首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
The physical, chemical and biological perturbations in central California waters associated with the strong 1997–1998 El Niño are described and explained on the basis of time series collected from ships, moorings, tide gauges and satellites. The evolution of El Niño off California closely followed the pattern observed in the tropical Pacific. In June 1997 an anomalous influx of warm southerly waters, with weak signatures on coastal sea level and thermocline depth, marked the onset of El Niño in central California. The timing was consistent with propagation from the tropics via the equatorial and coastal wave-guide. By late 1997, the classical stratified ocean condition with a deep thermocline, high sea level, and warm sea surface temperature (SST) commonly associated with El Niño dominated the coastal zone. During the first half of 1998 the core of the California Current, which is normally detected several hundred kilometers from shore as a river of low salinity, low nutrient water, was hugging the coast. High nutrient, productive waters that occur in a north–south band from the coast to approximately 200 km offshore during cool years disappeared during El Niño. The nitrate in surface waters was less than 20% of normal and new production was reduced by close to 70%. The La Niña recovery phase began in the fall of 1998 when SSTs dropped below normal, and ocean productivity rebounded to higher than normal levels. The reduction in coastal California primary productivity associated with El Niño was estimated to be 50 million metric tons of carbon (5×1013 g C). This reduction certainly had deleterious effects on zooplankton, fish, and marine mammals. The 1992–1993 El Niño was more moderate than the 1997–1998 event, but because its duration was longer, its overall chemical and biological impact may have been comparable. How strongly the ecosystem responds to El Niño appears related to the longer-term background climatic state of the Pacific Ocean. The 1982–1983 and 1992–1993 El Niños occurred during the warm phase of the Pacific Decadal Oscillation (PDO). The PDO may have changed sign during the 1997–1998 El Niño, resulting in weaker ecological effects than would otherwise have been predicted based on the strength of the temperature anomaly.  相似文献   

2.
Hydrography of the eastern tropical Pacific: A review   总被引:13,自引:10,他引:3  
  相似文献   

3.
Unusual large-scale phytoplankton blooms in the equatorial Pacific   总被引:1,自引:0,他引:1  
Unusual large-scale accumulations of phytoplankton occurred across 10,000 km of the equatorial Pacific during the 1998 transition from El Niño to La Niña. The forcing and dynamics of these phytoplankton blooms were studied using satellite-based observations of sea surface height, temperature and chlorophyll, and mooring-based observations of winds, hydrography and ocean currents. During the bloom period, the thermocline (nutricline) was anomalously shallow across the equatorial Pacific. The relative importance of processes that enhanced nutrient flux into the euphotic zone differed between the western and eastern regions of the blooms. In the western bloom region, the important vertical processes were turbulent vertical mixing and wind-driven upwelling. In contrast, the important processes in the eastern bloom region were wave-forced shoaling of nutrient source waters directly into the euphotic zone, along-isopycnal upwelling, and wind-driven upwelling. Advection by the Equatorial Undercurrent spread the largest bloom 4500 km east of where it began, and advection by meridional currents of tropical instability waves transported the bloom hundreds of kilometers north and south of the equator. Many processes influenced the intricate development of these massive biological events. Diverse observations and novel analysis methods of this work advance the conceptual framework for understanding the complex dynamics and ecology of the equatorial Pacific.  相似文献   

4.
INTRODUCTIONSincetheTOGA-COARElOP(October1992--March1993),usingthelOPdatamanyscientistshaveanalyzedthedifferenttimescaleair-seainteractionduringoccurringanddevelopingperiodof1992/1993EINifio,andespeciallyemphasizedtheintraseasonalvariation(Wuetal.,1993;Liu,1993;WuandSheng,1993).ThishasgottenanewunderstandingoftheEINino*ThisworkissupportedbytheNationalKeyProjectStudiesonShort-rangeClimatePredictionSysteminChinaundercontractNo.96--908-04-02--2.1.FirstinstituteofOceanography,S…  相似文献   

