首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
Continental slope terraces at the southern Argentine margin are part of a significant contourite depositional system composed of a variety of drifts, channels, and sediment waves. Here, a refined seismostratigraphic model for the sedimentary development of the Valentin Feilberg Terrace located in ~4.1?km water depth is presented. Analyzing multichannel seismic profiles across and along this terrace, significant changes in terrace morphology and seismic reflection character are identified and interpreted to reflect variations in deep water hydrography from Late Miocene to recent times, involving variable flow of Antarctic Bottom Water and Circumpolar Deep Water. A prominent basin-wide aggradational seismic unit is interpreted to represent the Mid-Miocene climatic optimum (~17?C14?Ma). A major current reorganization can be inferred for the time ~14?C12?Ma when the Valentin Feilberg Terrace started growing due to the deposition of sheeted and mounded drifts. After ~12?Ma, bottom water flow remained vigorous at both margins of the terrace. Another intensification of bottom flow occurred at ~5?C6?Ma when a mounded drift, moats, and sediment waves developed on the terrace. This may have been caused by a general change in deep water mass organization following the closure of the Panamanian gateway, and a subsequent stronger southward flow of North Atlantic Deep Water.  相似文献   

2.
High-resolution seismic reflection profiles and multibeam bathymetry data collected in 2006 and 2008 around Pantelleria Island show the widespread occurrence of contourite drifts and erosional elements ~30?km from the narrowest part (~145?km) of the Sicily Channel, where water masses from the Eastern Mediterranean flow towards the Western Mediterranean. The contourite drifts are rather small (up to 10?km long and 3.3?km wide), at water depths of ~250?C750?m. Most are elongated separated drifts with quite well-developed moats and crests, aligned roughly parallel to the regional bathymetric contours. Erosional elements include abraded surfaces, moats, scours and sub-circular depressions. In addition, a wide sector of the seafloor adjacent to a seamount located SW of Pantelleria Island is characterized by numerous biogenic build-ups colonized by deep-water corals (Madrepora oculata). The spatial distribution of sediment drifts, erosional features and biogenic build-ups suggests an origin from a north-westward-flowing bottom current, in this case the outflow of Levantine Intermediate Water and transitional Eastern Mediterranean Deep Water via the Sicily Channel. These findings for the Pantelleria offshore sector demonstrate that contourite processes are able to concentrate a high variety of closely spaced depositional and erosional features even in small areas (in this case, about 2,000?km2). This Pantelleria focusing can plausibly be related to a particular configuration of the prevailing bottom-current regime in complex interaction with an uneven bathymetry shaped mainly by tectonic and volcanic activity. The distribution of bottom currents seems to be strongly influenced by morphological features ranging from major seabed obstacles, such as the Pantelleria volcanic complex and the so-called southwest seamount, to smaller-scale escarpments and banks. This is consistent with previous findings for Mediterranean and other settings characterized by neotectonics and large topographic features.  相似文献   

3.
Contourite deposits in the central sector of the middle slope of the Gulf of Cadiz have been studied using a comprehensive acoustic, seismic and core database. Buried, mounded, elongated and separated drifts developed under the influence of the lower core of the Mediterranean Outflow Water are preserved in the sedimentary record. These are characterised by depositional features in an area where strong tectonic and erosive processes are now dominant. The general stacking pattern of the depositional system is mainly influenced by climatic changes through the Quaternary, whereas changes in the depositional style observed in two, buried, mounded drifts, the Guadalquivir and Huelva Drifts, are evidence of a tectonic control. In the western Guadalquivir Drift, the onset of the sheeted drift construction (aggrading QII unit) above a mounded drift (prograding QI unit) resulted from a new Lower Mediterranean Core Water hydrodynamic regime. This change is correlated with a tectonic event coeval with the Mid Pleistocene Revolution (MPR) discontinuity that produced new irregularities of the seafloor during the Mid- to Late-Pleistocene. Changes in the Huelva Drift from a mounded to a sheeted drift geometry during the Late-Pleistocene, and from a prograding drift (QI and most part of QII) to an aggrading one (upper seismic unit of QII), highlight a new change in oceanographic conditions. This depositional and then oceanographic change is associated with a tectonic event, coeval with the Marine Isotope Stage (MIS) 6 discontinuity, in which a redistribution of the diapiric ridges led to the development of new local gateways, three principal branches of the Mediterranean Lower Core Water, and associated contourite channels. As a result, these buried contourite drifts hold a key palaeoceanographic record of the evolution of Mediterranean Lower Core Water, influenced by both neotectonic activity and climatic changes during the Quaternary. This study is an example of how contourite deposits and erosive elements in the marine environment can provide evidence for the reconstruction of palaeoceanographic and recent tectonic changes.  相似文献   

