首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
发生在冰消期时的碳同位素低值事件是晚第四纪以来大洋碳同位素变化的普遍特征。通过对南海北部MD05-2904柱状样(19°27.32′N、116°15.15′E,水深2066m,岩心长度4498cm)930个沉积物样品中颗石藻属种鉴定,发现颗石藻主要属种Florisphaera profunda,Gephyrocapsa oceanica和Emiliania huxleyi相对百分含量与浮游有孔虫碳同位素变化具有相关性。MIS5期以来δ13C值逐渐变重,颗石藻G.oceanica含量增多,下透光带种F.profunda含量逐渐降低,海水初级生产力升高。对应3次δ13C低值期,颗石藻属种含量都发生明显变化,海水初级生产力出现峰值,说明碳同位素低值事件与浮游植物群落和海洋环境变化有密切关系,颗石藻记录能够为研究大洋碳储库的变化提供依据。  相似文献   

2.
通过对苏拉威西海MD98-2178柱状样(3.62°N、118.70°E)颗石藻化石属种相对含量的统计,重建了2万年来海水古生产力、营养跃层的变化。其中Emiliania huxleyi、Gephyrocapsa oceanica、Florisphaera profunda占颗石藻群落的80%~90%。由于G.oceanica与F.profunda存在于两种完全不同的生态环境中,两者的变化趋势完全相反。前者代表高生产力以及高营养物质的海水,后者则代表低生产力与较深的营养跃层。推测冰消期颗石藻对环境变化具有两种响应模式:以约13.5ka的生产力峰值期为界,13.5ka之前颗石藻古生产力变化主要响应于径流对海洋营养物质的输入,而13.5ka之后则主要响应于海水-大气之间水循环的强度。全新世F.produnda含量及其所反映的营养跃层变化具有明显的百年尺度波动,与太阳活动的100~260a周期具有良好的相关性。推测全新世苏拉威西海区营养跃层变化受百年尺度的类似厄尔尼诺-南方涛动(El Nino-Southern Osillation,ENSO)的变化及太阳活动的驱动。  相似文献   

3.
越南岸外上升流区45万年来上层海水变化的颗石藻证据   总被引:1,自引:0,他引:1  
对位于南海西部越南岸外的MD05-2901柱状样45万年以来深海沉积样品进行了颗石藻分析,通过Florisphaera profunda百分含量讨论了营养跃层深度变化的趋势,并利用Beaufort等的经验公式计算了初级生产力。结果表明,45万年以来越南岸外上升流区海水营养跃层深度和初级生产力都经历了4个比较明显的变化阶段。频谱分析表明该区F.profunda百分含量和初级生产力都受到岁差和半岁差周期的控制。与南海南部ODP1143站研究资料对比表明,两地区上层海水变化趋势基本一致,都受到东亚夏季风和地球轨道岁差和半岁差周期的驱动。  相似文献   

4.
琼东海域今生颗石藻群落研究   总被引:2,自引:2,他引:0  
刘海娇  孙军  冯媛媛 《海洋学报》2015,37(12):27-40
通过2012年7、8月在南海北部陆架琼东上升流区域的水文、化学和生物的现场综合采样调查,对采集过滤的今生颗石藻膜样在偏振光显微镜下鉴种并统计细胞丰度,分析了夏季该海域的颗石藻群落结构特征及分布规律。结果表明,夏季琼东上升流区共检出今生颗石藻34种,优势物种有赫氏艾密里藻(Emiliania huxleyi)、大洋桥石藻(Gephyrocapsa oceanica)、纤细伞球藻(Umbellosphaera tenuis)、卡特螺旋球藻(Helicosphaera carteri)、地中海花冠球藻(Coronosphaera mediterranea)等,颗石粒细胞丰度介于0~2 040.23×103粒/L,平均值8.10×103粒/L,颗石球丰度介于0~68.90×103cells/L,平均值5.01×103 cells/L。大多数颗石藻集中分布在上升流信号强的水体中。琼东中部水域的生物多样性指数H′较雷州半岛以东水域高,颗石粒群落的均匀度指数J分布与H′呈镶嵌模式。聚类Cluster和多维定标MDS结果,将颗石粒和颗石球群落各分成4个和5个组群,经相似性分析(ANOSIM)检验证明此种划分是显著的。将生物与海区环境因子进行冗余分析(Redundancy analysis,RDA)结果表明,N/P、PO3-4、NO-2和SiO2-3是影响本次调查的今生颗石藻生物群落的主控因子。  相似文献   

