首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

This article presents an experimental investigation on the dynamic consolidation (DC) drainage behavior of soft marine clays. A sinusoidal harmonic load with different frequencies was applied to simulate the DC method in which the conventional impact load was replaced by the cyclic load. Four geotextile-filter strips were used to form the side drainage channels simulating the wick drain method. A series of loading tests were conducted on soft soil specimens at different confining pressures (i.e., 20, 40, 70, and 100?kPa) and different vibration frequencies (i.e., 0, 0.5, 1, 1.5, 2, and 5?Hz). Test results showed that both confining pressure and frequency have significant influences on the drainage behavior of soft marine clay specimens. The magnitude of drainage volume consistently decreases linearly with increasing confining pressure. Compared to static loading condition, specimens under cyclic loading condition at different frequencies show a better drainage performance. Specimen at applied frequency of 1?Hz exhibits the maximum cumulative drainage volume due to the resonant effect.  相似文献   

2.
Abstract

Hollow cylinder torsional shear tests on loose isotropically and anisotropically consolidated calcareous sand were conducted to investigate the cyclic behavior under three different linear stress paths, including horizontal line, oblique line, and vertical line stress paths, in a coordinate system of the normal stress difference and the horizontal shear stress. The dominant strain components of the isotropically consolidated specimens are affected by the stress paths. With increasing consolidation stress ratio, axial strain gradually becomes the dominant strain component under the three different stress paths. The cyclic strength of the isotropically consolidated specimens under the three different stress paths are almost the same, while for the anisotropically consolidated specimens, the cyclic strengths are strongly affected by the stress paths. These results indicate that conventional cyclic triaxial tests may overestimate cyclic strength in some cases. Irrespective of the stress paths and cyclic stress ratios, the terminal residual excess pore pressure ratio decreases with increasing consolidation stress ratio. Moreover, an empirical equation is proposed to describe the relationship between the normalized shear work and the normalized residual excess pore pressure ratio. The comparative study reveals that the relationship proposed for silica sand is not suitable for the dynamic analyses of calcareous sand.  相似文献   

3.
Degradation in Cemented Marine Clay Subjected to Cyclic Compressive Loading   总被引:1,自引:0,他引:1  
The influence of cyclic loading on the strength and deformation behavior of cemented marine clay has been studied. This marine clay is of recent Pleistocene origin and deposited in a shallow water marine environment. Open pits were dug in sheeted enclosures and from these pits, undisturbed samples were taken for strength testing. A series of standard triaxial shear tests and stress controlled one-way cyclic load tests were conducted at consolidation stress ranges below and above the preconsolidation pressure. For the stress levels below the preconsolidation pressure, the cyclic loading has brought about the collapse of the cementation bond through an increase in strains, and at higher pressure ranges, the soil behaves like typical soft clay. This experiment studied the rate of development of strain and pore water pressure and shows that rate is a function of number of cycles, applied stress, and stress history. In addition, soil degradation during cyclic loading is studied in terms of Degradation Index. Attempt has been made to predict stain, pore water pressure, and degradation index through an empirical model.  相似文献   

4.
This paper describes a full-scale test on a very soft clay ground around 70,000?m2, which is conducted in Huizhou of Guangdong Province, China, to present a new method of vacuum preloading method. A novel moisture separator was developed, which can automatically regulate the vacuum pressure variation by changing the volume of the gas inside it. A large quantity of water drained by the proposed moisture separators can be directly used as a surcharge loading, which would shorten the ground improvement time and save costs as well. Three levels of silt-prevention prefabricated vertical drains were used in the treating process to accelerate the consolidation. In addition, the vacuum preloading method also included an effective radial drainage device which would strengthen the dredged soft clay fill in a deep layer. In the in situ test, tens of piezometers and settlement plates were installed to measure the variations of excess pore water pressures and settlement of two stages of observation points at different positions in the ground. The results show that the largest average consolidation settlement was 314.1?cm and made a saving of more than 66% in power consumption compared with traditional method. It demonstrates that this adopted method is an efficient, cost-effective, and environmentally friendly method for improving sites with low bearing capacity and high compressibility soils.  相似文献   