4.
This contribution to this special volume represents the first attempt to comprehensively describe regional contourite (along-slope) processes and their sedimentary impacts around the Iberian margin, combining numerically simulated bottom currents with existing knowledge of contourite depositional and erosional features. The circulation of water masses is correlated with major contourite depositional systems (CDSs), and potential areas where new CDSs could be found are identified. Water-mass circulation leads to the development of along-slope currents which, in turn, generate contourite features comprising individual contourite drifts and erosional elements forming extensive, complex CDSs of considerable thickness in various geological settings. The regionally simulated bottom-current velocities reveal the strong impact of these water masses on the seafloor, especially in two principal areas: (1) the continental slopes of the Alboran Sea and the Atlantic Iberian margins, and (2) the abyssal plains in the Western Mediterranean and eastern Atlantic. Contourite processes at this scale are associated mainly with the Western Mediterranean Deep Water and the Levantine Intermediate Water in the Alboran Sea, and with both the Mediterranean Outflow Water and the Lower Deep Water in the Atlantic. Deep gateways are essential in controlling water-mass exchange between the abyssal plains, and thereby bottom-current velocities and pathways. Seamounts represent important obstacles for water-mass circulation, and high bottom-current velocities are predicted around their flanks, too. Based on these findings and those of a selected literature review, including less easily accessible ??grey literature?? such as theses and internal reports, it is clear that the role of bottom currents in shaping continental margins and abyssal plains has to date been generally underestimated, and that many may harbour contourite systems which still remain unexplored today. CDSs incorporate valuable sedimentary records of Iberian margin geological evolution, and further study seems promising in terms of not only stratigraphic, sedimentological, palaeoceanographic and palaeoclimatological research but also possible deep marine geohabitats and/or mineral and energy resources.  相似文献   

5.
The Vema Channel acts as a major conduit for the equatorward spreading of Antarctic Bottom Water between the Argentine and Brazil Basins. For almost two years the thermal stratification above its saddle depth (4660 m) – called Vema Sill – was recorded by moored thermistors and current meters. The lowest 490 m of the water column was instrumented to monitor the well-developed benthic boundary layer of Antarctic Bottom Water. The latter can be subdivided into Weddell Sea Deep Water on the sea bed and lower Circumpolar Deep Water above it. The data show fluctuations on various scales including periods, each about 1–2 weeks long, when the abyssal stratification virtually disappeared. Assuming a stable ratio between density and temperature, time series of bulk Richardson numbers are estimated from temperature and current shear data. The results suggest a potential for intermittent episodes of locally generated vertical mixing.  相似文献   

6.
Based upon 2D seismic data, this study confirms the presence of a complex deep-water sedimentary system within the Pliocene-Quaternary strata on the northwestern lower slope of the Northwest Sub-Basin, South China Sea. It consists of submarine canyons, mass-wasting deposits, contourite channels and sheeted drifts. Alongslope aligned erosive features are observed on the eastern upper gentle slopes (<1.2° above 1,500 m), where a V-shaped downslope canyon presents an apparent ENE migration, indicating a related bottom current within the eastward South China Sea Intermediate Water Circulation. Contourite sheeted drifts are also generated on the eastern gentle slopes (~1.5° in average), below 2,100 m water depth though, referring to a wide unfocused bottom current, which might be related to the South China Sea Deep Water Circulation. Mass wasting deposits (predominantly slides and slumps) and submarine canyons developed on steeper slopes (>2°), where weaker alongslope currents are probably dominated by downslope depositional processes on these unstable slopes. The NNW–SSE oriented slope morphology changes from a three-stepped terraced outline (I–II–III) east of the investigated area, into a two-stepped terraced (I–II) outline in the middle, and into a unitary steep slope (II) in the west, which is consistent with the slope steepening towards the west. Such morphological changes may have possibly led to a westward simplification of composite deep-water sedimentary systems, from a depositional complex of contourite depositional systems, mass-wasting deposits and canyons, on the one hand, to only sliding and canyon deposits on the other hand.  相似文献   

