE, 26.7–35°N), South Equatorial Current (SeqC, 7–14.6°S) and South Atlantic tropical Gyre (SATG, 14.6–26°S) characterised by totCHLa of <100 ng−1. These waters exhibited relatively limited pigment diversity, and the totCAR budget was dominated by photoprotecting pigments (PPCs) of which zeaxanthin (ZEA), a marker of prokaryotes (cyanobacteria and prochlorophytes), was most abundant. DvCHLa, a marker of prochlorophytes was detected in waters at temperatures >15°C, and between the extremes of 48°N and 42°S. DvCHLa accounted for up to two-thirds of totCHLa in oligotrophic provinces demonstrating the importance of prochlorophytes to oceanic biomass.Overall, HEX was the dominant PSC, contributing up to 75% of totCAR. HEX always represented >2% of totCAR and was the only truly ubiquitous carotenoid. Since HEX is a chemotaxonomic marker of prymnesiophytes, this observation reflects the truly cosmopolitan distribution of this algal class. ZEA was found to be the most abundant PPC contributing more than one third of the total carotenoid budget in each transect.Greatest seasonality was observed in highly productive waters at high latitudes and in shallow continental shelf waters and attributed to proliferation of large eukaryotes during spring. Concentrations of the prokaryote pigments (ZEA + dvCHLa) also exhibited some seasonality, with elevated concentrations throughout most of the transect during Northern Hemisphere spring.  相似文献   

17.
Summer porewater and spring and summer surficial sediment samples were collected from 26 locations in the intertidal region of the Fraser River estuary. Porewaters were analysed for dissolved iron and manganese (as defined by species <0·2μm in diameter) to assess the contribution of diagenesis to concentrations of iron and manganese oxides at the sediment–water interface. Surficial sediment samples were geochemically characterized as: % organic matter (% LOI); reducible iron (RED Fe, iron oxides) and easily reducible manganese (ER Mn, manganese oxides). Grain size at each site was also determined. The sediment geochemical matrix, as defined by the above four parameters, was highly heterogeneous throughout the intertidal region (three-way ANOVA;P<0·0001). For RED Fe and ER Mn, this heterogeneity could be explained by either diagenetic processes (RED Fe) or by a combination of the proximity of the sample sites to the mouth of the Fraser River estuary plus diagenetic processes (ER Mn). Correlation (Spearman Rank Correlation Test (rs), of dissolved iron within the subsurface sediments with amounts of RED Fe recovered from the associated surface sediments was highly significant (rs=0·80, P<0·0001); high concentrations of RED Fe at the sediment–water interface co-occurred with high concentrations of dissolved iron, regardless of the proximity of the sample locations to riverine input. Compared with iron, the relationship between dissolved manganese and ER Mn from surface sediments was lower (rs=0·58;P<0·0008). Locations most strongly influenced by the Fraser River contained greater concentrations of ER Mn at the sediment–water interface than that which would be expected based on the contribution from diagenesis alone. Sediment grain size and organic matter were also influenced by the proximity to riverine input. Surficial sediment of sites close to the river mouth were comprised primarily of percent silt (2·0μm–50μm) whereas sites not influenced by riverine input were primarily percent sand (grain size >50μm). Concentrations of organic matter declined from the mouth to the foreslope of the estuary. With the exception of RED Fe, temporal variation (May vs July) was insignificant (P>0·05, three-way ANOVA). Concentrations of RED Fe recovered from the surficial sediments were in general greater in the summer vs spring months, although spring and summer values were highly correlated (Pearson Product Moment Correlation Coefficient; PPCC; R=0·89;P<0·0001). As the bioavailability of metals is dependent on sediment geochemistry, availability throughout the intertidal region will also be spatially dependent. This heterogeneity needs to be taken into account in studies addressing the impact of metals on estuarine systems.  相似文献   

18.
Net community production (NCP) and nutrient deficits (Def(X)) were calculated using decreases in dissolved CO2 and nutrient concentrations due to biological removal in the upper 200 m of the water column during four cruises in the Ross Sea, Antarctica along 76°30′S in 1996 and 1997. A comparison to excess dissolved and particulate organic carbon showed close agreement between surplus total organic carbon (TOC) and NCP during bloom initiation and productivity maximum; however, when TOC values had returned to low wintertime values NCP was still significantly above zero. This seasonal NCP, 3.9±1 mol C m−2, must be equivalent to the particle export to depths greater than 200 m over the whole productive season. We estimate that the annual export was 55±22% of the seasonal maximum in NCP. The fraction of the seasonal maximum NCP that is exported through 200 m is significantly higher than that measured by moored sediment traps at a depth of 206 m. The removal of carbon, nitrate and phosphate (based on nutrient disappearance since early spring) and their ratios showed significant differences between regions dominated by diatoms and regions dominated by the haptophyte Phaeocystis antarctica. While the ΔC/ΔN removal ratio was similar (7.8±0.2 for diatoms and 7.2±0.1 for P. antarctica), the ΔN/ΔP and ΔC/ΔP removal ratios for diatoms (10.1±0.3 and 80.5±2.3) were significantly smaller than those of P. antarctica (18.6±0.4 and 134.0±4.7). The similarity in ΔC/ΔN removal ratios of the two assemblages suggests that preferential uptake of phosphate by diatoms caused the dramatic differences in ΔC/ΔP and ΔN/ΔP removal ratios. In contrast to low ΔC/ΔP and ΔN/ΔP removal ratio in diatom-dominated areas early in the growing season, deficit N/P and C/P ratios in late autumn indicate that the elemental stochiometry of exported organic matter did not deviate significantly from traditional Redfield ratios. Changes in biologically utilized nutrient and carbon ratios over the course of the growing season indicated either a substantial remineralization of phosphate or a decrease in phosphate removal relative to carbon and total inorganic nitrogen over the bloom period. The species dependence in C/P ratios, and the relative constancy in the C/N ratios, makes N a better proxy of biological utilization of CO2.  相似文献   