5.
ABSTRACT

The behavior of loose anisotropically consolidated calcareous sand obtained from an island in the South China Sea was investigated under undrained monotonic and cyclic loading in a hollow cylinder torsional apparatus. The tests were conducted on specimens which consolidated under various initial effective confining pressures and consolidation stress ratios. The monotonic test results show that the failure and phase transformation line are essentially independent of the consolidation conditions, while the initial contractive tendency of the specimens decreases with an increasing consolidation stress ratio. During monotonic loading of the anisotropically consolidated specimens, a same major principal stress direction is observed at the constant stress ratio lines up to the phase transformation line, irrespective of initial effective confining pressure. The cyclic strength of the sand increases with an increasing consolidation stress ratio. Moreover, a pronounced stress dependence is observed in the sand with higher consolidation stress ratio. During cyclic loading, the generated excess pore water pressure presents considerable fluctuations. The normalized terminal excess pore water pressure is described as a function of consolidation stress ratio. The tests show that the particle shape, rather than particle crushing, plays an important role in the monotonic and cyclic behaviors of the calcareous sand.  相似文献   

6.
Although the uplift behavior of offshore plate anchors under undrained conditions has been investigated well in the past, studies on the behavior of anchors under long-term sustained loading are in relatively few numbers. The time required for consolidation under sustained load is important because the shear strength of soil changes after dissipation of excess pore pressure. In this paper, small strain finite-element analyses have been performed to investigate the consolidation time history above and beneath strip anchors. The modified cam clay plasticity constitutive model is used for modeling coupled pore fluid stress analysis. The effects of magnitude of preloading with embedment level have been studied. As expected, the FE results have shown that excess pore pressure dissipation time for soil above the anchor increased with the increase in embedment depth and the magnitude of preload. Rapid dissipation of negative excess pore pressure beneath the anchor was observed with increasing embedment depth, if the preload magnitude is equal to or more than 60% of the undrained capacity. Observed consolidation responses are presented as nondimensional design charts and simplified equations for ease of practice.  相似文献   

7.
Use of Terzaghi's one-dimensional consolidation theory is not suitable for consolidation of highly deformable soft clays such as dredged soils. To model this condition, it is necessary to consider non-linear finite strain consolidation behavior, i.e., changes in compressibility and permeability with increasing stress. A one-dimensional non-linear finite strain numerical model, Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill (PSDDF), has been used to predict the stress-dependent settlement of fine-grained dredged materials. In this paper, two case studies of using PSDDF are discussed to illustrate the applicability and accuracy of PSDDF. The first case study involves PSDDF simulations of laboratory-phased placement of a marine clay dredged from Busan, Korea. PSDDF results are in good agreement with the corresponding results of the laboratory large strain consolidation tests. The other involves estimating the service life of the Craney Island Dredged Material Management Area near Norfolk, Virginia, in the United States. The excellent agreement between measured and calculated values shows that PSDDF is a reliable tool for predicting settlement of dredged material.  相似文献   

8.
The time-dependent feature of soft soils has gained intensive attraction in recent years. Due to the high water content and viscous property, the Hong Kong marine deposit (HKMD) frequently poses a challenge to geotechnical practice, particularly to the reclamation in Hong Kong. A key issue related to reclamation design, foundation construction and maintenance is excess settlement/deformation of the ground. Formation of HKMD typically goes through sedimentation and self-weight consolidation. A series of one-dimensional settling column consolidation tests, together with conventional oedometer tests were conducted on the HKMD. By normalizing parameter in settling stage, a unique global relationship of effective stress, σz′ and strain, ?z could be established. Results reveal that the settling curve and settling rate are significantly affected by the sediment concentration in self-weight consolidation. After the primary self-weight consolidation, the settling rate is reduced in the “secondary self-weight consolidation.”  相似文献   

