首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The seafloor morphology and the subsurface of the continental slope of the Olbia intraslope basin located along the eastern, passive Sardinian margin (Tyrrhenian Sea) has been mapped through the interpretation of high-resolution multibeam bathymetric data, coupled with air-gun and sparker seismic profiles. Two areas, corresponding to different physiographic domains, have been recognized along the Olbia continental slope. The upper slope domain, extending from 500 to 850 m water depth, exhibits a series of conical depressions, interpreted as pockmarks that are particularly frequent in seafloor sectors coincident with buried slope channels. In one case, they are aligned along a linear gully most likely reflecting the course of one of the abandoned channels. The location of the pockmarks thus highlights the importance of the distribution of lithologies within different sedimentary bodies in the subsurface in controlling fluid migration plumbing systems. A linear train of pockmarks is, however, present also away from the buried channels being related to a basement step, linked to a blind fault. Two bathymetric highs, interpreted as possible carbonate mounds, are found in connection with some of the pockmark fields. Although the genetic linkage of the carbonate mounds with seafloor fluid venting cannot be definitively substantiated by the lack of in situ measurements, the possibility of a close relationship is here proposed. The lower slope domain, from 850 m down to the base of the slope at 1,200 m water depth is characterized by a sudden gradient increase (from 2° to 6°) that is driven by the presence of the basin master fault that separates the continental slope from the basin plain. Here, a series of km-wide headwall scars due to mass wasting processes are evident. The landslides are characterized by rotated, relatively undeformed seismic strata, which sometimes evolve upslope into shallow-seated (less than 10 m), smaller scale failures and into headless chutes. Slope gradient may act as a major controlling factor on the seafloor instability along the Olbia continental slope; however, the association of landslides with pockmarks has been recognized in several continental slopes worldwide, thus the role of over-pressured fluids in triggering sediment failure in the Olbia slope can not be discarded. In the absence of direct ground truthing, the geological processes linked to subsurface structures and their seafloor expressions have been inferred through the comparison with similar settings where the interpretation of seafloor features from multibeam data has been substantiated with seafloor sampling and geochemical data.  相似文献   

2.
The complex fluvial sandstones of the Triassic Skagerrak Formation are the host reservoir for a number of high-pressure, high-temperature (HPHT) fields in the Central Graben, North Sea. All the reservoir sandstones in this study comprise of fine-grained to medium-grained sub-arkosic to arkosic sandstones that have experienced broadly similar burial and diagenetic histories to their present-day maximum burial depths. Despite similar diagenetic histories, the fluvial reservoirs show major variations in reservoir quality and preserved porosity. Reservoir quality varies from excellent with anomalously high porosities of up to 35% at burial depth of >3500 m below seafloor to non-economic with porosities <10% at burial depth of 4300 m below seafloor.This study has combined detailed petrographic analyses, core analysis and pressure history modelling to assess the impact of differing vertical effective stresses (VES) and high pore fluid pressures (up to 80 MPa) on reservoir quality. It has been recognised that fluvial channel sandstones of the Skagerrak Formation in the UK sector have experienced significantly less mechanical compaction than their equivalents in the Norwegian sector. This difference in mechanical compaction has had a significant impact upon reservoir quality, even though the presence of chlorite grain coatings inhibited macroquartz cement overgrowths across all Skagerrak Formation reservoirs. The onset of overpressure started once the overlying Chalk seal was buried deeply enough to form a permeability barrier to fluid escape. It is the cumulative effect of varying amounts of overpressure and its effect on the VES history that is key to determining the reservoir quality of these channelised sandstone units. The results are consistent with a model where vertical effective stress affects both the compaction state and subsequent quartz cementation of the reservoirs.  相似文献   