7.
A bathymetric survey of the Gilliss Seamount, in the northwest Atlantic Basin, using a multi-beam sonar array system reveals an extremely complex morphologic character of this feature. A new chart provides the most detailed topographic presentation of an Atlantic seamount published to date and highlights the similarity of the Gilliss Seamount with terrestrial strata-volcanoes. Bottom photographs and samples reveal pillow-Iava formation. Seismic profiles show that the volcanic basement is irregularly covered by acoustically transparent deposits that are as much as 668 m thick. Volcanic debris and sediments locally are displaced down the flanks of the seamount. Bottom photographs and cores indicate that the transparent layer has accumulated slowly by deposition from suspensate-rich (mostly clay and planktonic foraminifera) water masses that flow around the mid to lower sectors of this submarine volcano. Bottom-current activity also modifies the abyssal plain turbidite-hemipelagic sequence surrounding the seamount.  相似文献   

8.
The Adare Trough, located 100 km NE of Cape Adare, Antarctica, is the extinct third arm of a Tertiary spreading ridge that separated East from West Antarctica. We use seismic reflection data, tied to DSDP Site 274, to link our seismic stratigraphic interpretation to changes in ocean-bottom currents, Ross Sea ice cover, and regional tectonics through time. Two extended unconformities are observed in the seismic profiles. We suggest that the earliest hiatus (early Oligocene to Mid-Miocene) is related to low sediment supply from the adjacent Ross Shelf, comprised of small, isolated basins. The later hiatus (mid-Miocene to late Miocene) is likely caused by strong bottom currents sourced from the open-marine Ross Sea due to increased Antarctic glaciation induced by mid-Miocene cooling (from Mi-3). Further global cooling during the Pliocene, causing changes in global ocean circulation patterns, correlates with Adare Basin sediments and indicate the continuing but weakened influence of bottom currents. The contourite/turbidite pattern present in the Adare Trough seismic data is consistent with the 3-phase contourite growth system proposed for the Weddell Sea and Antarctic Peninsula. Multibeam bathymetry and seismic reflection profiles show ubiquitous volcanic cones and intrusions throughout the Adare Basin that we interpret to have formed from the Oligocene to the present. Seismic reflection profiles reveal trans-tensional/strike-slip faults that indicate oblique extension dominated Adare Trough tectonics at 32–15 Ma. Observed volcanism patterns and anomalously shallow basement depth in the Adare Trough area are most likely caused by mantle upwelling, an explanation supported by mantle density reconstructions, which show anomalously hot mantle beneath the Adare Trough area forming in the Late Tertiary.  相似文献   

9.
This study reports novel findings on the Pliocene?CQuaternary history of the northern Gulf of Cadiz margin and the spatiotemporal evolution of the associated contourite depositional system. Four major seismic units (P1, P2, QI and QII) were identified in the Pliocene?CQuaternary sedimentary record based on multichannel seismic profiles. These are bounded by five major discontinuities which, from older to younger, are the M (Messinian), LPR (lower Pliocene revolution), BQD (base Quaternary discontinuity), MPR (mid-Pleistocene revolution) and the actual seafloor. Unit P1 represents pre-contourite hemipelagic/pelagic deposition along the northern Gulf of Cadiz margin. Unit P2 reflects a significant change in margin sedimentation when contourite deposition started after the Early Pliocene. Mounded elongated and separated drifts were generated during unit QI deposition, accompanied by a general upslope progradation of drifts and the migration of main depocentres towards the north and northwest during both the Pliocene and Quaternary. This progradation became particularly marked during QII deposition after the mid-Pleistocene (MPR). Based on the spatial distribution of the main contourite depocentres and their thickness, three structural zones have been identified: (1) an eastern zone, where NE?CSW diapiric ridges have controlled the development of two internal sedimentary basins; (2) a central zone, which shows important direct control by the Guadalquivir Bank in the south and an E?CW Miocene palaeorelief structure in the north, both of which have significantly conditioned the basin-infill geometry; and (3) a western zone, affected in the north by the Miocene palaeorelief which favours deposition in the southern part of the basin. Pliocene tectonic activity has been an important factor in controlling slope morphology and, hence, influencing Mediterranean Outflow Water pathways. Since the mid-Pleistocene (MPR), the sedimentary stacking pattern of contourite drifts has been less affected by tectonics and more directly by climatic and sea-level changes.  相似文献   

