首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand the paleoenvironment of the Early Cambrian black shale deposition in the western part of the Yangtze Block, geochemical and organic carbon isotopic studies have been performed on two wells that have drilled through the Qiongzhusi Formation in the central and southeastern parts of Sichuan Basin. It shows that the lowest part of the Qiongzhusi Formation has high TOC abundance, while the middle and upper parts display relative low TOC content. Redox-sensitive element (Mo) and trace elemental redox indices (e.g., Ni/Co, V/Cr, U/Th and V/(V + Ni)) suggest that the high-TOC layers were deposited under anoxic conditions, whereas the low-TOC layers under relatively dysoxic/oxic conditions. The relationship of the enrichment factors of Mo and U further shows a transition from suboxic low-TOC layers to euxinic high-TOC layers. On the basis of the Mo-TOC relationship, the Qiongzhusi Formation black shales were deposited in a basin under moderately restricted conditions. Organic carbon isotopes display temporal variations in the Qiongzhusi Formation, with a positive excursion of δ13Corg values in the lower part and a continuous positive shift in the middle and upper parts. All these geochemical and isotopic criteria indicate a paleoenvironmental change from bottom anoxic to middle and upper dysoxic/oxic conditions for the Qiongzhusi Formation black shales. The correlation of organic carbon isotopic data for the Lower Cambrian black shales in different regions of the Yangtze Block shows consistent positive excursion of δ13Corg values in the lower part for each section. This excursion can be ascribed to the widespread Early Cambrian transgression in the Yangtze Block, under which black shales were deposited.  相似文献   

2.
通过分析研究琼东南盆地北部边缘三亚组碳酸盐岩稀土元素地球化学特征,结果表明:稀土元素含量低于1μg/g,呈明显的Ce负异常特征;沉积物沉积于氧化环境;垂向上Ce异常的波动曲线与海平面升降的变化曲线相一致。  相似文献   

3.
Kimmeridgian organic-rich shales of the Madbi Formation from the Marib-Shabowah Basin in western Yemen were analysed to evaluate the type of organic matter, origin and depositional environments as well as their oil-generation potential. Results of the current study establishes the organic geochemical characteristics of the Kimmeridgian organic-rich shales and identifies the kerogen type based on their organic petrographic characteristics as observed under reflected white light and blue light excitation. Kerogen microscopy shows that the Kimmeridgian organic-rich shales contain a large amount of organic matter, consisting predominantly of yellow fluorescing alginite and amorphous organic matter with marine-microfossils (e.g., dinoflagellate cysts and micro-foraminiferal linings). Terrigenous organic matters (e.g., vitrinite, spores and pollen) are also present in low quantities. The high contributions of marine organic matter with minor terrigenous organic matter are also confirmed by carbon isotopic values. The organic richness of the Kimmeridgian shales is mainly due to good preservation under suboxic to relatively anoxic conditions, as indicated by the percent of numerous pyritized fragments associated with the organic matter. The biomarker parameters obtained from mass spectrometer data on m/z 191 and m/z 217 also indicate that these organic-rich shales contain mixed organic matter that were deposited in a marine environment and preserved under suboxic to relatively anoxic conditions.The Kimmeridgian organic-rich shales thus have high oil and low gas-generation potential due to oil window maturities and the nature of the organic matter, with high content of hydrogen-rich Type II and mixed Type II-III kerogens with minor contributions of Type III kerogen.  相似文献   

4.
Organic geochemical and palynofacies studies of 172 ditch cuttings samples of possible source rock shales from the Late Cretaceous Gongila and Fika formations in the Chad Basin of NE Nigeria were carried out to determine their paleoenvironments of deposition. Although dominated by amorphous organic matter, C/S ratios and molecular parameters suggest the mostly organic lean shales (TOC contents typically below 1.5%) were deposited in a normal marine environment. Levels of oxygenation influenced by water depth in the depositional environment appear to control organic richness and quality of the dark grey shales.The organic rich (TOC > 2.0%) upper part of the Fika Formation was deposited under anoxic conditions during the Late Cretaceous and could represent an Oceanic Anoxic Event. Mature intervals where such conditions prevailed would have generated liquid hydrocarbon, although none were sampled here.A trend of increasing organic richness towards the central part of the larger Chad Basin observed in this and other studies supports the development of organic rich marine shales (average TOC contents of 2–3%) of equivalent age in the Termit Basin where water depth would have been deeper and oxygen conditions at levels that permitted preservation of marine organic matter.  相似文献   