3.
Seismic coherency measures, such as similarity and dip of maximum similarity, were used to characterize mass transport deposits (MTDs) in the Ulleung Basin, East Sea, offshore Korea. Using 2-D and 3-D seismic data several slope failure masses have been identified near drill site UBGH1-4. The MTDs have a distinct seismic character and exhibit physical properties similar to gas hydrate bearing sediment: elevated electrical resistivity and P-wave velocity. Sediments recovered from within the MTDs show a reworked nature with chaotic assemblage of mud-clasts. Additionally, the reflection at the base of MTDs is polarity reversed relative to the seafloor, similarly to the bottom-simulating reflector commonly used to infer the presence of gas hydrates. The MTDs further show regional seismic blanking (absence of internal reflectivity), which is yet another signature often attributed to gas hydrate bearing sediments. At the drill site UBGH1-4, no gas hydrate was recovered in sediment-cores from inside a prominent MTD unit. Instead, pore-filling gas hydrate was recovered only within thin turbidite sand layers near the base of the gas hydrate stability zone. With the analysis of seismic attributes, the seismic character of the prominent MTD (Unit 3) was investigated. The base of the MTD unit exhibits deep grooves interpreted as gliding tracks from either outrunner blocks or large clasts that were dragged along the paleo-seafloor. Similar seismic features were identified on the seafloor although the length of the gliding tracks on the seafloor is much shorter (a few hundred meters to ∼1 km), compared to over 10 km long tracks at the base of the MTD. The seismic coherency attributes allowed to estimate the volume of the failed sediment as well as the direction of the flow of sediment. Tracking the MTD and extrapolating its spatial extent from the 3-D seismic volume to adjacent 2-D seismic profiles, a possible source region of this mass failure was defined ∼50 km upslope of Site UBGH1-4.  相似文献   

4.
Three wells, all offshore, in southern Alaska studied using apatite fission track dating make a transect southward from Lower Cook Inlet to the Kodiak Shelf and include ARCO Lower Cook Inlet COST #1 well (LCI well), Chevron OCS-0248 #1A well (Shelikof Strait), and Kodiak COST KSSD #1 OCS 77-1 well (Stevenson Basin, Kodiak). The ages of deep partially annealed samples from Lower Cook Inlet well suggest that the region cooled between ~100 and 75 Ma and or sometime after. Two scenarios are presented: (1) maximum heating before cooling in Late Creta ceous times and (2) maximum heating before cooling during mid-Tertiary times. Which is better is uncertain from the thermal and age data alone, but mid-Tertiary or later uplift, erosion, and cooling is preferred because data from Shelikof well suggests that the mid-Cretaceous unconformity was minor relative to the mid-Tertiary unconformity. Finally, because of the ~12 C warmer past than present bottom-hole temperature, the base of the LCI well is now ~500 m shallower than during maximum, burial (12 C/24 C/km geothermal gradient). Single-grain apatite fission track ages (20-25 Ma) from deep in the Shelikof well approach the age of the overlying mid-Tertiary (Miocene; ~23 Ma) unconform ity, suggesting significant and rapid exhumation. This suggests that strongly annealed, once deeply buried strata were uplifted and cooled quickly prior to onlap of the unconformity. The Miocene unconformity, therefore, is interpreted to be the major unconformity in the Shelikof well section. In this scenario the section was buried deepest, and was therefore hottest, until the onset of mid-Tertiary erosion. Approximately 665 m of late Tertiary and Quaternary strata have since been deposited in Shelikof Strait and have reburied the Shelikof section to within ~536 m of its original maximum burial depth. Including modern water depth, the Shelikof well section has experienced ~1 km of burial+submergence since ~25 Ma (832 m section+166 m water=998 m). It follows that the depth to the base of the well is now ~290 m shallower than it would have been during maximum burial. Single-grain apatite fission track ages deep in the Kodiak KSSD1 well are as young as 20-25 Ma and approach the age of overlap of a mid-Miocene regional unconformity (<23 Ma). The deepest Eocene samples were exhumed to within 574 m of the Miocene unconformity surface during Miocene time and were reburied by ~1.7 km of late Tertiary strata. The total section before exhumation was ~5 km; this suggests that Oligocene-age deposits may have existed in the Stevenson Basin. Together with the known Eocene strata, such deposits were exhumed during ~4.4 km of uplift and erosion during a short interval culminating in early to middle Miocene times (>25-23 Ma). Unique and anomalous apatite compositions (high F-, low Cl-, moderate OH-) from the Eocene section could provide a chemical tracer for determining their sediment source along the northeast Pacific rim prior to translation and accretion.  相似文献   