5.
2009年作者对中国黄东海海域夏季(7月20日至9月1日)与冬季(12月23日至2月5日)的两个季度月的颗石藻群落与分布进行调查研究。2009年夏季,中国黄东海海域调查区共发现21种颗石藻,其优势物种分别为赫氏艾密里藻(Emiliania huxleyi)、大洋桥石藻(Gephyrocapsa oceanica)、纤细伞球藻(Umbellosphaera tenuis)和深水花球藻(Florisphaera profunda)。颗石藻细胞丰度为0.23×103~17.62×103个/L,平均值为2.84×103个/L。2009年冬季,中国黄东海海域调查区共发现20种颗石藻,其优势物种分别为赫氏艾密里藻(E.huxleyi)、大洋桥石藻(G.oceanica)、深水花球藻(F.profunda)和纤细伞球藻(U.tenuis)。颗石藻的细胞丰度为0.12×103~35.35×103个/L,平均值为3.84×103个/L。本文系统地研究了颗石藻在我国黄、东海陆架海域的分布(特别是垂直分布),并对其作出了描述与分析,以期为关于中国海颗石藻群落分布等基础性研究提供可靠资料。  相似文献   

6.
海洋沉积物中的长链烯酮由海洋单细胞钙化藻类颗石藻生产,是一种被广泛应用于古气候研究领域中的分子标记物。长链烯酮碳同位素是重建地质历史时期海水、大气CO2浓度的可靠方法之一。在此方法中,需要利用颗石大小对颗石藻生理参数b值进行修正,因此需要厘清哪类颗石藻对烯酮的贡献是一个重要的科学问题。目前认为新生代海洋沉积物中主要的长链烯酮生产者为Noelaerhabdaceae科的颗石藻,包含Emiliania huxleyi,Gephyrocapsa spp.,Reticulofenestra spp.,Cyclicargolithus spp.,但对它们具体的贡献程度仍然未知。因此,本文以南海国际大洋发现计划IODP U1501站早中新世海洋沉积物为研究材料,对比了沉积物中颗石与烯酮的绝对含量,发现Cyclicargolithus属的颗石丰度与烯酮含量具有显著的相关性(r=0.44,p<0.01),而Reticulofenestra spp.的相关性较弱(r=0.09,p=0.5)。研究认为早中新世长链烯酮的主要生产者为Cyclicargolithus属,Reticu...  相似文献   

7.
末次冰期以来南海南部千年尺度的古海洋学   总被引:1,自引:0,他引:1  
对南海南部MD05-2896柱状样22.8 kaBP以来的深海沉积物进行了浮游有孔虫和颗石藻化石定量分析.通过转换函数、特定有孔虫属种含量及比值和颗石藻Florisphaera profunda百分含量等探讨了南海南部海水表层温度、上部水体结构、初级生产力以及碳酸盐溶解作用等变化趋势和周期性.结果表明:18 kaBP以前及10 kaBP以来,海水表层温度较高,碳酸盐溶解作用较强,温跃层营养跃层较深,初级生产力较低.18~10 kaBP冰期时,海水表层温度最低,碳酸盐溶解作用变弱,营养跃层和温跃层变浅,初级生产力较高.频谱分析结果显示,22.8 kaBP以来的气候变化具有明显的周期性,以类D/O事件的千年尺度周期为主,其中最主要的周期为1 500年.  相似文献   

8.
对南海南部ODP1143站750 ka以来的颗石藻化石进行了属种鉴定及百分含量分析,结果显示,在480~260 ka的中布容期,Florisphaera profunda百分含量降低,而Gephyrocapsa caribbeanica等桥石类繁盛.同时,这一时期的海水结构发生改变,营养跃层变浅,海水表层生产力增加.研...  相似文献   