5.
The study integrates petrographical and lithological data from deep exploration wells and outcrops in northern Iraq to better understand the sedimentary environments present in the basin and to evaluate the depositional evolution of the Paleozoic rocks in Iraq. The studied Paleozoic successions are represented by five sedimentary cycles of intracratonic sequences. These are dominated mainly by siliciclastic and mixed sedimentary packages, and are separated by major and minor unconformity surfaces. These cycles are as follow: the Ordovician cycle, represented by the Khabour Formation; the Silurian cycle, represented by the Akkas Formation; the Middle-Late Devonian to Early Carboniferous cycle, represented by the Chalki, Pirispiki, Kaista, Ora and Harur formations; the Permian–Carboniferous cycle, represented by the Ga’ara Formation and late Permian cycle, represented by the Chia Zairi Formation. Generally, the cycles are characterized by siliciclastic and mixed carbonate–clastic facies with abrupt changes during Late Paleozoic reflecting the environmental and tectonic events during this period. The Ordovician Khabour Formation is suggested to be of shallow marine environment of deposition with stacked transgressive and regressive cycles that are eustatically controlled. The shale of Silurian Akkas Formation was deposited in open-marine environment. Depositional regimes in the Late Devonian to Early Carboniferous are considered as a continuation of deposition in the subsiding basin with a wide geographic distribution that reflect the epicontinental or epeiric seas in a homoclinic ramp setting. The Permo-Carboniferous Ga’ara Formation was deposited in continental to paralic environment while the Late Permian Chia Zairi Formation represents the carbonate platform deposition. The study revealed that potential source rocks may include some shale beds of the Khabour Formation, hot shales of Akkas Formation and the shales of Ora Formation. The sandstones of the Khabour, Akkas and Kaista formations have good reservoir potential. The Late Permian carbonates of Chia Zairi Formation may be self-sourcing and contain multiple reservoirs. The occurrence of shale as source rocks and limestone as reservoir rocks and some evaporates as sealing horizons make the formation as a reservoir in its own right.  相似文献   

6.
Organic carbon content and sedimentation rate data may give information about the depositional environment of marine sediments. For sediments deposited under oxic deep-water conditions, a positive correlation exists between organic carbon content and sedimentation rate, with very high organic carbon values and high sedimentation rates typical for coastal upwelling areas. Under anoxic deep-water conditions, no such correlation exists. This relationship between (marine) organic carbon and sedimentation rate (the “OCSR diagram”) has been used to characterize the depositional environments of Deep-Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) sediments of Late Cenozoic and Cretaceous age. Furthermore, the results are compared with organic carbon/sulfur data.  相似文献   

7.
Sixteen samples from the “E” to “B” members of the Abu Roash Formation encountered in the Beni Suef Basin, Eastern Desert of Egypt were palynologically analyzed for palaeoenvironmental and sequence stratigraphic investigations. The integrated palynofacies and lithofacies analysis of the studied section indicates deposition of five alternating regressive and transgressive sequences in well-oxygenated, proximal shelf settings. The Abu Roash “E” and the upper “D” to the lower “C” members were deposited during pronounced regressive phases in oxic, shallow marginal marine settings. The upper “B” Member was deposited during a recurring regressive phase but of a lower magnitude in oxic, shallow inner neritic conditions. The lower “D” Member was deposited during a minor transgression phase in dysoxic, shallow inner neritic settings. While the upper “C” to the lower “B” section was deposited during a stronger transgressive episode in a relatively deep, inner neritic environment of prominent dysoxic conditions. This interchange in the depositional setting was documented by the pronounced and concurrent, cyclic nature of the freshwater algae, peridinioid dinoflagellate cysts, pteridophyte spores, and reworked sporomorphs with variable intensities. Their increasing and conversely their diminishing trends clearly reflect alternating regressive-transgressive periods of reduced and relatively normal salinity conditions, respectively. Overall, sedimentation of the studied Abu Roash section indicates a recurring rise in sea level, which accentuated during the earliest Santonian time.The analogous peaking in the Pediastrum signals with those of the pteridophyte spores and reworked taxa indicate a good connection between these Pediastrum signals and the pronounced fluviatile influxes of terrigenous sediments during regressive phases. Accordingly, this can be used to identify regressive sequence boundaries and hence the clastic reservoirs. Even with the small counts recorded herein, we believe high ratios of peridinioid/gonyalulacoid dinocysts are significantly paralleled by peaking signals of freshwater algae and regressive sedimentation phases. This must be preliminary documented here. Probably future palynological studies will be able to fully interpret and address this important Pediastrum rhythmic event in different sequence stratigraphic settings.The palynological parameters, age controlled sporomorph marker taxa, lithology, and gamma ray data were used to differentiate the Abu Roash members into three distinctive 3rd order depositional sequences (AR SQ1, AR SQ2, and AR SQ3). These sequences match well with the global stratigraphic sequences Tu 3, Tu 4, and Co 1 and connect the local rise in sea level to the global eustatic sea level rise.  相似文献   

