首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Abstract

This article presents a methodology developed to evaluate the instability of submarine slopes that extend over a large area. Special attention was paid to (1) the complex geometry (bathymetry) and the expanse of the slope, (2) the heterogeneity of the sediment, and (3) the distribution of the pore pressure. The safety factor was considered as a spatially varying quantity. The General Formulation (GLE, Fredlund and Krahn 1977), which fully satisfies equilibrium conditions, was used for evaluating the stability of the marine slope. The submarine slope failure, which occurred on 16 October 1979 during the construction of the new Nice airport, was studied in order to test the developed model. Geotechnical parameters were taken from experimental tests carried out by IFREMER on 19 cores extracted at different depths (from 27 m to 1300 m) (Cochonat, Bourillet, and Savoye, 1993; Mulder et al., 1994). Many scenarios were proposed in order to explain the cause of the Nice slope failure (Habib, 1994). In this article, two of those scenarios were tested. Simulation results are presented and discussed.  相似文献   

2.
Three types of failure are present on the continental slope off Nice: superficial slumping, deep-seated failure, and gullying of the canyon walls. Only deep-seated failures displace large sediment volumes and represent an important geological hazard. Triggering mechanisms for failure are variable and include earthquake loading, undercutting, and increasing pore pressure through sediment loading. A combination of failure type, depositional setting, and triggering mechanism suggests six different failure scenarios that have to be taken into account if geotechnical modeling is to reproduce the variability and pattern of seafloor failure of Nice. Received: 21 August 1998 / Revision received: 24 March 1999  相似文献   

3.
东山岛以东近岸海域水下沙丘及其环境   总被引:1,自引:0,他引:1  
1990~1991年,我所对东山岛海域进行海底地形、底质调查、水文泥沙测验时发现:1)沿东山岛一古雷半岛的NNE、NE向断裂在海域呈现为落差可达20m左右“V”字型深糟;2)在东山岛东部10m等深线以东海域发育众多的水沙丘群,水深15m左右有一地形坡折线,水深20~25m海底为水下一级阶地。据底质粒度、石英电镜扫描、重矿物、地球化学指标等分析表明,水下沙丘群分布区的沉积为准残留沉积,水下一级阶地及水下沙丘为早期滨岸的准残留地貌作,又受到后期现代水动力的改造。  相似文献   

4.
Submarine landslides are common along the Uruguayan and Argentinean continental margin, but size, type and frequency of events differ significantly between distinct settings. Previous studies have proposed sedimentary and oceanographic processes as factors controlling slope instability, but also episodic earthquakes have been postulated as possible triggers. However, quantitative geotechnical slope stability evaluations for this region and, for that matter, elsewhere in the South Atlantic realm are lacking. This study quantitatively assesses continental slope stability for various scenarios including overpressure and earthquake activity, based on sedimentological and geotechnical analyses on three up to 36 m long cores collected on the Uruguayan slope, characterized by muddy contourite deposits and a locus of landslides (up to 2 km3), and in a canyon-dominated area on the northern Argentinean slope characterized by sandy contourite deposits. The results of shear and consolidation tests reveal that these distinct lithologies govern different stability conditions and failure modes. The slope sectors are stable under present-day conditions (factor of safety >5), implying that additional triggers would be required to initiate failure. In the canyon area, current-induced oversteepening of weaker sandy contourite deposits would account for frequent, small-scale slope instabilities. By contrast, static vs. seismic slope stability calculations reveal that a peak ground acceleration of at least 2 m/s2 would be required to cause failure of mechanically stronger muddy contourite deposits. This implies that, also along the western South Atlantic passive margin, submarine landslides on open gentle slopes require episodic large earthquakes as ultimate trigger, as previously postulated for other, northern hemisphere passive margins.  相似文献   