10.
The seabed morphology in the vicinity of the seamounts on the Motril Marginal Plateau (northern Alboran Sea) was investigated using high-resolution (sparker) and very high-resolution (TOPAS) seismic reflection profiles and multibeam bathymetry. The aim of the study was to determine the recent geological processes, and in particular those that control the contourite depositional system associated with the intermediate and deep Mediterranean water masses. Six groups of morphological features were identified: structural features (seamount tops, tectonic depressions), fluid escape-related features (pockmarks), mass-movement features (gullies, slides), bottom-current features (moats, scour marks, terraces, elongated and separated drifts, plastered drifts, confined drifts, sheeted drifts), mixed features (ridges) and biogenic features (including evidence of (dead) cold water corals such as Lophelia pertusa and Madrepora oculata). The main processes controlling the formation of these features are recent tectonic activity and the interaction of Mediterranean water masses with the seafloor topography. Seamounts act as topographic barriers that affect the pathway and velocity of the deep Mediterranean water masses, which are divided into strands that interact with the surrounding seafloor. The influence of the intermediate Mediterranean water mass, by contrast, is restricted mainly to the tops of the seamounts. Sediment instability and fluid-escape processes play a minor role, their occurrence being probably related to seismicity.  相似文献   

11.
A detailed study of a nodule from the Somali Basin dated by 230Thexcess was correlated with the paleoceanographic events recorded in Site 236 (Leg 24) Deep Sea Drilling Project (DSDP) cores. Tentative indications are that the phase of nodule accretion starting with the development of pillar structure at a depth of 20 mm in the nodule around 13 Ma coincides with increased Antarctic Bottom Water (AABW) flow and an elevated calciumcarbonate compensation depth (CCD).

The Late Miocene lowering of the CCD is represented by the mottled zones between 8 and 18 mm in the nodule is characterised by an abundant silicate component (>20%) of aeolian origin. The Miocene/Pliocene boundary (5 Ma) occurs at a depth of about 8 mm and is represented by the development of pillar structure and a minimum of aeolian dust (10.3%).

The increased biological productivity of the Somali surface water since the Middle Miocene is demonstrated by the increasing Corg content of the nodule (from 0.11 to 0.19%) towards its surface.  相似文献   


12.
Hydrographic data from the World Ocean Circulation Experiment (WOCE) and South Atlantic Ventilation Experiment (SAVE) in the region of transition between the Scotia Sea and the Argentine Basin are examined to determine the composition of the deep water from the Southern Ocean that enters the Atlantic, and to describe the pathways of its constituents. The deep current that flows westward against the Falkland Escarpment is formed of several superposed velocity cores that convey waters of different origins: Lower Circumpolar Deep Water (LCDW), Southeast Pacific Deep Water (SPDW), and Weddell Sea Deep Water (WSDW).Different routes followed by the WSDW upstream of, and through, the Georgia Basin, lead to distinctions between the Lower-WSDW (σ4>46.09) and the Upper-WSDW (46.04<σ4 <46.09). The Lower-WSDW flows along the South Sandwich Trench, then cyclonically in the main trough of the Georgia Basin. Although a fraction escapes northward to the Argentine Basin, a comparison of the WOCE data with those from previous programmes shows that this component had disappeared from the southwestern Argentine Basin in 1993/1994. This corroborates previous results using SAVE and pre-SAVE data. A part of the Upper-WSDW, recognizable from different θ–S characteristics, flows through the Scotia Sea, then in the Georgia Basin along the southern front of the Antarctic Circumpolar Current. Northward leakage at this front is expected to feed the Argentine Basin through the northern Georgia Basin. The SPDW is originally found to the south of the Polar Front (PF) in Drake Passage. The northward veering of this front allows this water to cross the North Scotia Ridge at Shag Rocks Passage. It proceeds northward to the Argentine Basin around the Maurice Ewing Bank. The LCDW at the Falkland Escarpment is itself subdivided in two cores, of which only the denser one eventually underrides the North Atlantic Deep Water (NADW) in the Atlantic Ocean. This fraction is from the poleward side of the PF in Drake Passage. It also crosses the North Scotia Ridge at Shag Rocks Passage, then flows over the Falkland Plateau into the Atlantic. The lighter variety, from the northern side of the PF, is thought to cross the North Scotia Ridge at a passage around 55°W. It enters the Argentine Basin in the density range of the NADW.  相似文献   