8.
The middle Permian Lucaogou Formation in the Jimusaer Sag of the southeastern Junggar Basin, NW China, was the site of a recent discovery of a giant tight oil reservoir. This reservoir is unusual as it is hosted by lacustrine mixed dolomitic-clastic rocks, significantly differing from other tight reservoirs that are generally hosted by marine/lacustrine siliciclastic–calcitic sequences. Here, we improve our understanding of this relatively new type of tight oil reservoir by presenting the results of a preliminarily investigation into the basic characteristics and origin of this reservoir using field, petrological, geophysical (including seismic and logging), and geochemical data. Field and well core observations indicate that the Lucaogou Formation is a sequence of mixed carbonate (mainly dolomites) and terrigenous clastic (mainly feldspars) sediments that were deposited in a highly saline environment. The formation is divided into upper and lower cycles based on lithological variations between coarse- and fine-grained rocks; in particular, dolomites and siltstones are interbedded with organic-rich mudstones in the lower part of each cycle, whereas the upper part of each cycle contains few dolomites and siltstones. Tight oil accumulations are generally present in the lower part of each cycle, and dolomites and dolomite-bearing rocks are the main reservoir rocks in these cycles, including sandy dolomite, dolarenite, dolomicrite, and a few dolomitic siltstones. Optical microscope, back scattered electron, and scanning electron microscope imaging indicate that the main oil reservoir spaces are secondary pores that were generated by the dissolution of clastics and dolomite by highly acidic and corrosive hydrocarbon-related fluids.  相似文献   

9.
The early Miocene Pedregoso Formation is one of the numerous formations rich in organic matter within the stratigraphic record of the Urumaco Trough, in the central area of the Falcón Basin. Due to its lithological characteristics and stratigraphic position, this formation is of great interest regarding the basin's petroliferous systems. The evaluation of various inorganic and organic geochemical parameters indicates that the organic matter is primarily of marine origin, deposited in a marine carbonate environment typical of reefal systems, under oxic-to-dysoxic conditions. The low variability in the TOC concentrations and in the distributions of the biomarkers extracted from the samples suggests that the paleoenvironmental conditions and the organic-matter supply remained approximately constant throughout the sedimentation of this unit. The Pedregoso type-II organic matter (marine origin) and initial organic richness value (∼1.8%) suggest that this unit has probably generated hydrocarbons within the Urumaco Trough. However, present-day thermal maturity parameters reveal that the Pedregoso organic matter is overmature (dry gas window), indicating that this unit is only capable to generate gas. In addition, the geothermal gradient, maturity parameters, and the maximum paleotemperature estimated in this study suggest that the Pedregoso Formation reached a maximum burial depth the ∼6.5 km, consistent with the value obtained from data of stratigraphic thickness in the Urumaco Trough. This implies that the thermal anomaly that affected the basin during the Late Eocene–Early Miocene did not reach the central part of the basin, and therefore, the organic matter maturation in this unit is due to the sedimentary burial.  相似文献   