5.
Mass-wasting on the Brazilian margin during the Mid-Eocene/Oligocene resulted in the accumulation of recurrent Mass Transport Deposits (MTDs) offshore Espírito Santo, SE Brazil. In this paper, we use three-dimensional seismic data to characterize a succession with stacked MTDs (Abrolhos Formation), and to assess the distribution of undeformed stratigraphic packages (i.e. turbidites) with reservoir potential separating the interpreted MTDs. High-amplitude strata in less deformed areas of MTDs reflect their internal heterogeneity, as well as possible regions with a higher sand content. Separating MTDs, turbiditic intervals reach 100 ms Two-Way Travel Time (TWTT), with thicker areas coincident with the flanks of growing diapirs and areas of the basin where mass-wasting is less apparent. Turbiditic strata laterally grade into, or are eroded by MTDs, with transitional strata between MTDs and turbidites being also influenced by the presence of diapirs. MTDs show average thickness values ranging from 58 to 82 ms TWTT and constitute over 50% of Eocene-Oligocene strata along the basin slope. Low average accumulations of 58 ms TWTT in areas of high confinement imposed by diapirs suggest sediment accumulation upslope, and/or bypass into downslope areas. This character was induced by the high sediment input into the basin associated with coastal erosion and growth of the Abrolhos volcanic plateau. Our results suggest that significant amounts of sediment derive from the northwest, and were accumulated in the middle-slope region. Interpretations of (palaeo)-slope profiles led to the establishment of a model of margin progradation by deposition of MTDs, contrasting with the retrogressive erosional margins commonly associated with these settings.  相似文献   

6.
The Mississippian Barnett Shale (Texas, USA), consisting of organic-rich shales and limestones, hosts the largest gas fields of North America. This study examines sealed fractures from core and outcrop samples of the Barnett Shale of the Fort Worth Basin and aims to: 1) characterize the phases occurring in the fractures from samples having experienced different burial histories; 2) establish a paragenetic sequence to relate the timing of fracture origin and sealing with the burial history of the basin; and 3) contribute to the understanding of the mechanisms of fracture formation in shales, including overpressure origin.Four fracture generations were distinguished in the most deeply buried core samples by characterizing the sealing minerals petrographically and geochemically. The generations were inserted into the framework of a reconstructed burial history for the Fort Worth Basin, which allowed a time sequence for fracture development to be established. This in turn allowed inference of conditions of fracture development, and consideration of fracture mechanisms as well as the origin of the parent fluids of sealing minerals.Type 1 fractures formed during early mechanical compaction (at a few 10 s to 100 m of depth) of still not fully cemented sediments. Type 2 fractures formed during moderate burial (∼2 km), from slightly modified seawater. Their timing is consistent with overpressure generated during rapid deposition and differential compaction of Pennsylvanian lithologies during the onset of the Ouachita compressional event. Type 3 fractures formed during deep burial (>3 km) from silica-rich basinal brines possibly derived from clay diagenesis. Type 4 fractures formed at very deep burial (>4 km), from hot and 18O-rich fluids, carrying light oil (20-30 API) and record the opening of the fluid system after hydrocarbon migration.Differences are highlighted between the timing and thermal regimes under which fractures formed in Barnett lithologies from different areas of the basin, this suggesting that extrapolation of outcrop observations to subsurface must be used with due care.  相似文献   