9.
作为一种新的地球化学指标方法,多参数生物标志物法已被广泛应用于重建浮游植物生产力。这个方法假设沉积物中生物标志物含量基本可以反映光合层浮游植物的生产力。但对于这个假设还缺乏现场的证据验证,尤其是西太平洋边缘海地区现场证据。本文对南海表层沉积物中的浮游植物生物标志物含量分布进行了研究。通过对南海77个站位的调查,发现硅藻、甲藻和颗石藻3种主要浮游植物生物标志物的总含量变化范围为551147ng&#183;g^-1,陆源生物标志物C27+C29+C21正构烷烃总含量变化范围为57—732ng&#183;g^-1。浮游植物生物标志物高值主要分布在近岸区、越南外部及巽他陆架北部的2个上升流区等高生产力区。研究表明,生物标志物的含量分布与现代海洋调查和其他古生产力指标对比显示生物标志物法基本可以用来重建生产力。相对于总有机碳含量(Total organic carbon,TOC)和蛋白石,生物标志物指标可以更准确地重建南海生产力。同时我们也发现,由于氧化降解和陆源冲淡效应的影响,在南海北部陆坡区和吕宋西北上升流区表层沉积物中生物标志物的含量与表层生产力的变化出现偏差,因此,在南海利用沉积物中生物标志物含量重建生产力存在区域性限制。  相似文献   

10.
南海表层沉积物中钙质超微化石分布特征   总被引:9,自引:0,他引:9  
为系统描述钙质超微化石在南海表层沉积中的分布特征,对遍布南海的175个样品进行了实验分析。发现不同地区钙质超微化石绝对丰度相差很大,从0—3.8×1010个.g-1不等。平面上将钙质超微化石丰度分为3个区。共鉴定出钙质超微化石21属28种,以Emiliania huxleyi、Florisphaera profunda和Gephyrocapsa oceanica为优势种,其中Florisphaera profunda占据绝对优势。南海钙质超微化石分布具有两个明显特征:一是14°N线南北两边钙质超微化石的分布存在差异;二是南海钙质超微化石丰度以南沙群岛和西沙群岛两片海域为最高,并有东北-西南走向的分布趋势。对影响钙质超微化石分布的水深、上升流与营养盐、陆源物质稀释作用、碳酸盐溶解作用等因素作了讨论,并根据钙质超微化石随水深的变化推测南海碳酸盐补偿深度应在4 000m左右。  相似文献   

11.
A study of coccolith assemblages from a box core from the central South Yellow Sea(SYS) was performed revealing fluctuations on their relative abundance(%) that can be related to climatic and hydrographic changes over the last 230 years(1780–2011). Total coccolith abundances ranged from 7.0 to 55.1×10~6 coccoliths·g~(-1)sediment. Although the abundance of different species varied widely throughout the core, seven taxa dominated the assemblage. Among these species, Gephyrocapsa oceanica was the most dominant species, and it showed an average percentage of 50.1%. The pattern of G. oceanica(eutrophic species) was opposite to that of the combined percentage of Braarudosphaera bigelowii and Umbilicosphaera sibogae(both oligotrophic species), indicating that in the Yellow Sea(YS), the distribution pattern of G. oceanica might be characteristic of nutrient availability.Similar patterns between G. oceanica and the Siberian High were observed on an inter-decadal time scale,indicating that the East Asian Winter Monsoon(EAWM) may be an important driver of ecological changes in the YS. When the EAWM prevails, both the Yellow Sea Coastal Current(YSCC) and Yellow Sea Warm Current(YSWC)strengthen, and the increasing nutrient availability and warmer water brought by the strengthened YSWC favor eutrophic and warm-water coccolithophore species, such as G. oceanica. This likely mechanism demonstrates that coccolith assemblages can be used as benign and reliable proxy for climate change and surface oceanography.  相似文献   