5.
Abstract

As part of a National Oceanic and Atmospheric Administration (NOAA) program to understand bottom and nearbottom processes on the continental margin, the continental slope seaward of the coast of Delaware, just east of the Baltimore Canyon Trough, and northeast of Wilmington Canyon was studied in detail. With a suite of geophysical data, a 7.5 × 13.0‐km portion of the continental slope was surveyed and found to be composed of a large submarine slide, approximately 11 km 3 in volume. The slide varies from 50 to 300 m in thickness and is believed to be composed of Pleistocene Age sediments. The internal structure of the continental slope can be seen on the seismic reflection profiles, as well as the readily identifiable continuous slip surface. Pliocene to Cretaceous horizons comprise the continental margin with Pliocene to Eocene horizons truncated at the slip surface. Sediment failure occurred on the slope between the late Tertriary erosion surface, which shaped the continental margin, and the overlying Quaternary sediments. A mechanism suggested to have contributed to the sediment failure is a late Pleistocene lower stand of sea level. Creep of surficial sediments is believed to be active on the surface of the submarine slide, indicating present‐day instability.  相似文献   

6.
国内外海底斜坡稳定性研究概况   总被引:2,自引:0,他引:2  
海底斜坡物质受地震、风暴潮等动力因素的影响,其强度变弱,发生失稳破坏,对海底工程设施具有较大的破坏性,引起人们的广泛关注。根据近几年来国外海底斜坡稳定性研究领域的最新成果,简要介绍分析与海底斜坡失稳有关的调查方法、分类、失稳机制、失稳空间和稳定性评价等研究情况。这些方面的成果代表了当前国际海底斜坡稳定性研究的进展和动态,对促进我国今后的海底斜坡稳定性研究将会起到一定的帮助作用。  相似文献   

7.
ABSTRACT

The purpose of this paper is to analyze the stability of submarine slope during the natural gas hydrate dissociation. A model is deduced to calculate the excess pore fluid pressure. In addition, a new method is proposed to define and calculate the factor of safety (FoS) of the submarine slope. Case study is also performed, results of which show that dissociation of hydrates would decrease the stability of submarine slope. If the cohesion of the hydrate-bearing sediments is small, the submarine slope would become unstable because of the shear failure. If the cohesion of the hydrate-bearing sediments is large enough, the tensile failure would happen in the hydrate-bearing sediments and the excess pore pressure may explode the submarine slope. Under the drained condition, the submarine slope may remain stable because the buildup of excess pore fluid pressure could not take place. Moreover, FoS would be underestimated by the assumption that natural gas hydrates dissociate in the horizontally confined space, but would be overestimated by only taking into account of the base of the natural gas hydrate-bearing sediments. The compressibility factor of natural gas should also be considered because treating natural gas as ideal gas would underestimate the stability of submarine slope.  相似文献   

8.
Estimating the impact forces exerted by a submarine debris flow on a pipeline is a challenge, and there is room for considerably more work to advance the state of the art. To this end, an experimental program was performed to investigate the impact on two pipeline installation scenarios: 1) suspended pipeline and 2) laid-on-seafloor pipeline. The results and observations from the experimental investigation are discussed. The definition of Reynolds number was modified for non-Newtonian fluids and an ad hoc method was developed to estimate the drag force exerted by an impact perpendicular to the pipe axis. The method may be used in prototype situations to estimate the drag force from submarine debris flow impact on pipelines. The experimental program was complemented by Computational Fluid Dynamics (CFD) analyses, the details of which are discussed in the accompanying paper.  相似文献   

9.
The continental shelf and the upper slope of the Gulf of Palermo (Southern Tyrrhenian Sea) in the depth interval ranging from 50 to 1,500 m were mapped for the first time with Multi Beam echosounder and high resolution seismic. Seven submarine canyons are confined to the upper slope or indent the shelf-edge and enter the Palermo intraslope basin at a depth of around 1,300 m. The canyons evolved through concurrent top-down turbiditic processes and bottom-up retrogressive mass failures. Most of the mass failure features of the area are related to canyon-shaping processes and only few of them are not confined to the upper slope. In general, these features probably do not represent a significant tsunami hazard along the coast. The geological element that controls the evolution of the canyons and induces sediment instability corresponds to the steep slope gradient, especially in the western sector of the Gulf, where the steepest canyons are located. The structural features mapped in the Palermo offshore contributed to the regulation of mass failure processes in the area, with direct faults and antiform structures coinciding with some of the canyon heads. Furthermore, the occurrence of pockmarks and highs that probably consist of authigenic carbonates above faulted and folded strata suggests a local relationship between structural control, fluid escape processes and mass failure. This paper presents a valuable high-resolution morphologic dataset of the Gulf of Palermo, which constitutes a reliable base for evaluating the geo-hazard potential related to slope failure in the area.  相似文献   