7.
A detailed laboratory study of 53 sandstone samples from 23 outcrops and 156 conventional core samples from the Maastrichtian-Paleocene Scollard-age fluvial strata in the Western Canada foredeep was undertaken to investigate the reservoir characteristics and to determine the effect of diagenesis on reservoir quality. The sandstones are predominantly litharenites and sublitharenites, which accumulated in a variety of fluvial environments. The porosity of the sandstones is both syn-depositional and diagenetic in origin. Laboratory analyses indicate that porosity in sandstones from outcrop samples with less than 5% calcite cement averages 14%, with a mean permeability of 16 mD. In contrast, sandstones with greater than 5% calcite cement average 7.9% porosity, with a mean permeability of 6.17 mD. The core porosity averages 17% with 41 mD permeability. Cementation coupled with compaction had an important effect in the destruction of porosity after sedimentation and burial. The reservoir quality of sandstones is also severely reduced where the pore-lining clays are abundant (>15%). The potential of a sandstone to serve as a reservoir for producible hydrocarbons is strongly related to the sandstone’s diagenetic history. Three diagenetic stages are identified: eodiagenesis before effective burial, mesodiagenesis during burial, and telodiagenesis during exposure after burial. Eodiagenesis resulted in mechanical compaction, calcite cementation, kaolinite and smectite formation, and dissolution of chemically unstable grains. Mesodiagenesis resulted in chemical compaction, precipitation of calcite cement, quartz overgrowths, and the formation of authigenic clays such as chlorite, dickite, and illite. Finally, telodiagenesis seems to have had less effect on reservoir properties, even though it resulted in the precipitation of some kaolinite and the partial dissolution of feldspar.  相似文献   

8.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   

9.
The right-lateral Blanco Transform Fault Zone (BTFZ) offsets the Gorda and the Juan de Fuca Ridges along a 350 km long complex zone of ridges and right-stepping depressions. The overall geometry of the BTFZ is similar to several other oceanic transform fault zones located along the East Pacific Rise (e.g., Siquieros) and to divergent wrench faults on continents; i.e., long strike-slip master faults offset by extensional basins. These depressions have formed over the past 5 Ma as the result of continual reorientation of the BTFZ in response to changes in plate motion. The central depression (Cascadia Depression) is flanked by symmetrically distributed, inward-facing back-tilted fault blocks. It is probably a short seafloor spreading center that has been operating since about 5 Ma, when a southward propagating rift failed to kill the last remnant of a ridge segment. The Gorda Depression on the eastern end of the BTFZ may have initially formed as the result of a similar occurrence involving a northward propagating rift on the Gorda ridge system. Several of the smaller basins (East Blanco, Surveyor and Gorda) morphologically appear to be oceanic analogues of continental pull-apart basins. This would imply diffuse extension rather than the discrete neovolcanic zone associated with a typical seafloor spreading center. The basins along the western half of the BTFZ have probably formed within the last few hundred thousands years, possibly as the result of a minor change in the Juan de Fuca/Pacific relative motion.  相似文献   

10.
Igneous rocks in the northern margin of the South China Sea (SCS) have been identified via high resolution multi-channel seismic data in addition to other geophysical and drilling well data. This study identified intrusive and extrusive structures including seamounts and buried volcanoes, and their seismic characteristics. Intrusive features consist of piercement and implicit-piercement type structures, indicating different energy input associated with diapir formation. Extrusive structures are divided into flat-topped and conical-topped seamounts. Three main criteria (the overlying strata, the contact relationship and sills) were used to distinguish between intrusive rocks and buried volcanos. Three criteria are also used to estimate the timing of igneous rock formation: the contact relationship, the overlying sedimentary thickness and seismic reflection characteristics. These criteria are applied to recognize and distinguish between three periods of Cenozoic magmatism in the northern margin of the SCS: before seafloor spreading (Paleocene and Eocene), during seafloor spreading (Early Oligocene–Mid Miocene) and after cessation of seafloor spreading (Mid Miocene–Recent). Among them, greater attention is given to the extensive magmatism since 5.5 Ma, which is present throughout nearly all of the study area, making it a significant event in the SCS. Almost all of the Cenozoic igneous rocks were located below the 1500 m bathymetric contour. In contrast with the wide distribution of igneous rocks in the volcanic rifted margin, igneous rocks in the syn-rift stage of the northern margin of the SCS are extremely sporadic, and they could only be found in the southern Pearl River Mouth basin and NW sub-sea basin. The ocean–continent transition of the northern SCS exhibits high-angle listric faults, concentrated on the seaward side of the magmatic zone, and a sharply decreased crust, with little influence from a mantle plume. These observations provide further evidence to suggest that the northern margin of the SCS is a magma-poor rifted margin.  相似文献   

