首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This paper documents and describes through the use of 3D seismic data a prolific mud volcano province within the Eastern Mediterranean. As many as 386 mud volcanoes were mapped within the post-salt succession of the western slope of the Nile Cone, offshore Egypt, using high resolution 3D seismic data. The mud volcanoes within this field display significant geometrical variability in diameter (c. 550 m to c. 5660 m), height (c. 25 m to c. 510 m) and volume (c. 0.1 km3 to c. 3.3 km3) and lie at depths ranging from c. > 6000 m subsea to c. 3100 m at the seafloor. A close spatial relationship between mud volcanoes and base-salt depressions and regions of anomalous thinning within the immediate pre-salt succession, combined with documented core samples taken from mud volcanoes within this region present a powerful argument for a pre-salt source of mud. 3D seismic interpretation and volumetric analysis of these mud volcanoes and their source region permit the definition and quantification of their depletion zones. A conceptual model for a dynamic liquefaction and sediment withdrawal process is proposed whereby mud is fed into a central conduit as the depletion zone propagates radially and episodically outwards resulting in a the formation of a concentric depletion zones. Prolonged mud volcanism within this region over the last ∼5.3 Ma implies the potential for long lived pre-salt overpressure and continued mud volcanism following the catastrophic hydrodynamic impact of the Messinian Salinity Crisis. It is suggested that the scale of mud volcanism means that this region should be considered as among the largest mud volcano provinces in the world.  相似文献   

2.
南海东北部陆坡天然气水合物区的滑塌和泥火山活动   总被引:2,自引:1,他引:1  
本文研究了南海东北部陆坡天然气水合物区滑塌和泥火山活动的特征及表现形式,探讨了滑塌和泥火山活动对天然气水合物成藏的影响,提出了滑塌主导和滑塌、泥火山共同作用两种控制模式。根据地震数据、浅层剖面和海底地形数据解释,将研究区划分为规则滑塌区和泥火山活动影响区,并识别出泥火山、泥火山脊、凹槽、凹坑等特征地形。滑塌和泥火山活动是陆坡天然气水合物发育区重要的地形控制因素,两种活动共同作用产生复杂的地形特征。综合多条地震测线中似海底反射层(BSR)形态、连续性和滑塌、泥火山活动的关系,认为滑塌控制的区域,BSR连续,天然气水合物储藏较完整,泥火山活动区天然气水合物储藏也仅受到局部破坏。同时指出滑塌和泥火山活动对研究区长期天然气渗漏活动具有重要作用。  相似文献   

3.
The distinguishing features of the seismicity throughout South Kamchatka and within the Avacha Bay seismic gap in the 20th century are considered. The evolution of the evaluation of the magnitudes of the strongest earthquakes for this gap from M = 7.25–7.5 in 1965–1980 to 7.75–8.0 after 1980 is discussed. On the basis of the method for studying the characteristic features of the seismicity within a seismic gap developed for the Central Kuriles, the seismicity of South Kamchatka is considered for depths of 0–100, 101–200, and more than 200 km according to the data from the New Catalog [6] for the period from 1901 to 1974 (M ≥ 6.1), the Special Catalog for North Eurasia [3] for the period from 1975 to 1993 (M ≥ 4.5), and additional data from the Kamchatka stations for the period from 1994 to 1997. It was found that the seismic process within the region of South Kamchatka is typical of the island arcs; i.e, most of the earthquakes considered and the maximum of the seismic energy released are concentrated in the lithosphere at depths of 0–100 km. The seismological situation in the zone of Avacha Bay is found to be similar to that within the second kind of the seismic gap during the precursory seismic quiescence of the 1978 Oaxac earthquake with M = 7.8 in Central Mexico. This allows us to consider the zone of Avacha Bay as a possible seismic gap of the second kind. Such a result can be considered as a suggestion of the possibility of the occurrence in Avacha Bay of an earthquake with M ~ 8 according to the long-term forecast for the region of the Kuriles and Kamchatka made by S.A. Fedotov.  相似文献   

4.
Abstract

The characterization of earthquake sources in the Gulf of Alaska and the relative significance of earthquake sources for establishing seismic design inputs at a typical site for engineering purposes are discussed. Earthquake sources in the complex tectonic environment can be divided into two groups: (a) a subduction zone that underlies the entire region (maximum magnitude M = 8.5); and (b) individual thrust and strike‐slip faults associated with the plate motions (maximum magnitude M = 6 to 7.5). The sources of either group and individual earthquake events can be represented as planar surfaces for consistency with the physical process and a mathematically tractable computational scheme.

