首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The tendency of dimethylsulfide (DMS) to form complexes with heavy metal ions in aqueous solutions and the factors that influence it have been investigated. Among five heavy metal ions examined (Cu2+, Cd2+, Zn2+, Pb2+ and Hg2+), only Hg2+ bound significantly with DMS in aqueous solutions in which Hg2+ concentration was increased to much higher levels than that of natural seawater. The complexation capacity of Hg2+ for DMS was influenced by pH and media. The affinity of Hg2+ for DMS was generally lower at high than at low pH, presumably due to the competition of hydroxide ion to form hydroxomercury species. In different solutions, the affinity of Hg2+ for DMS followed the following sequence: ultra-purified water > 35‰ NaCl solution > seawater. It seems apparent that chloride had a negative impact on the complexation of DMS by Hg2+, owing to the competition of chloride with DMS for complexing Hg2+. In addition, the affinity of Hg2+ for DMS in the bulk seawater appeared to be higher than that in the surface microlayer seawater. The tendency of Hg2+ to form complexes with DMS in aqueous solution can be reduced by the presence of 2 mM amino-acid such as glycine, alanine, serine and cysteine, as these ligands give stable mercury complexes. However, the presence of 2 mM acetate in experimental solutions had no significant effect on the complexation of Hg2+ with DMS, even though this ligand has a relatively strong complexing capacity for Hg2+. Although mercury ions appeared to have a strong affinity for DMS, the concentration of mercury in seawater is too low to produce a great effect on the distribution of DMS in oceans.  相似文献   

2.
The solubility of Be2(OH)2CO3 in seawater has been experimentally determined at a temperature of 25°C and salinity of 35‰. The [Be2+]-pH correlation curve gradually flattens within the pH range of 7.2 to 8.2, but the flattening of the curve stops at pH∼8 due to the increased contribution of carbonate, hydroxide, or (and) hydroxide-carbonate complexes.  相似文献   

3.
The activity of NaCl in artificial seawater was measured potentiometrically with Na+- and Cl? -sensitive electrodes. The salinity of the solutions, examined at 25°C, ranged from 10–40‰ salinity. The change in the activity from 5–25°C was measured at 35‰ salinity.The molal mean activity coefficient of NaCl in 35‰ seawater at 25°C is 0.667. The relative partial molal enthalpy of NaCl in 35‰ seawater is ?130 ±50 cal mol?1. This value is in good agreement with the value measured in pure 0.72 M NaCl.The results were compared with activity coefficients predicted by a specific interaction model and by an ion association model. Good agreement was found in both cases.  相似文献   

4.
Compared to oxygen isotopes, the carbon isotope composition of biogenic carbonates is less commonly used as proxy for palaeoenvironmental reconstructions because shell δ13C is derived from both dissolved inorganic (seawater) and organic carbon sources (food), and interactions between these two pools make it difficult to unambiguously identify any independent effect of either. The main purpose of this study was to demonstrate any direct impact of variable food supply on bivalve shell δ13C signatures, using low/high rations of a 13C-light mixed algal diet fed to 14-month-old (adult) cultured Japanese Crassostrea gigas under otherwise essentially identical in vitro conditions during 3 summer months (May, June and July 2003, seawater temperature means at 16, 18 and 20 °C respectively) in experimental tanks at the Argenton laboratory along the Brittany Atlantic coast of France. At a daily ration of 12% (versus 4%) oyster dry weight, the newly grown part of the shells (hinge region) showed significantly lower δ13C values, by 3.5‰ (high ration: mean of −5.8  ± 1.1‰, n = 10; low ration: mean of −2.3  ± 0.7‰, n = 6; ANOVA Scheffe’s test, p < 0.0001). This can be explained by an enhanced metabolic activity at higher food supply, raising 13C-depleted respiratory CO2 in the extrapallial cavity. Based on these δ13C values and data extracted from the literature, and assuming no carbon isotope fractionation between food and shell, the proportion of shell metabolic carbon would be 26  ± 7 and 5  ± 5% for the high- and low-ration C. gigas shells respectively; with carbon isotope fractionation (arguably more realistic), the corresponding values would be 69  ± 14 and 24  ± 9%. Both groups of cultured shells exhibited lower δ13C values than did wild oysters from Marennes-Ol éron Bay in the study region, which is not inconsistent with an independent influence of diet type. Although there was no significant difference between the two food regimes in terms of δ18O shell values (means of 0.1  ± 0.3 and 0.4  ± 0.2‰ at high and low rations respectively, non-significant Scheffe’s test), a positive δ13C vs. δ18O relationship recorded at high rations supports the interpretation of a progressive temperature-mediated rise in metabolic activity fuelled by higher food supply (in this case reflecting increased energy investment in reproduction), in terms not only of δ13C (metabolic signal) but also of δ18O (seawater temperature signal). Overall, whole-shell δ18O trends faithfully recorded summer/winter variations in seawater temperature experienced by the 17-month-old cultured oysters.  相似文献   