11.
琼东南盆地第四纪块体搬运体系的地震特征   总被引:4,自引:0,他引:4  
第四纪以来,琼东南盆地的陆坡区域广泛发育深水块体搬运体系。深水块体搬运体系是广泛发生在外陆架/上陆坡的一种沉积物搬运机制,包括滑动、滑塌和碎屑流等重力流作用过程。利用深水3D地震资料,提取振幅和相干数据,通过地震剖面、构造图和时间切片分析,揭示块体搬运体系具有丘状外形、波状反射结构、弱振幅和连续性差的地震特征,内部整体比较杂乱,主体发育褶皱,趾部发育逆冲断层,具有塑性流体特征。结合南海构造背景分析,认为研究区第四纪沉积速率高并位于地震多发带,构成了块体搬运体系的形成条件和触发机制。  相似文献   

12.
This study investigates the distribution and evolution of seafloor seepage in the vicinity of the salt front, i.e., the seaward boundary of salt-induced deformation in the Lower Congo Basin (LCB). Seafloor topography, backscatter data and TV-sled observations indicate active fluid seepage from the seafloor directly at the salt front, whereas suspected seepage sites appear to be inactive at a distance of >10 km landward of the deformation front. High resolution multichannel seismic data give detailed information on the structural development of the area and its influence on the activity of individual seeps during the geologic evolution of the salt front region. The unimpeded migration of gas from fan deposits along sedimentary strata towards the base of the gas hydrate stability zone within topographic ridges associated with relatively young salt-tectonic deformation facilitates seafloor seepage at the salt front. Bright and flat spots within sedimentary successions suggest geological trapping of gas on the flanks of mature salt structures in the eastern part of the study area. Onlap structures associated with fan deposits which were formed after the onset of salt-tectonic deformation represent potential traps for gas, which may hinder gas migration towards seafloor seeps. Faults related to the thrusting of salt bodies seawards also disrupt along-strata gas migration pathways. Additionally, the development of an effective gas hydrate seal after the cessation of active salt-induced uplift and the near-surface location of salt bodies may hamper or prohibit seafloor seepage in areas of advanced salt-tectonic deformation. This process of seaward shifting active seafloor seepage may propagate as seaward migrating deformation affects Congo Fan deposits on the abyssal plain. These observations of the influence of the geologic evolution of the salt front area on seafloor seepage allows for a characterization of the large variety of hydrocarbon seepage activity throughout this compressional tectonic setting.  相似文献   

13.
Rock physical properties, like velocity and bulk density, change as a response to compaction processes in sedimentary basins. In this study it is shown that the velocity and density in a well defined lithology, the shallow marine Etive Formation from the northern North Sea increase with depth as a function of mechanical compaction and quartz cementation. Physical properties from well logs combined with experimental compaction and petrographic analysis of core samples shows that mechanical compaction is the dominant process at shallow depth while quartz cementation dominates as temperatures are increased during burial. At shallow depths (<2000–2500 m, 70–80 °C) the log derived velocities and densities show good agreement with results from experimental compaction of loose Etive sand indicating that effective stress control compaction at these depths/temperatures. This indicates that results from experimental compaction can be used to predict reservoir properties at burial depths corresponding to mechanical compaction. A break in the velocity/depth gradient from about 2000 m correlates with the onset of incipient quartz cementation observed from petrographic data. The gradient change is caused by a rapid grain framework stiffening due to only small amounts of quartz cement at grain contacts. At temperatures higher than 70–80 °C (2000–2500 m) the velocities show a strong correlation with quartz cement amounts. Porosity reduction continues after the onset of quartz cementation showing that sandstone diagenesis is insensitive to effective stress at temperatures higher than 70–80 °C. The quartz cement is mainly sourced from dissolution at stylolites reflected by the fact that no general decrease in intergranular volume (IGV) is observed with increasing burial depth. The IGV at the end of mechanical compaction will be important for the subsequent diagenetic development. This study demonstrates that mechanical compaction and quartz cementation is fundamentally different and this needs to be taken into consideration when analyzing a potential reservoir sandstone such as the Etive Formation.  相似文献   