Although the area is very active seismically, the degree of activity of individual sources varies significantly. Therefore, even for sources with the same maximum earthquakes, different magnitudes may apply for a selected design return period. The area is considered to be a “seismic gap.”; No great earthquakes have occurred in nearly 80 years. Estimates based on a temporally varying seismic function such as the semi‐Markov model indicate that the probability of occurrence of a great earthquake in the near future is significantly higher than the average probability inferred from a statistical analysis of historical seismicity data of the entire region.

Separate attenuation relationships should be used for calculating ground motions due to earthquakes on the dipping subduction zone in the northern portion of the gulf. The dominant earthquake source for almost the entire Gulf of Alaska region is the subduction zone that contributes over 80 percent of the seismic exposure at a typical site. The dominant magnitude range is Ms = 6.5 to 7.5. “Gap filling”; earthquakes (Ms = 7.5 to 8.25) contribute a little over a third of the seismic exposure at a typical site. Deterministic assessments of ground motion values using the maximum earthquake on the subduction zone at the closest distance yield values significantly higher than those calculated for even 500‐year return periods. Estimated 100‐year return period accelerations in the area range from 180 to 340 cm/sec2.  相似文献   

5.
Based on a new quantitative analysis of sidescan sonar data combined with coring, we propose a revised model for the origin for Mediterranean Ridge mud volcanism. Image analysis techniques are used to produce a synthetic and objective map of recent mud flows covering a 640 × 700 km2 area, which represents more than half of the entire Mediterranean Ridge mud belt. We identify 215 mud flows, extruded during the last 37,000–60,000 years. This time period corresponds to the limit of penetration of the sonar, that we evaluate through geoacoustic modeling of the backscattered signal returned by the mud breccia-hemipelagites contact, and calibrate by coring. We show that during this period, at least 96% of the mud volume has been extruded at the Mediterranean Ridge-Hellenic backstop contact, the remaining being scattered over the prism. We suggest that the source is a Messinian (5–6 Ma) mud reservoir that remained close to the backstop contact, at variance with the classical transport-through-the-wedge model. A revised mud budget indicates that steady-state input is not needed. We propose that the source layer was deposited in deep and narrow pre-Messinian basins, sealed by Messinian evaporites, and finally inverted in post-Messinian times. Onset of motion of the Anatolia-Aegea microplate in the Pliocene resulted in change from slow to fast convergence, triggering shear partitioning at the edges of the backstop and basin inversion. Mud volcanism initiation is probably coeval with the latest events of this kinematic re-organization, i.e. opening of the Corinth Gulf and activation of the Kephalonia fault around 1–2 Ma.  相似文献   

6.
The geology of Mars and the stratigraphic characteristics of its uppermost crust (mega-regolith) suggest that some of the pervasively-occurring pitted cones, mounds, and flows may have formed through processes akin to terrestrial mud volcanism. A comparison of terrestrial mud volcanism suggests that equivalent Martian processes likely required discrete sedimentary depocenters, volatile-enriched strata, buried rheological instabilities, and a mechanism of destabilization to initiate subsurface flow. We outline five formational scenarios whereby Martian mud volcanism might have occurred: (A) rapid deposition of sediments, (B) volcano-induced destabilization, (C) tectonic shortening, (D) long-term, load-induced subsidence, and (E) seismic shaking. We describe locations within and around the Martian northern plains that broadly fit the geological context of these scenarios and which contain mud volcano-like landforms. We compare terrestrial and Martian satellite images and examine the geological settings of mud volcano provinces on Earth in order to describe potential target areas for piercement structures on Mars. Our comparisons help to evaluate not only the role of water as a functional component of geological processes on Mars but also how Martian mud volcanoes could provide samples of otherwise inaccessible strata, some of which could contain astrobiological evidence.  相似文献   

7.
Philippine archipelago(PA) has strong background seismicity, but there is no systematic study of earthquake triggering in this region. There are six earthquakes(M_w 6) occurred between 2018/12/29 and 2019/09/29 in PA,which provides an excellent opportunity to investigate the triggering relationship among these events. We calculate the static Coulomb stress changes of the first five events, and find that the local seismicity after the2018/12/29 M_w 7.0 earthquake is mostly associated with positive Coulomb stress changes, including the2019/05/31 M_w 6.1 event, suggesting a possible triggering relationship. However, we cannot rule out the dynamic triggering mechanism, due to increased microseismicity in both positive and negative stress change regions, and an incomplete local catalog, especially right after the first M_w 7.0 mainshock. The dynamic stresses from these M_w 6 events are large enough(from 5 kPa to 3 532 kPa) to trigger subsequent events, but a lack of seismicity and waveform evidence does not support delayed dynamic triggering among these events, even the shortest time interval is less than 24 hours. In the past 45 years, the released seismic energy shows certain peaks every 5–10 years. However, earthquakes with M_w 6.0 were relatively infrequent between 2004 and 2018 at PA. Hence, it is possible that several regions are relatively late in their earthquake cycles, which would enhance their susceptibility of being triggered by earthquakes at nearby and regional distances.  相似文献   