13.
A set of multi-channel seismic profiles (∼15,000 km) is used to study the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge, below the upper parts of the continental rise, herein termed the Cosmonaut Sea Wedge. The wedge is situated stratigraphically below the inferred glaciomarine section and extends for at least 1,200 km along the continental margin with a width that ranges from 80 to about 250 km. The morphology of the wedge and its associated depositional features indicate a complex depositional history, where the deep marine depositional sites were influenced by both downslope and alongslope processes. This interaction resulted in the formation of several proximal depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits indicates that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems. The wide spectrum of depositional geometries in the stratigraphic column reflects dramatic variations in sediment supply from the continental margin as well as varying interaction between downslope and alongslope processes.  相似文献   

14.
The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.  相似文献   

15.
The distribution of seismic units in deposits of the basins near the Antarctic–Scotia plate boundary is described based on the analysis of multichannel seismic reflection profiles. Five main seismic units are identified. The units are bounded by high-amplitude continuous reflectors, named a to d from top to bottom. The two older units are of different age and seismic facies in each basin and were generally deposited during active rifting and seafloor spreading. The three youngest units (3 to 1) exhibit, in contrast, rather similar seismic facies and can be correlated at a regional scale. The deposits are types of contourite drift that resulted from the interplay between the northeastward flow of Weddell Sea Bottom Water (WSBW) and the complex bathymetry in the northern Weddell Sea, and from the influence of the Antarctic Circumpolar Current and the WSBW in the Scotia Sea. A major paleoceanographic event was recorded by Reflector c, during the Middle Miocene, which represents the connection between the Scotia Sea and the Weddell Sea after the opening of Jane Basin. Unit 3 (tentatively dated ∼Middle to Late Miocene) shows the initial incursions of the WSBW into the Scotia Sea, which influenced a northward progradational pattern, in contrast to the underlying deposits. The age attributed to Reflector b is coincident with the end of spreading at the West Scotia Ridge (∼6.4 Ma). Unit 2 (dated ∼Late Miocene to Early Pliocene) includes abundant high-energy, sheeted deposits in the northern Weddell Sea, which may reflect a higher production of WSBW as a result of the advance of the West Antarctic ice-sheet onto the continental shelf. Reflector a represents the last major regional paleoceanographic change. The timing of this event (∼3.5–3.8 Ma) coincides with the end of spreading at the Phoenix–Antarctic Ridge, but may be also correlated with global events such as initiation of the permanent Northern Hemisphere ice-sheet and a major sea level drop. Unit 1 (dated ∼Late Pliocene to Recent) is characterized by abundant chaotic, high-energy sheeted deposits, in addition to a variety of contourites, which suggest intensified deep-water production. Units 1 and 2 show, in addition, a cyclic pattern, more abundant wavy deposits and the development of internal unconformities, all of which attest to alternating periods of increased bottom current energy.  相似文献   

16.
Seismoacoustic investigations with a high-resolution parametric echo-sounder “SES 2000 deep” carried out on cruises 33, 35, and 37 of the R/V Akademik Ioffe revealed several erosional-depositional contourite systems on the São Paulo Plateau escarpment and its toe in the South Atlantic. Two contourite terraces related to interfaces between different water masses are observable on the escarpment. These terraces presumably reflect the activity of internal waves and turbulent eddies. The São Paulo contourite channel and genetically related drift are traceable along the escarpment toe. Changes in planktonic foraminiferal assemblages in Core AI-2563 retrieved from the summit of the São Paulo contourite drift suggest a shallowing of the Weddell Sea Deep Water mass during glacial times. It is established that the contour current of the Weddell Sea Deep Water and Lower Circumpolar Water considerably affect the formation of contourite depositional systems on the escarpment and its toe.  相似文献   

17.
A multibeam bathymetric and high- (airgun and sparker) to very high-resolution (Topas) seismic study of the western slope of Hatton Bank (NE Atlantic), located between 600 m and 2,000 m water depth, has revealed a highly variable range of current-controlled morphological features. Two major seabed areas can be distinguished: (1) a non-depositional area corresponding to the top of the bank and (2) a depositional area in which the Hatton Drift has developed. Both areas are characterised by distinct morphologies associated either with rock outcrops and rocky ridges or with smooth surfaces, slides and bedforms controlled mainly by bottom currents interacting with the topography of the bank. The water depth separating the morphological areas probably coincides with the boundary of the Labrador Sea Water and the Lower Deep Water. Morphological features identified in the study area include contourite channels (moats, furrows and scours), fields of sediment waves, edges of contourite deposits, ponded deposits, scarps, gullies, ridges, depressions, slides and slide scars. These morphological features do not necessarily reflect present-day conditions but may have been associated with past current events, consistent with earlier interpretations.  相似文献   