9.
Conventional drainage consolidation methods cause significant energy consumption and environmental issues. In this paper, a method combining siphon drainage and surcharge loading is proposed to drain water from soft soil with vertically installed prefabricated vertical drains (PVDs) and a siphon tube. To investigate the availability and effectiveness of this method, a laboratory physical modeling test was conducted to investigate the drainage and consolidation behavior. The laboratory modeling test results of this method were compared with the calculated results of the ideal sand-drained ground consolidation method to clarify the advantages and mechanism of this method. Comparison results show that the pore pressure and settlement in the proposed method developed faster than the calculation results of ideal sand-drained consolidation theory. About 10?m thickness of unsaturated zone can be formed by siphon drainage which produce a surcharge loading effect on the soil below the flow profile. Drainage is a very slow process in soft soil, and siphon drainage can work continually. Siphon drainage combined with surcharge loading is potentially a good alternative to drain water from soft clay economically and environmentally.  相似文献   

10.
Quantitative laboratory studies on the structural behavior of natural intact marine clays require a large number of identical natural samples leading to an expensive and challenging task. This study proposes a simple method to reconstruct an artificial structured marine clay as the state of its natural intact clay at both macro and micro levels. For this purpose, the Shanghai marine clay is selected and mixed with low cement contents (1–6%). The clay-cement slurry is mixed in a container with the ice-covered sides at a low temperature about 0 ± 2 °C to postpone the hydration reactions until consolidation began. The purpose of adding cement is to generate the inter-particle bonding and structure in reconstituted samples. Initially, the reconstituted samples are consolidated under the in situ stress of 98 kPa and then under the pre-consolidation pressure of 50 kPa. Mechanical characteristics such as compression index, yield stress, unconfined compression strength, shear strength ratio, and the stress paths from triaxial tests are compared with natural intact clay accordingly. Scanning electron microscope and mercury intrusion porosimetry analyses are also performed to analyze the microstructure of clays for comparison. Furthermore, the proposed method is also examined by using natural intact marine clays of different locations and characteristics.  相似文献   

11.
选用近海分布广泛的粉土为研究对象,利用动三轴压缩试验结果得到了动荷载作用下粉土的应力-应变关系、孔压发展模式及动强度与临界循环次数之间的关系;探讨固结围压和固结比对粉土动力学性质的影响。动力学试验结果表明,动剪切模量随着固结围压的增大而增大,动阻尼比随动剪应变幅的变化关系受围压影响不大;不同围压对动剪应力的比值影响很小,同一围压下随着固结比的增大,动剪应力比也会随之增大;不同围压及不同固结比对以Nf表示的峰值孔隙水压力发展模式影响很小。  相似文献   

12.
Internal solitary wave(ISW) is often accompanied by huge energy transport, which will change the pore water pressure in the seabed. Based on the two-dimensional Biot consolidation theory, the excess pore water pressure in seabed was simulated, and the spatiotemporal distribution characteristics of excess pore water pressure was studied. As the parameters of both ISW and seabed can affect the excess pore water pressure, the distribution of pore water pressure showed both dissipation and phase lag...  相似文献   

13.
The design of sand mats should be reviewed on the basis of excess pore pressure behavior, which can be obtained by combining the characteristics of soft ground with the permeability of the mats. In this study, a banking model test was performed using dredged sand as the mat material to investigate the hydraulic gradient distribution of sand mats. The results were compared with numerical analysis results utilizing Terzaghi's one-dimensional consolidation equation. The results showed that the pore pressure was influenced by an increase in the amount of settlement at the central part of the sand mat as the height of the embankment increased. The measured decrease of the pressure head due to the residing water pressure in the sand mat was delayed compared to the numerical analysis results. Accordingly, sand mats should be laid to reduce the increased hydraulic gradient at the central part of the embankment.  相似文献   

14.
A Note on Soil Structure Resistance of Natural Marine Deposits   总被引:1,自引:1,他引:1  
It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure.  相似文献   

15.
华莹  周香莲  张军 《海洋通报》2017,36(6):644-651
基于广义Biot动力理论和Longuet-Higgins线性叠加模型,构建波浪-海床-管线动态响应的有限元计算模型,求解随机波作用下,多层砂质海床中管线周围土体孔隙水压力和竖向有效应力的分布。采用基于超静孔隙水压力的液化判断准则,得出液化区的最大深度及横向范围,从而判断海床土体液化情况。考虑海洋波浪的随机性,将海床视为多孔介质,海床动态响应计算模型采用u-p模式,孔隙水压力和位移视为场变量。并考虑孔隙水的可压缩性、海床弹性变形、土体速度、土体加速度以及流体速度的影响,忽略孔隙流体惯性作用。参数研究表明:土体渗透系数、饱和度以及有效波高等参数对海床土体孔隙水压力、竖向有效应力和液化区域分布有显著影响。  相似文献   