8.
Mud volcanoes recently discovered on the offshore Calabrian Arc are investigated at two sites 60 km apart, in water depths of 1650--2300 m, using swath bathymetry, 2D&3D multichannel seismic and cores. The seabed and subsurface data provide information on their formation and functioning in relation to tectonic activity during the rapid Plio-Quaternary advance of the accretionary prism. Fore-arc extension and thrust-belt compression are seen to have involved two main phases of activity, separated by a regional unconformity recording a mid-Pliocene (3.5–3.0 Ma) tectonic reorganization. The two sites of mud volcanism lie in contrasting tectonic settings (inner fore-arc basin vs central fold-and-thrust belt) and record differing forms of seabed extrusive activity (twin mud cones and a caldera vs a broad mud pie). At both sites, subsurface data show that mud volcanism took place throughout the second tectonic phase, since the late Pliocene; differing forms of mud extrusion were accompanied by subsidence to form depressions beneath and within extrusive edifices up to 1.5 km thick. The basal subsidence depressions point to sources within the succession of thrusts underlying the inner to central Arc, consistent with microfossils within cored mud breccias from both sites that are derived from strata as old as Late Cretaceous.  相似文献   

9.
丁学仁  吴长江 《台湾海峡》1997,16(3):339-347
本文根据1994年9月16日台湾海峡7.3级强震序列的空间活动图象变化特征,结合历史地震资料,比较分析了台湾海峡区域史今地震活动的总体演变过程,表明该区强震发生与周边地区的台湾,日本及菲律宾大地地震,在时间进程,强度变化和地域分布关系上存在关地球物理场变化的影响。  相似文献   

10.
The Dongsha Basin, circling Dongsha Island that is amid the northern margin of the South China Sea, is characterized by thin (∼0.5 km) Cenozoic sediments veneering on thick (up to 5 km) Mesozoic strata. Recently, several geophysical and geological surveys, including multiple channel reflection seismic, sub-bottom profiling and benthic dredging, have been conducted on the slope southwest to the Dongsha Island, where the water depth varies from 400 m to 2000 m. A novel discovery is numerous submarine mud volcanoes of various sizes over there, typically 50–200 m high and 0.5–5 km wide. Geophysical profiles document their unusual features, e.g., roughly undulating seafloor, high-amplitude seabed reflectivity, foggy hyperbolic diffractions up to 50 m in water column above seabed, and internal reflection chaos and wipe-out down to 2–3 km level or deeper below the seabed. Benthic dredging from the mud volcanoes gives abundant faunas of high diversity, e.g., scleractinian (stony coral), gorgonian, black coral, thiophil tubeworm, glass sponge, bryozoan etc., indicating booming chemosynthetic community, among which the Lophelia pertusa-like coral and the Euretidae-like glass sponges are the first reports in the South China Sea. Concomitantly with them, there are also abundant authigenic carbonate nodules and slabs, raw, brecciated and breccias with bio-clasts congregation. Besides, there coexist massive mudflows and allogenic coarse-grained quartz, feldspar and tourmaline most likely brought out by mud volcanism. Geochemical analysis of the bottom water samples give dissolved methane concentration up to 4 times higher than the background average. These results lend comprehensive evidences for the ongoing and historical mud volcanism. The escaping methane gas is inferred to source mainly from the Mesozoic strata. Occupying a large province of the deep water slope, ca. 1000 km2 or more, the mud volcanoes is prospective for gas hydrate and natural gas for the Dongsha Basin.  相似文献   

11.
The great Japanese earthquake (GJE) of March 11, 2011, was a megaevent. The conditions under which such seismic catastrophes occurred are discussed. The regime of the aftershocks of this megaevent is compared with the data on the aftershock sequences which accompanied the Simushir earthquakes (2006 and 2007) and the Andaman earthquake (2004) and with the seismicity behavior in the generalized vicinity of a strong earthquake. The aftershock sequences of the abovementioned strong earthquakes are shown to represent the sets of trend changes in the postshock activity and specific outbursts of seismic activity. Activity outbursts are characterized not only by an increase in the number and energy of events, but also by a decrease in the recurrence plot slope (b value) and the average earthquake depth. Some such outbursts correspond to the occurrence of strong repeated shocks. A possible mechanism for outbursts of seismic activity is proposed. The possibility of a stronger repeated shock in the vicinity of the megaearthquake of March 11, 2011, is discussed.  相似文献   