14.
The possibility of naval mines buried in the seafloor poses difficulties for navies concerned with port and seaway operations. To devise countermeasures, predictions of degrees of impact burial over wide areas of seabed must be made. Under ideal conditions, this is done with a knowledge of local seabed shear strengths, but in practice, such data are rarely available.

We describe an alternative prediction method. Probabilistic predictions of mine impact burial are made across areas of variable seafloor by combining data on sedimentary character directly with experimental impact burial results. The most useful seafloor characteristics are mud content and consolidation. The predictions are relatively accurate (SD 1–22%), and are computable in detail over wide geographic areas. They are of a form immediately useful for naval operations (including calculations of risk) and are easily displayed in geographic information systems (GIS). An example is shown for the northern Gulf of Mexico.  相似文献   

15.
在辽河盆地中,海月潜山是一个典型的、由下古生界碳酸盐岩组成的规模较大的潜山。通过对海月潜山的地层、构造和构造应力场等分析,得出潜山西北边缘有一个裂缝发育带和潜山内4个较强的张应力区和张扭应力区,正好与4个构造圈闭吻合,它们是油气储集区.并发现潜山顶部局部保留有残留古风化壳,风化壳中网状裂缝是重要的油气储集空间。这些表明海月潜山是一个具有勘探潜力和油气远景的潜山区,它是我国东部中、新生代含油气盆地之下潜山油气藏勘探的一个很好范例。  相似文献   

16.
Fluid flow in fractures and host rocks has been investigated in shallow buried Miocene alluvial fan deposits. A structural, petrographical (optical, CL, SE microscopes and XRD) and geochemical (microprobe and δ18O-δ13C stable isotopes) study has been performed in normal faults affecting Serravalian-Tortonian siliciclastic rocks of the Vallès-Penedès basin. These faults formed during the development of the Vallès-Penedès fault-related syncline, which caused the rotation of the earliest fractures. Faulting occurred continuously before, during and after host rock cementation. Rocks affected by faulting are represented by clay-rich gouges, which formed thanks to the high phyllite clast content within the otherwise clean and mature sandstones and conglomerates. Despite the low permeability of these rocks, cross-fault and fault-parallel fluid flows occurred in most of the faults.Host rocks and veins were cemented by two generations of calcite, i.e. Cc1 and Cc2. Cc1 precipitated from meteoric waters at shallow burial conditions whereas Cc2 precipitated from meteoric waters in a confined aquifer.Palygorskite has been identified in shear zones within the gouges indicating their later formation by interaction of Mg-rich fluids with previous smectites. These fluids probably derived from Miocene seawater expelled from the underlying Transitional–Marine Complex “TMC” by compaction.Sedimentation, fracturing and cementation occurred in a very short lapse time of about 6–7 Ma, between the Serravalian-Tortonian age of the sediments and the end of the extensional tectonics in the Vallès-Penedès fault (Pliocene).  相似文献   

17.
The possibility of naval mines buried in the seafloor poses difficulties for navies concerned with port and seaway operations. To devise countermeasures, predictions of degrees of impact burial over wide areas of seabed must be made. Under ideal conditions, this is done with a knowledge of local seabed shear strengths, but in practice, such data are rarely available.