16.
This paper outlines the governing relationships of nonlinear finite strain consolidation. A short review of current literature is presented. Nonlinear finite strain consolidation theory is applied to the analysis of the slow deposition of Gulf of Mexico Holocene sediments. It is shown that the conventional means of calculating rates of sediment accumulation are highly inaccurate. It is further shown that the state of effective stress and excess pore-water pressure, as calculated by nonlinear finite strain theory, is substantially different than when calculated by conventional Terzaghi-Frohlich theory.  相似文献   

17.
Abstract

This paper presents a novel elasto-viscoplastic constitutive formulation based on the isotache concepts and the Nishihara model. Incorporating a novel viscoelastic body to include the delay elastic deformation of marine soft clays under the external load, the proposed model is used to evaluate the theories of consolidation-creep coupling, strain rate dependency and stress relaxation of saturated marine soft clays, and hence, the methodology used to determine the parameters of the model is discussed. Ningbo marine soft clay is selected as an example to interpret the determination of the model parameters on a field scale. A series of conventional oedometer tests are conducted as well. Eventually, we utilize the model to simulate several kinds of rheological tests, including one-dimensional (1-D) long-term compression tests on Ningbo marine soft clays, 1-D constant rate of strain (CRS) tests on Batiscan clays and 1-D stress relaxation tests on Hong Kong marine deposits. These findings indicate good agreement between the computational and experimental results, suggesting the given model can provide reliable forecasts for the rheological characteristics of marine soft clays.  相似文献   

18.
Difficulties in the prediction of time-distribution of consolidation settlement will be introduced by using the Murayama test embankment case of Japan. In particular, it will be discussed why the prediction of consolidation rate is difficult in multi-layered soil with complex and variable mechanical properties like organic soil or peat. It can be inferred that uncertainties, which are embedded intricately in the consolidation problem as well as given ground condition, would be major causes for consolidation settlement. After that, the author focused on the movement of pore water under the various conditions of hydraulic conductivity in the soils, and how it can affect the time-distribution of the consolidation settlement. For the applied key methodology on the consolidation settlement problem, we propose the hybrid consolidation simulation controlling the movement of pore water with high accuracy and, finally, the aim of this article is to discuss the methodological approaches obtained by the study, including the basic concept and accurate movement of pore water under various conditions of soil layers and hydraulic conductivity.  相似文献   

19.
Abstract

It has been observed that earthquake‐induced settlement depends on the excess pore water pressure accumulated during an earthquake. In particular, in the case where a clay layer is overconsolidated, excess pore water pressure is produced and settlement occurs by dissipation of the excess pore water pressure, which is very large in comparison with the coefficient of secondary compression. Therefore, if the settlement of clay ground induced by secondary compression becomes a serious problem, careful consideration of the earthquake‐induced settlement is needed. In this article, the settlement characteristics of a clay layer induced by cyclic shear are discussed, including the effects of loading period, the threshold shear strain below which no excess pore pressure or no settlement takes place, and the relationships between uniform shear strain cycles and irregular strain‐time histories. Then a calculation procedure for estimating the earthquake‐induced settlement is developed and applied to three soil profile cases, including the clay layers in Mexico City and Osaka Bay in Japan. In the case of a soil profile in Mexico City, settlements of about 0–3 cm are estimated and these values agree reasonably with the leveling results for the Mexico City earthquake of 1985. Furthermore, it is pointed out that the settlement induced by earthquakes is considerably affected by differences in the accelerograms.  相似文献   

20.
海洋井架结构非线性分析   总被引:2,自引:0,他引:2  
根据海洋钻井井架实际结构特点,建立弹性基础上的三维有限元模型.按9种工况对某井架的有限元模型进行加载,并且在传统线弹性理论基础上加以改进,考虑非线性P-△效应的影响.应用有限元分析软件StruCAD进行分析计算,给出可靠的计算结果;并且系统分析结构的受力特点和影响因素,得出对于井架这类高耸结构应该考虑P-△效应的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号