5.
热带西太平洋暖池异常东伸与热带东太平洋增温   总被引:7,自引:1,他引:6       下载免费PDF全文
本文利用“Climate Diagnostics Bulletin”、“Oceanographic Monthly Summary”、美国夏威夷水位中心提供的资料以及TOGA-COAREIOP资料,分析了1992~1993厄尔尼诺事件中西太平洋暖池、东太平洋SST对异常风场的响应,结果指出:由于西风暴发而引起的西太平洋暖水向东输送,不仅导致西太平详水位降低,而且导致温跃层显着升高,进而引起上层海水热含量显着减少,这种减少在温跃层更为明显.东太平洋与此相反,热含量与温跃层深度出现正距平,正距平中心出现时间比西太平洋的负距平均晚两个月;暖池28℃等温线的异常东伸是海流对低空西风异常直接响应的结果,定量估算表明,纬向流异常所引起的温度平流是暖池28℃等温线异常东伸的主要动力,是热带东太平洋异常增温的主要原因之一.  相似文献   

6.
Silica cycling in the upper 175 m of the North Pacific Subtropical Gyre was examined over a two year period (January 2008-December 2009) at the Hawaii Ocean Time-series (HOT) station ALOHA. Silicic acid concentrations in surface waters ranged from 0.6 to 1.6 ??M, exhibiting no clear seasonal trends. Biogenic silica concentrations and silica production rates increased by an order of magnitude each summer following stratification of the upper 50 m reaching values of 157 nmol Si L−1 and 81 nmol Si L−1 d−1, in 2008 and 2009, respectively. Sea surface height anomalies together with analyses of variability in isothermal surfaces at 150-175 m indicated that the summer periods of elevated biogenic silica were associated with anticyclonic mesoscale features during both years. Lithogenic silica concentrations increased in the spring during the known period of maximum atmospheric dust concentrations with maximum values of 36 nmol Si L−1 in the upper 10 m. Dust deposition would enhance levels of dissolved iron in surface waters, but there was no response of diatom biomass or silica production to increases in near-surface ocean lithogenic silica concentrations suggesting iron sufficiency of diatom silica production rates.Low ambient silicic acid concentrations restricted silica production rates to an average of 43% of maximum potential rates. Si sufficiency only occurred during the summer period when diatom biomass was elevated suggesting that bloom diatoms are adapted to exploit low silicic acid concentrations. Annual silica production at HOT is estimated to be 63 mmol Si m−2 a−1 with summer blooms contributing 29% of the annual total. Diatoms are estimated to account for 3-7% of total phytoplankton primary productivity, but 9-20% of organic carbon export confirming past suggestions that diatoms are relatively minor contributors to primary productivity and autotrophic biomass, but important contributors to new and export production in oligotrophic open-ocean ecosystems.Annual silica production at HOT is nearly 4-fold lower than estimates at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea from the 1990s, but annual silica export at the base of the euphotic zone is similar between the two gyres indicating very different balances between silica production and its loss in surface waters. On a relative basis, BATS is a more productive system with respect to silica, where biogenic silica is recycled with high efficiency in surface waters; in contrast the NPSG is a lower productivity system with respect to silica, but where lower recycling efficiency leads to a much higher fraction of new silica production. The two gyres show contrasting long-term trends in diatom biomass as biogenic silica concentrations at HOT have been increasing since 1997, but they have been decreasing at BATS suggesting very different forcing of decadal trends in the contribution of diatoms in carbon cycling between these gyres. Combining the data from both gyres indicates that globally subtropical gyres produce 13 Tmol Si a−1, which is only 51% of previous estimates reducing the contribution of subtropical gyres to 5-7% of global annual marine silica production.  相似文献   