We describe an alternative prediction method. Probabilistic predictions of mine impact burial are made across areas of variable seafloor by combining data on sedimentary character directly with experimental impact burial results. The most useful seafloor characteristics are mud content and consolidation. The predictions are relatively accurate (SD 1-22%), and are computable in detail over wide geographic areas. They are of a form immediately useful for naval operations (including calculations of risk) and are easily displayed in geographic information systems (GIS). An example is shown for the northern Gulf of Mexico.  相似文献   

18.
Biogenic gas was accidentally discovered and produced from the Plio/Pleistocene formation of the Hsinying gas field in southwestern Taiwan in 1989. A stratigraphic trapping mechanism related to the evolution of submarine canyon systems in the Plio-Peistocene foreland basin has been proposed in a previous study which explained underestimated recoverable gas reserve before drilling. To verify this shallow gas exploration hypothesis and to systematically evaluate the biogenic gas generation and entrapment potential of the submarine canyon systems, seismic interpretation, high-resolution sequence stratigraphic interpretation, seismic attribute analysis and geochemical analysis were performed and integrated in this study. Twenty-nine submarine canyons mapped mainly trend in a NE direction, except the NW trending Eurchungchi submarine canyons located near the Chiali paleo-high. Bright seismic amplitudes were often observed at the incised valley heads of the canyon systems. The shales located near the incised valley heads and deposited during flooding stage possess the highest biogenic gas generation potential, as canyon fill reveals the second highest. Due to the high sediment accumulation rate in the foreland basin, organic matter in such a depositional environment tends to become diluted. A Class III AVO anomaly, inverted impedance lower than 4.7 e + 6 kg/M3*M/S and A/B (the ratio between the target horizon amplitude and the RMS amplitude from the background strata) greater than 1.78 were identified as valid direct gas indicators as sand is buried shallower than 1000 m. Class IV AVO anomaly and A/B greater than 1.4 were concluded to be the indicators of gas sand in the case that sand is buried deeper than 1600 m. Based on the results of sequence stratigraphic interpretation and the consistency between spatial geometries of seismic attributes and those of the submarine canyons, a stratigraphic trap associated with the incised valley heads was concluded to be the original gas entrapment style of the Hsinying and the Kuantian gas fields. Biogenic gas migrated after being trapped startigraphically, hence contributing to the present-day gas field structure. Due to the prevalent erosional features of the submarine canyons on the time structural maps, different types of stratigraphic traps formed in combination with faults and submarine canyons can be recognized easily.  相似文献   

19.
The South China Sea formed by magma-poor, or intermediate volcanic rifting in the Paleogene. We investigate the structure of the continent-ocean transition (COT) at its southern margin, off NW Palawan between the continental blocks of Reed Bank and the islands of Palawan and Calamian. Several surveys, recorded by the BGR from 1979 to 2008, established a comprehensive database of regional seismic lines, accompanied with magnetic and gravity profiles.We interpret two major rifted basins, extending in the NE direction across the shelf and slope, separated by a structural high of non volcanic origin.The continent-ocean transition is interpreted at the seaward limit of the continental crust, when magnetic spreading anomalies terminate some 80-100 km farther north. The area in between displays extensive volcanism - as manifest by extrusions that occasionally reach and cut the seafloor, by dykes, and by presumed basaltic lava flows - occurring after break-up.The COT is highly variable along the NW Palawan slope: One type shows a distinct outer ridge at the COT with a steep modern seafloor relief. The other type is characterised by rotated fault blocks, bounded by listric normal faults ramping down to a common detachment surface. Half-grabens developed above a strongly eroded pre-rift basement. The seafloor relief is smooth across this other type of COT.We suggest the pre-rift lithospheric configuration had major influence on the formation of the COT, besides transfer zones. Volcanic domains, confined to the north of competent crustal blocks correlate with the style of the COT.Gravity modelling revealed an extremely thinned crust across the shelf. We propose a depth-dependent extension model with crust being decoupled from mantle lithosphere, explaining the discrepancy of subsidence observed across the South China Sea region.  相似文献   

20.
Triple mass-transport deposits(MTDs) with areas of 625, 494 and 902 km2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length(from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and threedimensional structure model diagram of the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号