10.
Total arsenic, arsenate and arsenite concentration profiles for the water column of Saanich Inlet, an intermittently anoxic fjord located on Vancouver Island, B.C., Canada, were measured using independent analytical techniques for total arsenic and arsenic speciation to evaluate the accuracy of the speciation technique in both oxic and anoxic marine environments. Total arsenic profiles indicate a mid-depth minimum of about 1.0 ppb above the oxic—anoxic interface and an enrichment in the anoxic zone to about 2.0 ppb. This minimum may be due to either advection of arsenic-poor water into Saanich Inlet at mid-depth or arsenic incorporation onto solid phases within a bacteria- and manganese-rich particulate layer located immediately above the oxic—anoxic interface and subsequent removal via sinking particulate material. Ratios of total arsenic to phosphorus in the deep, anoxic waters of the basin are similar to those reported for marine algae, suggesting that the enrichment of total arsenic within the anoxic bottom layer may be due to its release upon organic matter decomposition.Arsenate and arsenite concentration versus depth profiles indicate a rapid (but incomplete in a thermodynamic sense) response to the oxic—anoxic interface. The arsenate/ arsenite concentration ratio is 15/1 in the oxic region of the water column and 1/12 in the anoxic zone. Arsenate—arsenite interconversion occurs at a depth shallower than ferric-ferrous but deeper than MnO2 —Mn2+ interconversions.Measurements of arsenite oxidation rates at near-ambient arsenite concentrations and temperatures using an 74As3+ radioactive tracer technique indicate that arsenite oxidation is initially ten times faster in seawater taken from the manganese-rich particulate layer at 165 m depth than in seawater collected near the surface at 50 m depth. Addition of antibiotics to seawater from 165 m depth initially suppressed the rate of arsenite oxidation, indicating that it may be partially microbially mediated.  相似文献   

11.
The Middle Triassic Botneheia Formation of eastern Svalbard (Edgeøya and Barentsøya) comprises an organic carbon-rich, fine-grained clastic succession (∼100 m thick) that makes the best petroleum source rock horizon in the NW Barents Sea shelf. The succession records a transgressive–regressive interplay between the prodelta depositional system sourced in the southern Barents Sea shelf (black shale facies of the lower and middle parts of the Muen Member) and the open shelf phosphogenic system related to upwelling and nutrient supply from the Panthalassic Ocean (phosphogenic black shale facies of the upper part of the Muen Member and the Blanknuten Member). The relationships between organic matter, authigenic apatite, and pyrite in these facies allow to characterize the relative roles of redox conditions and oceanic productivity in the organic carbon preservation. The accumulation of terrestrial and autochthonous marine organic matter in the black shale facies occurred under dominating oxic conditions and increasing-upward productivity related to early transgressive phase and retrogradation of the prodelta system. The phosphogenic black shale facies deposited in an oxygen-minimum zone (OMZ) of the open shelf environment during the late transgressive to regressive phases under conditions of high biological productivity, suppressed sedimentation rates, and changing bottom redox. The phosphatic black shales occurring in the lower and upper parts of the phosphogenic succession reveal depositional conditions indicative of the shallower part of OMZ, including high input of autochthonous organic matter into sediment, oxic-to-dysoxic (episodically suboxic and/or anoxic) conditions, intense phosphogenesis, and recurrent reworking of the seabed. The massive phosphatic mudstone occurring in the middle of the phosphogenic succession reflects the development of euxinia in the deeper part of OMZ during high-stand of the sea. High input of autochthonous organic matter in this environment was coupled with mineral starvation and intermittent phosphogenesis. In mature sections in eastern Svalbard, the petroleum potential of the Botneheia Formation rises from moderate to good in the black shale facies, and from good to very good in the phosphogenic black shale facies, attaining maximum in the massive phosphatic mudstone.  相似文献   

12.
48ka以来日本海Ulleung海盆南部的海洋沉积环境演化   总被引:2,自引:1,他引:1       下载免费PDF全文
晚第四纪以来伴随底层水含氧量的剧烈变化,浅色和深色沉积层的交替出现是日本海半远洋沉积物的主要特征。沉积特征分析表明,日本海Ulleung海盆南部KCES1孔的沉积物具有四种不同的沉积构造:均质、纹层、纹层状和混杂构造。深色沉积层一般具有纹层和纹层状构造,并且与我国内陆的千年尺度东亚夏季风强弱变化记录有很好的对应关系,表明纹层沉积物也具有千年尺度的变化规律,从而进一步说明了冰川性海平面变化和东亚夏季风波动应该是Ulleung海盆南部底层水溶解氧含量变化的主要原因。在暖期,在东亚夏季风降水相对增强的影响下,低温、低盐的东海沿岸水对日本海表层水体的贡献要大于对马暖流的贡献,日本海水体间的交换减弱,最终造成缺氧的海底沉积环境。在冷期,夏季风强度的减弱(冬季风增强)加快了日本海西北部深层水的生成,Ulleung海盆南部的底层水含氧量高,相应地沉积了具均质构造的浅色沉积物;在末次盛冰期最低海平面时,日本海成为一个封闭的海盆,降雨量高于蒸发量,水体出现分层,底层水处于停滞缺氧状态。自距今17.5 ka(日历年,下同)以来底层水含氧量较高,对马暖流逐渐成为影响日本海海洋沉积环境的主要因素。Ulleung海盆南部底层水的含氧量在YD期间有一定程度的降低,东海沿岸水的短暂强盛制约了深层水的流通。自距今10.5 ka以来对马暖流强盛,日本海海底处于富氧的沉积环境。  相似文献   