5.
The solubility of aluminum hydroxide in seawater of 35‰ salinity at pH = 7.4−8.2 and 25°C was determined experimentally for three samples synthesized in different ways. The solubilities of two phases subjected to ageing and precipitated (a) from a boiling solution of aluminum sulfate and (b) immediately from seawater at room temperature were a little different and showed the minimum within pH = 8.05−8.10. The solubility of aluminum hydroxide precipitated from a solution of sulfate aluminum at room temperature and not subjected to ageing was about twofold at pH∼7.9. The analysis of the pH dependence of the concentration of dissolved aluminum allows one to suppose that an Al(OH)2+ hydroxo complex is the primary form of the aluminum occurrence in seawater at pH < 8.05, whereas the Al(OH)4 anion is prevailing at pH > 8.10. Electrically neutral Al(OH)30 hydroxocomplexes may be prevailing within the narrow range of pH = 8.05−8.10 and, in general, are of secondary importance.  相似文献   

6.
Paleoenvironmental changes of the Yellow Sea during the Late Quaternary   总被引:3,自引:0,他引:3  
 Based on stable isotope data and carbon and sulfur elemental analyses, the sedimentary environment of the Yellow Sea was significantly influenced by the sea level changes during the Late Quaternary. At the low sea level stand when the sea level was lower by 56 m, the salinity of seawater was reduced to about 7.6‰, and the sedimentation rate in the central part of the Yellow Sea was three times higher than the present rate. The high C/S ratio during the low sea level stand is strong evidence that sedimentation took place in a lower salinity environment than exists at present. Received: 25 September 1997 / Revision reveived: 15 June 1998  相似文献   

7.
The ion product of water in seawater and the total activity coefficients of hydroxide and hydrogen ions were determined over the temperature range 2° to 35°C, and the salinity range 20‰ to 44‰. At 25°C and 35‰ salinity, the measured values are pKWSW = 13.20, fOH = 0.22, fH = 0.71 on the molar concentration scale.  相似文献   

8.
A method for the determination of the δ15N of nitrate in seawater described by Cline and Kaplan (1975) has been modified for application to low-level nitrate samples. We have minimized the reagent blank problem by replacing the Devarda's alloy with an aluminum reagent, and have also established a procedure that yields quantitative (93 ± 2%) extraction of nitrogen even at low nitrate levels. Though the amounts and the δ15N of the blank N varied from one reagent set to another, with these modifications, an overall N blank was reduced to approximately 0.80 ± 0.33 μmole N having an estimated δ15N value of −1.8‰. After blank and yield corrections, the measured isotopic composition of nitrate differed by approximately 0.1‰ from the actual value while the precision was within ±0.2‰ at the 1.25 μM level. The modified procedure was applied to seawater samples collected from the equatorial Pacific in order to compare the N blanks in field samples with those derived from laboratory experiments. The results support the suitability of the modified approach for isotopic analysis of oceanic nitrate in shallow water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The data of meteorological and oceanographic observations on the northwest shelf of the Black Sea for 1973–2000 are used to compute the characteristics of the entire area in the presence of hypoxia of waters under the pycnocline in the summer–autumn period and the area of surface waters with a level of salinity lower than 17.5‰ in May. The time of onset of the spring warming of air (stable transition through a temperature of 5°) is determined. A statistically significant positive trend of the air temperature (0.8° per 100 yr) is revealed in Odessa. The process of warming was observed mainly for the winter (1.5° per 100 yr) and spring (0.8° per 100 yr) periods and became especially intense since the beginning of the 1990s. On the basis of the data of correlation analyses, we establish a statistically significant relationship between the large-scale atmospheric processes [the index of North Atlantic Oscillation (NAO) and the wind conditions], the area of surface waters whose salinity is lower than 17.5‰, and the total area with hypoxia in the summer–autumn periods. For positive mean values of the NAO index (in January–March), we most often observe early spring with elevated repetition of the south and west winds with subsequent development of hypoxia in large areas of the northwest shelf. We propose an empirical regression model for the prediction of the total area of summer–autumn hypoxia of waters with predictors: the onset of the spring warming of air and the area of propagation of waters whose salinity is lower than 17.5‰ in May. The maximum error of prediction of the area with hypoxia does not exceed 5.5 ⋅ 103 km2, i.e., less than 2% of the total area of the northwest shelf in the Black Sea (to the north of 45°N).  相似文献   