12.
The coccolith assemblages from seafloor sediments over the inner shelf in the northern region of the KwaZulu- Natal Bight on the east coast of South Africa were identified and their distribution determined. In all, 29 Recent species and taxonomic groups, as well as 29 reworked species were recorded. The distribution of the Recent species appears to be governed by environmental features that have been documented in other studies: temperature, salinity, nutrient concentration and water circulation pattern, which reveals the long-term existence of a circulation cell in the sector between Durban Bay and the Thukela River. The outer edge of the cell consists of nutrient-enriched mixed layers and is characterised by an enhanced abundance of Gephyrocapsa oceanica, whereas the central region consists of a stratified nutrient-depleted water mass with elevated abundance of Umbilicosphaera sibogae, Florisphaera profunda, and a group of umbelliform species. The elevated levels of G. oceanica, coupled with the rarity of U. sibogae, F. profunda and the umbelliform species, confirm the presence of a permanent upwelling cell off Richards Bay. The maximum abundance of F. profunda found between Richards Bay and Lake Nhlabane indicates a region of nutrient-depleted (except for nitrite) conditions.  相似文献   

13.
In this study, the coccolith compositions of 213 surface sediment samples from the South Atlantic and Southern Ocean were analysed with respect to the environmental parameters of the overlying surface waters. From this data set, the abundance patterns of the main species and their ecological affinities were ascertained. In general, Emiliania huxleyi is the most abundant species of the recent coccolith assemblages in the study region. However, the lower photic zone taxa, composed of Florisphaera profunda and Gladiolithus flabellatus often dominate the assemblages between 20°N and 30°S. If E. huxleyi is excluded, Calcidiscus leptoporus and F. profunda become the most abundant species, each dominating discrete oceanographic regimes. While F. profunda is very abundant in the sediments underneath warmer, stratified surface waters with a deep nutricline, Calcidiscus leptoporus is encountered in high-productivity environments. Furthermore, the results of a canonical correspondence analysis reveal affinities of Gephyrocapsa spp., Helicosphaera spp. and Coccolithus pelagicus for intermediate to higher nutrient conditions in a well-mixed upper water column. In contrast, Gladiolithus flabellatus seems to be associated with high temperatures and salinities under low-nutrient conditions. Based on the relative abundances of Calcidiscus leptoporus, F. profunda, Gladiolithus flabellatus, Helicosphaera spp., Umbilicosphaera foliosa, Umbilicosphaera sibogae and a group of subordinate subtropical species, six surface sediment assemblages have been identified, which reflect the distribution and characteristics of the overlying surface waters. Their distribution appears to be mainly a function of the relative position of the nutricline and thermocline in the overlying photic zone.  相似文献   

14.
The DYFAMED time-series station, located in the open Ligurian Sea, is one of the few pluriannual flux programs in the world and the longest in the Mediterranean Sea. The trap data series is one of only three multi-decadal data sets in existence, and it provides flux information for an environment that is distinct from the other long-term data sets. At DYFAMED, downward fluxes of particles, carbon and other major elements have been regularly measured with sediment traps since 1986 at fixed depths of 200 and 1000 m. An overview is presented of the main trends of particle and carbon fluxes observed during the period 1988–2005, period when the mooring was located on the northern side of the Ligurian Sea. In spite of considerable interannual variability, fluxes displayed a marked seasonal pattern with the highest fluxes occurring during winter and spring and lowest fluxes throughout the stratified season (summer–autumn). Organic carbon fluxes measured at both depths were highly variable over time, ranging from 0.3 to 59.9 (mean 6.8) mg C m−2 d−1 at 200 m, and from 0.2 to 37.1 (mean 4.3) mg C m−2 d−1 at 1000 m. Mass fluxes were maximal in winter, whereas carbon fluxes were maximal in late spring. Reasonably good agreement existed between particle fluxes at both depths over the years, indicating a relatively efficient and rapid transport of particles from the upper ocean to the deep sea. However, during certain periods mass flux increased with depth suggesting lateral inputs of particles that by-pass the upper trap. Since 1999, the system has apparently shifted towards an increasing occurrence of extreme flux events in response to more vigorous mixing of the water column during the winter months. Although annual mass fluxes have increased in the last years, mean POC fluxes have not substantially changed over time, due mainly to lower carbon contents of the sinking particles during maxima of mass flux.  相似文献   