10.
The accumulation of bathymetric and seismic data on many continental margins has provided valuable new insights into variability of seascape morphology. The present challenge is in finding appropriate manners to characterise that morphology so that variations between areas and between potential influences can be recorded. In this paper, we employ hypsometry (area-elevation analysis) and present parameters derived from 65 hypsometric curves which represent distinct slope-basin shapes, based on data from the central USA Atlantic continental slope. The distinction of morphologic signatures has derived from the statistical moments, such as skewness and kurtosis, in describing the hypsometric curves of the submarine basins. Moreover, basin geometry in planview and network structure, have shown to be remarkably well reflected in the shape of the hypsometric curve. Based on the combined analysis of morphology and submarine processes and scenarios, we propose that concave hypsometry is characteristic of trellis networks that probably initiated by sporadic erosion by sedimentary flows, spilling over the shelf edge. The convex hypsometry that characterises poor- to well- developed dendritic networks, heading at or below the shelf break, is attributed to retrograde erosion and sediment fallout events, respectively. These results present initial step in helping to infer submarine processes from morphology, and provide initial information about the environmental scenarios for areas where the erosional record is unknown.  相似文献   

11.
High-resolution and high-density 2-D multichannel seismic data, combined with high-precision multibeam bathymetric map, are utilized to investigate the characteristics and distribution of submarine landslides in the middle of the northern continental slope, South China Sea. In the region, a series of 19 downslope-extending submarine canyons are developed. The canyons are kilometers apart, and separated by inter-canyon sedimentary ridges. Numerous submarine landslides, bounded by headscarps and basal glide surfaces, are identified on the seismic profiles by their distorted to chaotic reflections. Listric faults and rotational blocks in head areas and compressional folds and inverse faults at the toes of the landslides are possibly developed. Three types of submarine landslides, i.e., creeps, slumps, and landslide complexes, are recognized. These landslides are mostly distributed in the head areas and on the flanks of the canyons. As the most widespread landslides in the region, creeps are usually composed of multiple laterally-coalesced creep bodies, in which the boundaries of singular component creep bodies are difficult to delineate. In addition, a total of 77 landslides are defined, including 61 singular slumps and 16 landslide complexes that consist of two or more component landslides. Statistics show that most landslides are of a small dimension (0.53–18.09 km² in area) and a short runout distance (less than 3.5 km). Regional and local slope gradients and rheological behavior of the displaced materials might play important roles in the generation and distribution of the submarine landslides. A conceptual model for the co-evolution of the canyons and the associated landslides in the study area is presented. In the model it is assumed that the canyons are initiated from gullies created by landslides on steeper sites of the continental slope. The nascent canyons would then experience successive retrogressive landsliding events to extend upslope; at the same time canyon downcutting or incision would steepen the canyon walls to induce more landslides.  相似文献   

12.
Based upon 2D seismic data, this study confirms the presence of a complex deep-water sedimentary system within the Pliocene-Quaternary strata on the northwestern lower slope of the Northwest Sub-Basin, South China Sea. It consists of submarine canyons, mass-wasting deposits, contourite channels and sheeted drifts. Alongslope aligned erosive features are observed on the eastern upper gentle slopes (<1.2° above 1,500 m), where a V-shaped downslope canyon presents an apparent ENE migration, indicating a related bottom current within the eastward South China Sea Intermediate Water Circulation. Contourite sheeted drifts are also generated on the eastern gentle slopes (~1.5° in average), below 2,100 m water depth though, referring to a wide unfocused bottom current, which might be related to the South China Sea Deep Water Circulation. Mass wasting deposits (predominantly slides and slumps) and submarine canyons developed on steeper slopes (>2°), where weaker alongslope currents are probably dominated by downslope depositional processes on these unstable slopes. The NNW–SSE oriented slope morphology changes from a three-stepped terraced outline (I–II–III) east of the investigated area, into a two-stepped terraced (I–II) outline in the middle, and into a unitary steep slope (II) in the west, which is consistent with the slope steepening towards the west. Such morphological changes may have possibly led to a westward simplification of composite deep-water sedimentary systems, from a depositional complex of contourite depositional systems, mass-wasting deposits and canyons, on the one hand, to only sliding and canyon deposits on the other hand.  相似文献   