10.
Savenko  V. S.  Savenko  A. V.  Pokrovsky  O. S. 《Oceanology》2019,59(6):848-852
Oceanology - Barium sulfate solubility in diluted Na2SO4–NaNO3 solutions and seawater of 35‰ salinity at 22°C was studied in experiments. The value obtained for the thermodynamic...  相似文献   

11.
Abstract

This paper gives the results of the density of diluted and concentrated standard seawater which has been measured in a salinity range from 0 to 42 and a temperature from 0 to 30°C. Equations for density of standard seawater (S = 35) vs the temperature and for density of standard seawater solutions vs the temperature and salinity have been fitted.  相似文献   

12.
The diffusion coefficient of dissolved silica revisited   总被引:1,自引:0,他引:1  
The diffusion coefficient of dissolved silica was determined for two different salinities, 36 and 0, at temperatures ranging from 2 °C to 30 °C and at an average pH value of 8.1. Our results show limited influence of salinity and a variation by a factor of 2 to 3 of the silica diffusion coefficient within the temperature range considered in this study. The values obtained at 25 °C are in agreement with previous work carried out at room temperature for seawater and freshwater. The dependency on temperature and viscosity of the diffusion coefficient agrees well with the Einstein–Stokes equation. The composition of the solvent appears to be an important factor because it modifies the viscosity and allows for the complexation of the dissolved silica with less mobile ions, while its pH controls the dissolved silica speciation. In seawater, the higher viscosity and the presence of dissociated and polymeric species result in a decrease of the diffusion coefficient compared to freshwater systems.  相似文献   

13.
We present high-resolution isotopic records and cathodoluminescence studies of recently dead and live bivalve specimens from cold seeps, in an attempt to reconstruct environmental conditions during organism growth, and thereby the possible variability of fluid-venting activity at the seafloor. Shells of the burrowing lucinid Myrtea aff. amorpha were collected at three localities near actively venting methane seeps in the Eastern Mediterranean deep sea, using the Nautile submersible during two French oceanographic cruises: from the Kazan mud volcano, in the vicinity of the Anaximander mounts (MEDINAUT cruise, 1998), and from the central pockmark province and the Amon mud volcano of the Nile deep-sea fan (NAUTINIL cruise, 2003). The oxygen and carbon isotope compositions of 18 shells from the various localities, and also from different sites at the same locality show a rather strong scatter (1.8 < δ 18O‰ < 3.4; −10.2 < δ 13C‰ < 2.2), and values lower than those expected for carbonate precipitated at equilibrium with present-day bottom waters. This means that warm methane-rich fluids were mixed with bottom seawater during precipitation of shell carbonates. We have tried to determine ontogenetic age of two shells by using cathodoluminescence as a sclerochronological proxy, because the direct counting of carbonate increments was not possible in these specimens. There is a relatively good correspondence between cathodoluminescence trends and oxygen isotope profiles that might support the link between manganese incorporation during growth and temperature. Eight specimens of lucinid shells were selected for high-resolution isotopic profiling. A few shells exhibit decreasing δ 18O and δ 13C values from the umbo to the actively growing ventral shell margin, which can be attributed to the commonly observed physiologically controlled deceleration of growth with increasing organism age, this metabolic effect corresponding to the increase of incorporation of respiratory CO2. A few shells exhibit high-frequency δ 18O variations with an amplitude of about 1.5‰ that might be related to temperature variations controlled by fluid-venting activity. One shell from the pockmark province of the Nile deep-sea fan records a strong, sharp δ 13C decrease of about 9‰, and extending over a 5-mm interval in the shell that can be related to a major methane release event. Another shell from the Kazan mud volcano exhibits a progressive increase of δ 13C values from −10‰ to 0‰ with age, which might indicate decreasing methane flow throughout the organism’s life. This study has demonstrated that bivalve shells from deep-sea cold seeps represent good indicators of variability in seepage activity of methane-rich fluids, at various scales in both space and time. Although the precise chronology of the observed events was not established, because shell growth rate is not known in this case, this remains a priority for future studies in such environments.  相似文献   