13.
The Oligocene Ruslar Formation is a hydrocarbon source rock in the Kamchia Depression, located in the Western Black Sea area. Depositional environment and source potential of the predominantly pelitic rocks were investigated using core and cuttings samples from four offshore wells. In these wells the Ruslar Formation is up to 500 m thick. Based on lithology and well logs, the Ruslar Formation is subdivided from base to top into units I–VI. Dysoxic to anoxic conditions and mesohaline to euhaline salinities prevailed during deposition of the Ruslar Formation. Relatively high oxygen contents occurred during early Solenovian times (lower part of unit II), when brackish surface water favoured nannoplankton blooms and the deposition of bright marls (“Solenovian event”). Anoxic conditions with photic zone anoxia were established during late Oligocene times (units III and IV) and, probably, reflect a basin-wide anoxic event in the Eastern Paratethys during Kalmykian times. Organic carbon content in the Ruslar Formation is up to 3%. Autochthonous aquatic and allochthonous terrigenous biomass contribute to the organic matter. Relatively high amounts of aquatic organic matter occur in the lower part of the Ruslar Formation (units I and II) and in its upper part (unit VI). Diatoms are especially abundant in the lower part of unit VI. The kerogen is of type III and II with HI values ranging from 50 to 400 mgHC/gTOC. Units I and II (Pshekian, lower Solenovian) are characterized by a fair (to good) potential to produce gas and oil, but potential sources for gas and oil also occur in the Upper Oligocene units IV–VI.  相似文献   

14.
Identification of the main hydrocarbon source rocks of the large Puguang gas field (northeastern Sichuan Basin, southwest China) has been the subject of much discussion in recent years. A key aspect has been the lack of a comprehensive understanding of the development of hydrocarbon source rocks of the Upper Permian Longtan Formation, which had been thought to contain mainly coal seams and thick carbonate layers. In this paper, based on geological data from more than ten wells and outcrops and their related mineralogy and geochemistry, we investigated the depositional environment and main factors controlling organic matter enrichment in the Longtan Formation. We propose a model which combines information on the geological environment and biological changes over time. In the model, organic matter from prolific phytoplankton blooms was deposited in quiescent platform interior sags with rising sea-levels. During the Longtan period, the area from Bazhong to Dazhou was a platform interior sag with relatively deep water and a closed environment, which was controlled by multiple factors including syngenetic fault settling, isolation of submarine uplifts and rising sea-levels leading to water column stratification. Although the bottom water was anoxic, the phytoplankton were able to bloom in the well-lit upper euphotic zone thus giving rise to a set of sapropelic black shales and marlstones containing mostly algal organic matter with minor terrestrial contributions. As a consequence, these rocks have a high hydrocarbon generation potentials and can be classified as high-quality source rocks. The area from Bazhong to Dazhou is a center of hydrocarbon generation, being the main source of reservoired paleo-oils and presently discovered as pyrobitumen in the Puguang gas field. The identification of these source rocks is very important to guide future petroleum exploration in the northeastern Sichuan Basin.  相似文献   

15.
The present study is based on the sedimentological data from a piston core KCES1 off the southern Ulleung Basin margin, the East Sea (Sea of Japan). The data include sediment color (L*), X-ray radiographs, grain size distribution and AMS14C date. Four kinds of sediments (homogeneous, laminated, crudely laminated and hybrid sediments) are identified according to the characters of the sedimentary structures that were considered to reflect changes in bottom-water oxygenation. Alternations of dark laminated/crudely laminated sediments and light homogeneous sediments represent millennial-scale variations that are possibly associated with the high-resolution changes in the East Asian monsoon (EAM). The relative contributions of the East China Sea Coastal Water (ECSCW) and the Tsushima Warm Current (TWC) were likely the main reasons for the repetition of the anoxic and oxic depositional conditions in the East Sea since the last 48 ka BP. During the interstadial, the strengthen summer EAM was attributed to the expansion of the ECSCW because of more humid climate in central Asia, and then more strongly low-salinity, nutrient-enriched water was introduced into the East Sea. The ventilation of deep water was restricted and therefore the dark laminated layer deposited under the anoxic bottom water condition. During the lowest stand of sea level in the last glacial maximum (LGM), the isolated East Sea dominated by stratiˉed water masses and the euxinic depositional environment formed. The homogenous sediments have been predominating since 17.5 ka BP indicating that the TWC has intruded into the East Sea gradually with the stepwise rise of sea level and the bottom water oxygen level was high. During the late Younger Dryas (YD) period, the last dark laminated layer deposited because the ventilation of bottom water was restricted by stronger summer EAM. The TWC strengthened and the bottom water became oxic again from 10.5 ka BP.  相似文献   