18.
南极半岛周边海域水团及水交换的研究   总被引:1,自引:1,他引:0  
利用中国第34次南极考察于2018年1–2月在南极半岛周边海域获得的温盐、海流现场观测数据,分析了调查区域主要水团及水交换特征。结果表明,观测区域内主要存在南极表层水、绕极深层水、暖深层水、南极底层水、布兰斯菲尔德海峡底层水。威德尔海的暖深层水、威德尔海深层水通过南奥克尼海台东侧的奥克尼通道、布鲁斯通道和南奥克尼海台西侧的埃斯佩里兹通道进入斯科舍海,其中奥克尼通道的深层海流最强,流速最大可达0.25 m/s,密度较大的威德尔海深层水可以通过此通道进入斯科舍海;布鲁斯通道海流流速约为0.13 m/s,通过此通道的暖深层水位势温度较高;埃斯佩里兹通道海流流速约为0.10 m/s,通过此通道的暖深层水位势温度最低,威德尔海深层水密度最小。在南奥克尼海台东西两侧均观测到南向和北向的海流,但整体上来看,向北的海流和水交换更强。水体进入斯科舍海后,沿着南斯科舍海岭的北侧向西北方向流动,流速约为0.21 m/s。德雷克海峡中的南极绕极流仅有一部分向东进入斯科舍海南部海域,且受到向西流动的暖深层水、威德尔海深层水的影响,斯科舍海南部海域的绕极深层水明显比德雷克海峡中绕极深层水的高温高盐性质弱;受到南极绕极流的影响,南斯科舍海岭北侧的威德尔海深层水比南侧暖。南斯科舍海岭上的水体可能受到北侧绕极深层水、暖深层水,西侧陆架水,东侧冬季水的影响,因此海岭上水体结构较为复杂。  相似文献   

19.
We use hydrographic data collected during two interdisciplinary cruises, CIEMAR and BREDDIES, to describe the mesoscale variability observed in the Central Basin of the Bransfield Strait (Antarctica). The main mesoscale feature is the Bransfield Front and the related Bransfield Current, which flows northeastward along the South Shetland Island Slope. A laboratory model suggests that this current behaves as a gravity current driven by the local rotation rate and the density differences between the Transitional Zonal Water with Bellingshausen influence (TBW) and the Transitional Zonal Water with Weddell Sea influence (TWW). Below the Bransfield Front we observe a narrow (10 km wide) tongue of Circumpolar Deep Water all along the South Shetland Islands Slope. At the surface, the convergence of TBW and TWW leads to a shallow baroclinic front close to the Antarctic Peninsula (hereafter Peninsula Front). Between the Bransfield Front and the Peninsula Front we observe a system of TBW anticyclonic eddies, with diameters about 20 km that can reach 300 m deep. This eddy system could be originated by instabilities of the Bransfield Current. The Bransfield Current, the anticyclonic eddy system, the Peninsula Front and the tongue of Circumpolar Deep Water, are the dynamically connected components of the Bransfield Current System.  相似文献   

20.
The circulation and transport of Antarctic Bottom Water (σ4<45.87) in the region of the Vema Channel are studied along three WOCE hydrographic lines, the geostrophic velocities referenced to previously published direct current measurements. The primary supply of water to the deep Vema Channel is from the Argentine Basin's deep western boundary current, with no indication of an inflow from the southeast. In the northern Argentine Basin, detachment of lower North Atlantic Deep Water from the continental slope is associated with a deep thermohaline front near 34°S. To the north of this front, the upper part of the AABW bound for the Vema Channel (σ4<46.01) exhibits a significant NADW influence. Further modification of the throughflow water occurs near 30°30′S, where the channel orientation changes by ∼50°. Southward flow of bottom water on the eastern flank of the Vema Channel, amounting to ∼1.5 Sv, represents a significant countercurrent to the deep channel transport. Inclusion of this countercurrent reduces the net flow of AABW through the Vema Channel from 3.2±0.7 to 1.7±1.1 Sv. Water properties imply that the near-zero net flow over the Santos Plateau results from a near-closed cyclonic circulation fed by the deep Vema Channel throughflow. A disruption of the northward boundary current in the upper AABW (lower circumpolar water) is required by this flow pattern. The extension of the cyclonic circulation on the Santos Plateau enters the Brazil Basin as a ∼1 Sv flow distinct from the outflow in the Vema Channel Extension (6.2 Sv). The high magnitude of the latter suggests a southward recirculation of bottom water near the western boundary to the north of the region of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号