14.
采集胶州湾表层和底层海水样品,分析了Cu、Cr、Cd、Pb、Ni、Co等痕量金属在海水中的空间分布特征及其在不同分子量溶解有机质中的分配特征,并探讨了痕量金属?溶解有机质分配机理及浮游生物活动与盐度等环境因素对该分配过程的影响。结果表明,胶州湾海水中痕量金属呈近岸浓度较高的分布特征,在湾东北部出现高值区,Cd和Pb还分别在湾口与湾中部出现高值区。胶州湾海水中痕量金属平均有70.1%分配于低分子量(<1 kDa)组分中,其中Cu和Cd低分子量组分所占平均比例分别达79.0%与77.6%,Cr、Ni和Co稍低,分别为71.5%、67.3%及66.9%,Pb则仅为58.2%。海水中的溶解有机碳也以低分子量组分为主,所占比例平均达73.1%,且光谱特征显示低分子量溶解有机质中类腐殖质含量更高,含有丰富的羧基和羟基,金属配合能力较高,导致痕量金属多分配于低分子量溶解有机质中。高分子量溶解有机质(>1 kDa)所占比例与叶绿素a浓度呈显著正相关,表明浮游植物初级生产通过释放高分子量溶解有机质影响海水痕量金属?溶解有机质的分配过程。胶州湾湾顶盐度较低海域痕量金属高分子量组分略高,可能是生物活动及陆源输入(产生更多高分子量溶解有机质)与盐度(低盐有利于高分子量有机质的稳定性)共同作用的结果。  相似文献   

15.
Self-diffusion coefficients of five major ions have been determined by a radioactive tracer method (capillary tube method) in seawater of salinity 34.86 at 25°C. Data are presented for Na+, Ca2+, Cl, SO42, and HCO3, which constitute about 95% by weight of sea salt. The influence of temperature and salinity on these coefficients has been studied for Na+ and Cl which are the major components of sea salt: self-diffusion coefficients of these two ions have been measured in seawater, at different temperatures for a salinity of 34.86 and at different salinities for a temperature of 25°C. Diffusion coefficients of the same ions have been determined at 25°C by using another radioactive tracer method (quasi-steady cell method). In this experiment, seawater ions were allowed to diffuse from natural seawater into dilute seawater. Data have been obtained at 25°C for Na+, Ca 2+, Cl, SO42− and HCO3, corresponding to different salinity gradients.  相似文献   

16.
Equilibria between Chelex 100* and manganese, zinc and cadmium ions were used to determine the complexation of these trace metals in 36‰ Gulf Stream seawater at 25°C and pH 8.2. The method utilized radiotracers (54Mn, 65Zn, and 109Cd) to quantify trace metal adsorption from trace metal-amended seawater and from seawater containing a series of ethylenediaminetetracetate (EDTA)—metal ion buffers. Results were consistent with Chelex adsorption of both trace metal ions and trace metal—EDTA chelates. Equilibrium models fitted to the data were used to establish conditional stability constants for Chelex adsorption of manganese, zinc and cadmium ions and for adsorption of EDTA-chelates. These models also yielded ratios of free metal ions to total dissolved trace metal concentrations in seawater: 10−0.1 for manganese, 10−0.2 for zinc, and 10−1.5 for cadmium. Independent measurements with a cadmium ion-selective electrode also yielded a free: total cadmium ratio of 10−1.5.  相似文献   