13.
Abstract

The use of marine high‐resolution geophysical profiling data, seafloor soil samples, and accepted land‐based methods of analysis have provided a means of assessing the regional geotechnical conditions and relative slope stability of the portion of the Gulf of Alaska Continental Margin known as the Kodiak Shelf. Eight distinct types of soils were recognized in the study; the seafloor distribution of these indicates a complex geotechnical setting. Each soil unit was interpreted as having a distinct suite of geotechnical properties and potential foundation engineering problems. Seven categories of relative slope stability were defined and mapped. These categories range from “highest stability”; to “lowest stability,”; and are based on the degree of slope of the seafloor, type of soil underlying the slope, and evidence of mass movement. The results of the analysis indicate that the highest potential for soil failure exists on (1) the slopes forming boundaries between the submarine banks and the broad sea valleys, and (2) the upper portion of the continental slope, where evidence of past slope failure is common. Also of concern are gently sloping areas near the edges of submarine banks where evidence of possible tension cracks and slow downhill creep was found.  相似文献   

14.
海底斜坡土体失稳的研究进展   总被引:1,自引:0,他引:1  
根据国内外最新的文献,综述了海底斜坡失稳研究核心问题的进展情况。这些进展主要包括海底斜坡土体失稳的定性和定量研究,以及海底斜坡土体失稳后演变趋势的定性和定量研究。  相似文献   

15.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   

16.
The studies carried out by the Karpinskii All-Russia Research Institute of Geology using side-scan profiling, echo sounding, and surface sediment sampling allowed revealing the detailed structure of the underwater coastal slope in the eastern Gulf of Finland. In particular, a submarine sand terrace was found at depths of 4–5 m. An attempt at the reconstruction of the coastal evolution over the period of the Late Holocene was made using mathematical modeling in order to explain the observed morphology of the submarine coastal slope. The key assumption of the concept suggested is that, at the earlier stage, the tectonic processes played the main role, while, at the later stage, the sea-level changes were of greater importance. The tectonic block comprising the investigated area of the Gulf of Finland at first rapidly increased and then it stabilized and was influenced by the sea level’s rise. These processes resulted in the formation of a series of terraces. The earlier of those are now located on dry land, while the later terraces are observed on the submarine slope. Within the concept proposed, the coastal evolution in the Late Holocene appears as a process of the gradual erosion of the above-water terraces and the formation of new underwater terraces. During the transgressive phases, the rate of the coast’s recession reached 0.5 m year−1, while decreasing by a factor of two during the intermediate stages. The submarine terrace developed over the period of 3.2–1.2 thousand years ago, and it extended in equal measure due to the coast’s recession and the material’s accumulation near its external edge. During that period, the coast retreated by approximately 500 m, while the average accumulation rate could have been as high as 0.7 m3 m−1 year−1.  相似文献   

17.
The Rockall Bank Mass Flow (RBMF) is a large, multi-phase submarine slope failure and mass flow complex. It is located in an area where the Feni Drift impinges upon the eastern flank of the Rockall Bank in the NE Atlantic. A 6100 km2 region of slope failure scarps, extending over a wide water depth range and with individual scarps reaching up to 22 km long and 150 m high, lies upslope of a series of mass flow lobes that cover at least 18,000 km2 of the base of slope and floor of the Rockall Trough. The downslope lobe complex has a negative topographic relief along much of its northern boundary, being inset below the level of the undisplaced contourite drift at the base of slope. The southern margin is topographically more subtle but is marked by the sharp termination of sediment waves outside the lobe. Within the lobe complex the southern margin of the largest lobe shows a positive relief along its southern margin. The initial failure is suggested to have occurred along coherent layer-parallel detachment surfaces at depths of up to 100 m and this promoted initial downslope block sliding which in turn transformed into debris flows which moved out into the basin. The remains of a deep erosional moat linked to the onlapping contourite complex bisects the region of failed slope, and post-failure thermohaline currents have continued to modify the mass flow in this area. Differential sedimentation and erosion associated with the moat may have promoted slope instability. Following the major failure phase, continuous readjustments of the slope occurred and resulted in small-volume turbidites found in shallow gravity cores collected on the lobes. The short term trigger for the failure remains uncertain but earthquake events associated with a deep-seated tectonic lineament to the north of the mass flow may have been important. A Late Pleistocene age for the slope failure is likely. The RBMF is unusual in that it records large-scale collapse of a contourite body that impinged on a sediment-undersupplied slope system. Unlike many other large slope failure complexes along the NE Atlantic margin, the RBMF occurs in a region where there was little overloading by glacial sediment.  相似文献   