7.
The circulation of the eastern tropical Pacific: A review   总被引:14,自引:9,他引:5  
During the 1950s and 1960s, an extensive field study and interpretive effort was made by researchers, primarily at the Scripps Institution of Oceanography, to sample and understand the physical oceanography of the eastern tropical Pacific. That work was inspired by the valuable fisheries of the region, the recent discovery of the equatorial undercurrent, and the growing realization of the importance of the El Niño phenomenon. Here we review what was learned in that effort, and integrate those findings with work published since then as well as additional diagnoses based on modern data sets.Unlike the central Pacific, where the winds are nearly zonal and the ocean properties and circulation are nearly independent of longitude, the eastern tropical Pacific is distinguished by wind forcing that is strongly influenced by the topography of the American continent. Its circulation is characterized by short zonal scales, permanent eddies and significant off-equatorial upwelling. Notably, the Costa Rica Dome and a thermocline bowl to its northwest are due to winds blowing through gaps in the Central American cordillera, which imprint their signatures on the ocean through linear Sverdrup dynamics. Strong annual modulation of the gap winds and the meridional oscillation of the Intertropical Convergence Zone generates a Rossby wave, superimposed on the direct forcing, that results in a southwestward-propagating annual thermocline signal accounting for major features of observed thermocline depth variations, including that of the Costa Rica Dome, the Tehuantepec bowl, and the ridge–trough system of the North Equatorial Countercurrent (NECC). Interannual variability of sea surface temperature (SST) and altimetric sea surface height signals suggests that the strengthening of the NECC observed in the central Pacific during El Niño events continues all the way to the coast, warming SST (by zonal advection) in a wider meridional band than the equatorially trapped thermocline anomalies, and pumping equatorial water poleward along the coast.The South Equatorial Current originates as a combination of equatorial upwelling, mixing and advection from the NECC, and Peru coastal upwelling, but its sources and their variability remain unresolved. Similarly, while much of the Equatorial Undercurrent flows southeast into the Peru Undercurrent and supplies the coastal upwelling, a quantitative assessment is lacking. We are still unable to put together the eastern interconnections among the long zonal currents of the central Pacific.  相似文献   

8.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

9.
The western subarctic gyre (WSG) and the eastern Alaska Grye (AG) on each side of the subarctic North Pacific, have many similarities. In both gyres, macronutrients are generally high and chl is low, and hence both gyres are High Nitrate, Low Chlorophyll (HNLC) regions. Despite the general similarities between these two gyres, there are many important differences. The time series station established at Stn KNOT on the southwest edge of the WSG and two in situ mesoscale iron enrichment experiments at each of the gyres has provided more information on iron concentrations, the dual role of iron and silicate limitation and seasonal cycles in the gyres. There is more seasonality in many parameters at Stn KNOT than at Stn P. There is an increase in Chl and primary productivity at Stn KNOT in May followed by increased iron limitation in summer. Low DIC:NO3 ratios and high Si:NO3 ratios in the WSG, indicate lower calcification and higher diatom production than at Stn P. The sources of iron for these areas are still not clear, but horizontal transport of iron rich coastal water and vertical transport could be important sources at certain times of the year in addition to dust input. Satellite images show that chl-rich coastal waters occasionally extend to the vicinity of Stn KNOT and therefore Stn KNOT may not always represent conditions in the main part of the WSG. This review focuses mainly on a comparison of Stn KNOT and Stn P, two time series stations on the edge of two very large gyres. At present, we have a limited understanding of the temporal and spatial variability within each of these large gyres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The zooplankton community of the subarctic Pacific is relatively simple, and contains a similar set of major species in all deep water areas of the subarctic Pacific. Their role in the food web varies considerably between coastal and offshore locations. In the oceanic gyres, microzooplankton and other mesozooplankton taxa replace phytoplankton as the primary food source for the dominant mesozooplankton species. Micronekton and larger zooplankton probably replace pelagic fish as major direct predators. Productivity and upper ocean biomass concentrations are intensely seasonal, in part because of seasonality of the physical environment and food supply, but also because of life history patterns involving seasonal vertical migrations (400–2000 m range) and winter dormancy. During the spring–summer season of upper ocean growth, small scale horizontal and vertical patchiness is intense. This can create local zones of high prey availability for predators such as planktivorous fish, birds, and marine mammals. On average, the cores of the subarctic gyres have lower biomass and productivity than the margins of the gyres. There is also some evidence that the Western Gyre is more productive than the Alaska Gyre, but more research is needed to confirm whether this east–west gradient is permanent. There is increasing evidence that the pattern of zooplankton productivity is changing over time, probably in response to interdecadal ocean climate variability. These changes include 2–3 fold shifts in total biomass, 30–60 day shifts in seasonal timing, and 10–25% changes in average body length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号