16.
Detailed bulk geochemistry and organo-petrography of outcrop Cretaceous sediments (with no significant effects of weathering) from the Calabar Flank, southeast Nigeria were performed to understand the organic carbon source, accumulation and degradation, and paleo-climatic, paleoceanographic and paleoenvironmental conditions in West Africa during Early Cretaceous (Aptian) to Maastrichtian times. This study was based on microscopic, elemental analyses (organic carbon, nitrogen, iron and sulphur), Rock-eval pyrolysis and carbon-isotope analyses. In general, the Calabar Flank shales are characterised by highly variable total organic carbon (TOC) contents, which range between 0.1% in Aptian–Albian Mfamosing Limestone and 9.9% in the Awi Formation sediments. The organic matter (OM) is a mixture of immature to early-mature marine and terrigenous OM of types III and IV. This is indicated by low hydrogen indices (HI value (10–190 mg HC/g TOC), Tmax (417–460 °C), vitrinite reflectance %Ro (0.39–0.62 %Ro), low to high C/N ratios (3.4–1158.0) and high amounts of terrigenous macerals (vitrinite + inertinite). Based on carbon isotope, C/N ratios and sulphate reduction index (SRI), OM degradation (up to 70%, SRI > 2.5) is most pronounced for shales deposited in a marine environment. The geochemical and petrographic data indicate that local factors such as low bioproductivity, down slope transport and redeposition of sediments from a fluvial–deltaic basin to nearshore facies, shallower, oxic and mildly oxygen-deficient environments, humid–arid paleogeographic conditions, specifically controlled the amount and quality of the OM during Aptian–Mastrichtian stages where marine sediments have been assumed to be deposited during the global anoxic events. Therefore, the order of the main factors controlling OM content in sediments are: input of terrigenous material transported from the land > low OM productivity by marine photoautotrophs > low preservation.  相似文献   

17.
《Marine Chemistry》2005,93(1):1-19
To examine microbially mediated degradation of algal fatty acids in marine environments, we conducted a series of microcosm experiments by incubating Emiliania huxleyi cells in simulated oxic/anoxic sediment–water interface systems. Variations in concentration of fatty acids, lipid-degrading enzyme (lipase) activity, and bacterial abundance over 2-month incubations were followed to determine degradation rate constants of major algal fatty acids and responses of bacteria. In the cell-spiked experiments, fatty acids bound in the membrane and intracellular components were separated to examine effects of structural association of fatty acids on their degradation. Experimental results showed that algal fatty acids generally degraded faster (2–4×) under oxic than under anoxic conditions. Most membrane fatty acids seemed to more readily degrade than intracellular ones under anoxic conditions but the two classes degraded at similar rates under oxic conditions. Ratios of oxic to anoxic degradation rate constants were generally higher for intracellular fatty acids than for membrane fatty acids, implying that oxygen might play a more critical role in intracellular fatty acid degradation. Most algal fatty acids degraded almost completely under oxic conditions while a significant fraction (10–40%) of initially added algal fatty acids remained after 2 months under anoxic conditions. By contrast, variations in bacterial abundance during incubations were apparently greater under anoxic conditions compared to oxic conditions, suggesting that the function and relative effectiveness of aerobic vs. anaerobic bacteria rather than total bacterial abundance control biochemical degradation of algal fatty acids. Variations in potential lipase activity followed the same pattern as bacterial abundance in oxic and anoxic systems, indicating that bacteria might be a major source for lipase in these experimental systems. Bacteria-specific fatty acids varied differently during incubations and were not directly linked to bacterial abundance.  相似文献   