18.
边坡稳定是淤泥质海底航道安全运营的关键问题之一。海底航道边坡失稳滑塌过程的不同阶段浅地层剖面图像声纹特征不同。采用灰度共生矩阵和小波多尺度分解方法分析了航道边坡失稳滑塌过程浅地层剖面图像纹理特征。结果表明,对比度、能量、相关度和逆差距在边坡失稳滑塌过程中具有明显的差异,分别从不同方面刻画了浅地层剖面图像声纹的清晰度、纹理粗细、主要方向和规则性,以定量的形式显示其内在异质性。能量、相关度和逆差距的水平和垂直方向变化大于对角方向,水平方向波动最明显。浅地层剖面声强时间序列和垂向空间变化序列小波多尺度分解突出了声强变化的局部细节及其在各尺度上变化的强弱分布和突变点位置,克服了常规人工识读的困难,这些声纹特征是边坡失稳滑塌预测预警的重要依据,有助于对海底航道边坡稳定性的探测。  相似文献   

19.
During Cruise 20–3 of the R/V Rift (April, 2006), the area that includes the shelf and slope of the Derbent Basin in the northern Middle Caspian was studied using the continuous seismoacoustic profiling method. In accordance with the previous standpoint, two Pleistocene deltaic complexes formed in the Enotaevian and Mangyshlakian time are defined in this area. The seismoacoustic records obtained for the northern slope of the Derbent Basin demonstrate the development of specific rootless exogenic-gravitational fold structures in the upper (~150–200 m) Quaternary part of the sedimentary sequence. The Quaternary section encloses angular unconformities indicating the pulsating mode of gravitational processes in the northern slope of the basin. South-dipping gravitational normal faults (and/or normal fault-related flexures) displacing the bottom surface and uppermost sedimentary layers (with vertical amplitudes up to 5–6 m) were defined in the southern part of the study area. Several impulses of the submarine slump structures predated and accompanied the deposition of the upper deltaic sequence (Mangyshlakian), although their most intense formation took place later during the Novocaspian (Holocene) time. Thus, the structural analysis of the seismoacoustic data revealed intense development of different-origin and different-age gravitational structures within the Quaternary sediments in the northern slope of the Derbent Basin. These results should be taken into consideration when designing, building, and operating submarine constructions in order to prevent potential natural hazards and reduce their consequences.  相似文献   

20.
The results of field studies of the beach dynamics and the continental slope (over the depth range from 0 to 5 m) of the Anapa spit barrier that were carried out in 2002–2005 using ten lateral profiles are presented. The analysis of the location of the submarine ridges based on the data of 1992 up to a depth of 11 m has shown that the configuration thereof facilitates the transport of sediments to the southeast, thus bypassing Cape Anapa. No resultant accumulation of beach-forming sediments on the southeastern flank of the spit barrier occurs within the submarine slope bordering the high coast, thus provoking the active erosion of the town beach over the last 25–30 years. The main reasons for this are the tectonic deformation of the coastal region and the submarine slope between the harbor and the central part of the town beach, as well as the change in the azimuth orientation of the resultant waves from 135° in the 1960s–1970s to 210° over the past decade. The relatively stable coast and the regions of intense erosion of the accumulative body of the Anapa spit barrier were revealed on the basis of the measurements and the analysis of the topographic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号