19.
Dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and inorganic nutrient concentrations were determined in samples from an area encompassing the Northeast Water Polynya from June to August 1993. In June, still ice-covered polynya area surface waters (PySW) had significantly higher (p<0.05) DOC concentrations (110 μM, n=68) than surface water outside the polynya area (96 μM, n=6). Melting ice and ice algae are suggested as DOC sources. DOC concentrations found in this study are consistent with other studies showing higher DOC concentrations in the Arctic than in other ocean areas. As the productive season progressed, DOC concentrations in Polynya surface water (PySW) decreased (p<0.05) from 110 to 105 μM, while DON concentrations increased (p<0.05) from 5.6 to 6.1 μM, causing a significant decrease (p<0.05) in the C : N ratios of DOM from spring (C : N ratio 20) to summer (C : N ratio 17). We found a significant (p<0.05) decrease in the DOM C : N ratio in all water masses within the polynya area as the productive season progressed. DON was the largest fraction of total dissolved nitrogen (TDN) in PySW and surface waters outside the polynya area. TDN was calculated as the sum of DON, nitrate, nitrite and ammonium concentrations. DON increased (p<0.05) from 62% to 73% of TDN in PySW from spring to summer, a result of increasing DON concentrations and decreasing inorganic nitrogen concentrations over the productive season. The seasonal accumulation of DON and the corresponding decrease in nitrate concentrations in waters with primary production indicate that it is important to take the DON pool into account when estimating export production from nitrate concentration decreases in surface waters. PySW TDN concentrations decreased (p<0.05) from 9.1 (n=61) to 8.6 μM (n=60) from spring (May 25 through June 19) to summer (July 1 through July 27). The seasonal decrease in surface water TDN concentrations corresponded to increases in TDN concentrations in deeper water masses within the Polynya. Most of the TDN increase in deep water was in the form of DON. A possible explanation is that PON was dissolved (partially remineralized) in the water column at mid depths, causing increases in the DON concentration. Transfer of N from PySW (with a short residence time in the polynya area) to Polynya Intermediate Water and deep waters of the Norske and Westwind Trough with multi-year residence times keeps N from leaving the polynya area. In spring, nutrients from degradation of OM in PyIW could support primary production. The role of PyIW as an OM trap could be important in supporting primary production in the polynya area.  相似文献   

20.
Tangential-flow ultrafiltration was used to isolate particulate and high-molecular-weight dissolved material from seawater collected at various depths and geographic regions of the Pacific and Atlantic Oceans. Ultrafiltration proved to be a relatively fast and efficient method for the isolation of hundreds of milligrams of material. Optical and electron microscopy of the isolated materials revealed that relatively fragile materials were recovered intact. Depth-weighted results of the size distribution of organic matter in seawater indicated that ˜ 75% of marine organic carbon was low-molecular-weight (LMW) dissolved organic carbon (< 1 nm), ˜ 24% was high-molecular-weight (HMW) dissolved organic carbon (1–100 nm), and ˜ 1% was particulate organic carbon (> 100 nm). The distribution of carbon in surface water was shifted to greater relative abundances of larger size fractions, suggesting a diagenetic sequence from macromolecular material to small refractory molecules. The average C:N ratios of particulate organic matter (POM) and HMW dissolved organic matter (DOM) were 7.7 and 16.7, respectively. Differences in C:N ratios between POM and HMW DOM were large and invariant with depth and geographic region, indicating that the aggregation of HMW DOM to form POM must be of minor significance to overall carbon dynamics. The stable carbon isotope composition (δ13C) of POM averaged −22.7%. in surface water and −25.2%. in subsurface water. Several possible explanations for the observed isotopic shift with depth were explored, but we were unable to discern the cause. The δ13C of HMW DOM samples was relatively constant and averaged −21.7%., indicating a predominantly marine origin for this material. The δ15N values of POM were highly variable (5.8–15.4%.), and the availability of nitrate in surface waters appeared to be the major factor influencing δ15N values in the equatorial Pacific. In the upwelling region nitrate concentrations were relatively high and δ15N values of POM were low, whereas to the north and south of the upwelling nitrate concentrations were low and δ15N values were high. The δ15N values of HMW DOM reflected the same trends observed in the POM fraction and provided the first such evidence for biological cycling of dissolved organic nitrogen (DON). Using the observed δ15N values and an estimate of meridional advection velocity, we estimated a turnover time of 0.3 to 0.5% day−1 for HMW DON. These results suggest a major role for DON in the upper ocean nitrogen cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号