17.
The ratio of dissolved cadmium (Cd) to phosphate (PO4) in the subtropical coastal area of Ishigaki Island, Okinawa, Japan, was investigated. Twenty vertical seawater samplings were carried out once a month from May 2008 to January 2010. In order to examine how the Cd/PO4 ratio in seawater varies with the oceanographic conditions (i.e., the water temperature–salinity characteristics), the water masses at the study sites were classified into two types: group 1 with a water temperature of >25°C and a salinity range of 34.0–34.4, and group 2 with a water temperature of <25°C and a salinity of >34.4. A different phytoplankton assemblage was observed in each water mass defined. Different Cd/PO4 ratios were obtained for the two water mass types, due to the differences between the types in terms of the environmental conditions such as the water temperature–salinity (TS) characteristics and phytoplankton assemblages, as well as possible variations in the concentrations of dissolved iron, zinc, manganese, and CO2 in seawater in each water mass.  相似文献   

18.
Natural marine gas hydrate was discovered in Korean territorial waters during a 2007 KIGAM cruise to the central/southwestern Ulleung Basin, East Sea. The first data on the geochemical characterization of hydrate-bound water and gas are presented here for cold seep site 07GHP-10 in the central basin sector, together with analogous data for four sites (07GHP-01, 07GHP-02, 07GHP-03, and 07GHP-14) where no hydrates were detected in other cores from the central/southwestern sectors. Hydrate-bound water displayed very low concentrations of major ions (Cl, SO42−, Na+, Mg2+, K+, and Ca2+), and more positive δD (15.5‰) and δ18O (2.3‰) signatures compared to seawater. Cl freshening and more positive isotopic values were also observed in the pore water at gas hydrate site 07GHP-10. The inferred sulfate–methane interface (SMI) was very shallow (<5 mbsf) at least at four sites, suggesting the widespread occurrence of anaerobic oxidation of methane (AOM) at shallow sediment depths, and possibly high methane flux. Around the SMI, pore water alkalinity was very high (>40 mM), but the carbon isotopic ratios of dissolved inorganic carbon (δ13CDIC) did not show minimum values typical of AOM. Moreover, macroscopic authigenic carbonates were not observed at any of the core sites. This can plausibly be explained by carbon with high δ13C values diffusing upward from below the SMI, increasing alkalinity via deep methanogenesis and eventually escaping as alkalinity into the water column, with minor precipitation as solid phase. This contrasts, but is not inconsistent with recent reports of methane-fuelled carbonate formation at other sites in the southwestern basin sector. Methane was the main hydrocarbon component (>99.85%) of headspace, void, and hydrate-bound gases, C1/C2+ ratios were at least 1,000, and δ13CCH4 and δDCH4 values were in the typical range of methane generated by microbial reduction of CO2. This is supported by the δ13CC2H6 signatures of void and hydrate-bound gases, and helps clarify some contradictory interpretations existing for the Ulleung Basin as a whole. In combination, these findings suggest that deep biogenic gas and pore waters migrate upward through pathways such as hydrofractures, and measurably influence the shallow carbon cycle. As a result, cation-adjusted alkalinity/removed sulfate diagrams cannot always serve to estimate the degree of alkalinity produced by sulfate reduction and AOM in high methane flux areas.  相似文献   

19.
The protonization constant of HS? (K12) has been determined potentiometrically (glass electrode) at atmospheric pressure in synthetic seawater in the salinity range 2.5–40‰ at 5 and 25°C and in NaCl solutions in the formal ionic strength of 0.1–0.8 M at 5 and 25°C. The difference between synthetic seawater and an NaCl solution with the same formal ionic strength can be explained in terms of the complexation of H+ by sulphate in seawater. These results can be used to compare the pH scales suggested by Hansson (1973c) and Bates (1975). Furthermore, comparison between the present values of K12 and those of Goldhaber and Kaplan (1975) makes it possible to compare the conventional pH scale with Hansson's titration pH scale. The conditional protonization constant of HS? in seawater of different salinities can be used to modify the Gran plots (Hansson and Jagner, 1973) for alkalinity measurements in anoxic seawater. Ion-pair formation between HS? and Mg2+ or Ca2+ seems to be very weak.  相似文献   

20.
Partial molar volumes of the major salts of seawater found in diluted seawater and in pure water are experimentally determined at temperatures of 5°C, 15°C and 25°C. The range of salinity investigated, which is not purely oceanographic, is the link between pure water and seawater in the World Ocean.The partial molar volumes were determined by using the procedure of Poisson and Chanu (1976). An empirical relation is given, linking the partial molar volumes of the salts or major ions of seawater in pure water with those measured in seawater, within the salinity range 0–40 g kg−1 and the temperature range 0–25°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号