18.
The partitioning of annual organic carbon fluxes from five stations located in the vicinity of the Pacific-Antarctic Ridge and the Peru continental margin suggests that 35–85% of the total near-bottom organic carbon flux is utilized at or near the sediment-water interface. These estimates have large uncertainties, but illustrate that assessments of organic carbon utilization can be made by several stepwise approaches which are generally applicable to a wide spectrum of marine environments.In one approach, the mineralization of organic carbon from the sediments was predicted from both sedimentary organic carbon and pore water nutrient profiles with comparable results. Neglecting sediment mixing, the rate constants of the anoxic sediments off Peru range from 0.1 × 10?3 to 4 × 10?3 y?1, and rate constants derived for oxic SW Pacific sediments range from 3 × 10?4 to 7 × 10?4 y?1. As with other values reported for sulfate reducing sediments by Toth and Lerman (1977) and for oxic central Pacific sediments by Müller and Mangini (1980), log-log plots of rate constants vs. sedimentation rate define two parallel linear relationships for oxic and anoxic sediments, respectively. The apparently enhanced rates for oxic environments may result from large benthic organisms which redistribute a portion of the available detritus and in doing so convert it into more easily accessible and metabolizable organic matter. In low-oxygen environments, bottom feeders and infauna are less abundant and more likely to irrigate rapidly accumulating sediments.  相似文献   

19.
Deposition of organic rich black shales and dark gray limestones in the Berriasian-Turonian interval has been documented in many parts of the world. The Early Cretaceous Garau Formation is well exposed in Lurestan zone in Iran and is composed of organic-rich shales and argillaceous limestones. The present study focuses on organic matter characterization and source rock potential of the Garau Formations in central part of Lurestan zone. A total of 81 core samples from 12 exploratory wells were subjected to detailed geochemical analyses. These samples have been investigated to determine the type and origin of the organic matter as well as their petroleum-generation potential by using Rock-Eval/TOC pyrolysis, GC and GCMS techniques. The results showed that TOC content ranges from 0.5 to 4.95 percent, PI and Tmax values are in the range of 0.2 and 0.6, and 437 and 502 °C. Most organic matter is marine in origin with sub ordinary amounts of terrestrial input suggesting kerogen types II-III and III. Measured vitrinite reflectance (Rrandom%) values varying between 0.78 and 1.21% indicating that the Garau sediments are thermally mature and represent peak to late stage of hydrocarbon generation window. Hydrocarbon potentiality of this formation is assessed fair to very good capable of generating chiefly gas and some oil. Biomarker characteristics are used to provide information about source and maturity of organic matter input and depositional environment. The relevant data include normal alkane and acyclic isoprenoids, distribution of the terpane and sterane aliphatic biomarkers. The Garau Formation is characterized by low Pr/Ph ratio (<1.0), high concentrations of C27 regular steranes and the presence of tricyclic terpanes. These data indicated a carbonate/shale source rock containing a mixture of aquatic (algal and bacterial) organic matter with a minor terrigenous organic matter contribution that was deposited in a marine environment under reducing conditions. The results obtained from biomarker characteristics also suggest that the Garau Formation is thermally mature which is in agreement with the results of Rock-Eval pyrolysis.  相似文献   

20.
The terrigenously-dominated marine shales which were deposited in the lower Eocene Pinghu Formation were thought to be a potential source rock in the Xihu Depression of the East China Sea Shelf Basin. However, the exceptionally high total organic carbon content (TOC, >6% on average) of the tidal sand ridge samples was not compatible with their sedimentary environment, indicating coal-bearing sedimentary debris may have been transferred from the coast to the ocean. In this study, new sights into the origins and supply of organic materials in the coastal environment were proposed in the neritic organic matter of the Eocene Pinghu Formation. A discriminant model was developed using plynofacies analysis data to pinpoint the source of organic materials in marine source rocks. The discrimination results suggested that marine mudstones were associated with tidal flat mudstones rather than deltaic ones. The biomarker characteristics of mudstones deposited in various environments support this assertion, indicating that the supply of plant materials in tidal flats is the primary organic matter source for the marine environment. The organic matter abundance was elevated in tidal flats due to their superior preservation conditions. Additionally, the lithological assemblage of tidal flats suggests that tidal currents can scour marshes and then transport dispersed terrigenous organic materials to neritic areas. These findings indicate that coal-bearing sedimentary debris was likely transferred from the coast to the ocean, and tidal currents are thought to be the dominant mechanism driving organic matter from the tidal to the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号