15.
During the CINCS project (Pelagic–benthic Coupling IN the oligotrophic Cretan Sea—NE Mediterranean), a single mooring with two sediment traps (at 200 and 1515m water depth) and two current meters was deployed in the southern Cretan Sea margin at a depth of 1550 m. A second mooring deployed at the 500 m station was lost, as a result of fishing activities. The duration of the study was 12 months (November 1994 to November 1995) with sampling intervals of 15 or 16 days. The traps were retrieved, serviced and the sedimented material was collected every 6 months. In total, 48 samples were collected (24 from each trap) throughout the study period and fluxes of total particulate mass, opal, organic matter, carbonates, and lithogenic component were measured. Natural radionuclides (210Po and 210Pb) were determined for all trap samples. Total mass flux and the fluxes of four major constituents increased with depth, the total mass flux reaching values of nearly 550 mg m−2 d−1 at 1515 m and 187 mg m−2 d−1 at 200 m depth, following the same patterns observed in other experiments (ECOMARGE, SEEP-I, SEEP-II). The mean annual mass fluxes were 209 and 49.8 mg m−2 d−1 at the near bottom and near surface trap respectively. This suggests that lateral transport of particulate matter is of importance in the area. Total mass fluxes at the two depths were characterized by different seasonal fluctuations, although a general decreasing trend was observed from the I (winter) to the II (summer) deployment at both depths. This was mainly a result of reductions in aluminosilicate inputs during the summer dry period. At 200 m depth carbonates were more important during winter, because of a large carbonate input consisting mainly of coccoliths of Emiliania huxleyi, while during the summer decreased fluxes of carbonates and aluminosilicates resulted in a reduction of the mass flux. In contrast, at 1515 m depth the lithogenic component was the dominant component during the winter deployment, indicating a terrigenous input. During the summer period the decrease in mass flux was strongly effected by the decrease in aluminosilicates. There was a diminution in the organic carbon content with a concomitant increase in total mass flux, which, together with the almost negligible increase in the annual 210Pb activity with depth and the increase of 210Po activity with depth could be interpreted as indicating a contribution of resuspended material to the input at 1515 m. The complex mesoscale circulation of the Cretan Sea, consisting of a cyclone (east)–anticyclone (west) system, controls particle transfer in the area. This hydrodynamic system seems to move water masses towards the southern Cretan Sea margin, and consequently carry materials from the open sea to the upper slope and shelf.  相似文献   

16.
南海西部表层沉积中的钙质超微化石   总被引:8,自引:0,他引:8  
分析研究了南海西部308个表层沉积样品中的钙质超微化石,发现除一个样品外,所有样品均含有钙质超微化石,但相对丰度相差悬殊,在0-1725个范围内变化。钙质超微化石在平面上的分布具有较明显的分区性,可划分为3个区。超微化石组合与南海其它地区超微化石组合面貌相似,由15属23种组成,以Gephyrocapsa oceanica,G.spp.(small),Emiliania huxleyi和Florisphaera profunda为优势种,占90%以上,其中Florisphaera profunda为绝对优势种。本调查区超微化石的分布受多种因素的综合影响,重点讨论了水深、陆源物质的稀释作用、碳酸盐的溶解作用以及重力流的沉积作用等因素对超微化石分布的影响,并根据超微化石的分布推断碳酸盐临界补偿深度(CCrD)约为3100m,碳酸盐补偿深度(CCD)大于4300m。  相似文献   

17.
The living coccolithophores(LCs) are an important class of calcified taxa of phytoplankton functional groups,and major producers of marine biogenic inorganic carbon,playing an important role in the marine carbon cycle.In this study,we report the two-demensional abundance,composition of LCs and its correlation with the environmental parameters in spring and autumn,in order to understand the ecological role of LCs in the Yellow Sea and the Bohai Sea.In spring,totally 9 taxa belonging to coccolithophyceae were identified using a polarized microscope at the 1 000× magnification.The dominant species were Emiliania huxleyi,Gephyrocapsa oceanica,Helicosphaera carteri,and Calcidiscus leptoporus.The abundance of coccosphores and coccoliths ranged 0–7.72cells/m L,and 0–216.09 coccoliths/m L,with the average values of 0.21 cells/m L,and 11.36 coccoliths/m L,respectively.The Emiliania huxleyi distribution was similar to Gephyrocapsa oceanica.The highest abundance of coccoliths was observed in the east of Shandong Peninsula in northern Yellow Sea,whereas Helicosphaera carteri distributed more widely.Emiliania huxleyi and Gephyrocapsa oceanica were the two predominant species in LCs with higher abundances.The distribution of LCs was similar to that of coccoliths.In autumn,14 taxa belonging to coccolithophyceae were identified with dominant species as Emiliania huxleyi,Gephyrocapsa oceanica,Helicosphaera carteri,Calcidiscus leptoporus and Oolithotus fragilis.The abundance of coccosphores and coccoliths ranged 0–24.69 cells/m L,and 0–507.15 coccoliths/m L,with the average values of 1.47 cells/m L,and55.89 coccoliths/m L,respectively.The highest abundance of coccoliths was located in Qingdao coastal waters and south of the survey area.The distribution of LCs was similar to the coccoliths; in addition,LCs presented large abundance in the east of the central Yellow Sea area.  相似文献   

18.
Sinking particles collected from year-long time-series sediment traps at 1674, 4180, 5687 and 8688 m depths, the underlying bottom sediment at 9200 m depth, and suspended particles from surface and subsurface waters in the northwestern North Pacific off Japan were analyzed for long-chain alkenones and alkyl alkenoates (A&A) which are derived mainly from Gephyrocapsacean algae, especially Emiliania huxleyi and Gephyrocapsa oceanica. Alkenone temperature records in sediment trap samples at 1674 m were almost similar to observed sea surface temperatures (SST) with a time delay of one half to one full month. However, alkenone temperatures in trap samples were about slightly lower than measured SST in late spring to early fall. The lowering might be caused by formation of the seasonal thermocline. Nevertheless, these temperature drops observed in trap samples were smaller than those actually observed in a subsurface layer off central Japan. Vertical profiles of A&A concentrations and alkenone temperatures in suspended particles collected from the subsurface waters in early fall indicated that these compounds were produced mostly in a surface mixed layer above the depth of the chlorophyll maximum even in warm seasons. These results suggested that alkenone temperatures strongly reflected SST rather than the temperatures of thermocline waters in these study areas even in such a warm season. Pronounced maxima in A&A fluxes found in sediment trap samples at 1674 m in late spring to summer showed that A&A productions were highest during the periods of spring bloom, according to a time delay between alkenone temperatures and observed SST. Seasonal patterns of alkenone records in trap samples at 4180 and 5687 m could also preserve SST signals well, suggesting that A&A in deep sea waters were mainly derived from primary products in the surface layer. A&A fluxes tended to decrease with water depth, and the ratios of A&A to particulate organic carbon (POC) rapidly decreased in underlying bottom sediment. This clearly indicates that A&A were decomposed and diluted by other refractory organic materials in either the water column or the sediment–water interface. However, A&A compositions were consistently uniform between the trap samples and the underlying bottom sediments, so that A&A could not qualitatively alter during early diagenetic processes.  相似文献   

19.
Autumn living coccolithophores in the Yellow Sea and the East China Sea   总被引:1,自引:0,他引:1  
An investigation was carried out on living coccolithophores(LCs) distribution in the Yellow Sea and the East China Sea from October 17 to November 24, 2011. A total of 223 samples from different depths were collected at 48 stations. Totally 18 taxa belonging to coccolithophyceae were identified using a polarized microscope at the 1 000× magnification. The maximum species abundance was found at the outside of Transect P. The dominated species were Gephyrocapsa oceanica, Emiliania huxleyi, Helicosphaera carteri, and Algirosphaera robusta. The abundance of coccoliths and cells ranged 0–2 965.73 coccoliths/mL, and 0–119.16 cells/mL, with the average values of 471.00 coccoliths/mL and 23.42 cells/mL, respectively. The LCs in surface layer were mainly observed on the coastal belt and middle part of the survey area. The comparison among Transects A, F, P and E indicated lower species diversity and less abundance in the Yellow Sea than those of the East China Sea. The highest abundance of LCs was found in transect F and P. The coccolith abundance increased slightly from surface to bottom in the water column, but the highest value of the cell abundance was observed in the depth of 10–30 m. Temperature, depth and nutrient concentration were suggested as the major environmental factors controlling the distribution and species composition of LCs in the studying area based on canonical correspondence analysis(CCA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号