12.
The distinctive annual periodicity in the week earthquake activity in the Garm region and its possible origin were described in the author’s previous papers. In this paper, an attempt is made to relate the annual earthquake periodicity to such a phenomenon as hydroseismicity. Within the framework of the study, seasonal variations in seismicity, snow height, and the water level of the Surkhob River are compared. As a result, good coincidence of the form of spring changes in snow height and seismicity has been revealed. It is important that according to averaged data, seismicity follows changes in snow height with some lag. However, a few cases in certain years have been found when the number of earthquakes began decreasing simultaneously or even a little before snow melt. It was also discovered that annual changes in the river water level and seismicity occur in opposite phase. Possible approaches to interpreting the results are discussed.  相似文献   

13.
The Tokachi-Oki earthquake was the strongest seismic event in 2003. The tsunami caused by the earthquake reached a height of four meters at the northeastern coast of Hokkaido. The JAMSTEC successfully recorded the variations of the near-bottom pressure in the region of the tsunami source. An analysis of the data reveals low-frequency (~ 0.15 Hz) elastic vibrations of the water layer. Estimates of the amplitude, velocity, and duration of the bottom deformation at the tsunami source were obtained.  相似文献   

14.
台湾海峡及其西边地区正常地震动态及危险性特征   总被引:1,自引:2,他引:1  
柯龙生  林世敏 《台湾海峡》1994,13(2):190-197
本文从地震的时,空分布特征,区域应力场动态,能量释放方式,b值及震群特征6个方面研究了台湾海峡及其西边地区地震活动的正常动态及异常特征。结果表明,具有前兆意义的变化模式表现为区域地震活动在时间,空间及功能方面的有序性变化,即:(a)地震空间分布由分散转为集中,形成条带或空区;(b)断裂活动由多组转为单一,应力场趋向一致;(display status  相似文献   

15.
This paper describes the geotectonics of the Caspian Sea basin and the seismicity of its central part. The seismicity analysis enables us to identify the most probable zones of tsunami generation. We also present a brief review of the historical records of tsunamis in the Caspian Sea. In order to estimate the tsunami risk, we used the method of numerical hydrodynamic simulation while taking into account the real topography of the Caspian Sea. The computation of the wave field for the possible tsunamis occurring in the central part of the Caspian Sea allowed us to estimate the maximum expected heights of the waves along the coast of the CIS countries (Russia, Azerbaijan, Kazakhstan, and Turkmenistan). On the basis of the earthquake statistics in the region and the results of numerical experiments, we show that the extreme wave heights can reach 10 m at certain parts of the coast. Such extreme events correspond to extended (up to 200 km) seismic sources with M S ~ 8 and a recurrence period of T ≈ 1600 years. The tsunami wave heights are expected to be as high as 3 m for sources of lesser extent (<50 km) with earthquake magnitudes of M S ~ 7 and a recurrence period of 200 years.  相似文献   

16.
Gas hydrates along continental margins are commonly inferred from the presence of bottom simulating reflectors (BSRs) on reflection seismic records. Shale and mud diapirs are often observed in the proximity of BSR-inferred gas hydrates. Analysis of data from documented gas-hydrate occurrences suggests that the areas where mud volcanoes exist on the seafloor are promising locations for sediments with high gas-hydrate concentration. Along the western continental margin of India (WCMI), we have identified several anomalous reflections on single-channel, analogue seismic records in the proximity of BSRs, from which the presence of gas-charged sediments and gas seepages was inferred. These features characterize both the shelf-slope region of the WCMI and the adjoining deep-sea areas. The seismic records also reveal mud/shale diapiric activity and pockmarks near the gas hydrates.  相似文献   

17.
An ocean bottom seismometer array on the Nova Scotia shelf edge recorded T-phases from an earthquake swarm on the mid-Atlantic ridge at about 31.6° N in June 1975. The swarm occured along a segment of the ridge that ruptured similarly 17 yr previously. From 1964 to mid-1979 the worldwide network recorded three other earthquake swarms along this segment of the mid-Atlantic ridge (MAR). A sparse network of sensors in the SOFAR channel, having a lower magnitude threshold, might provide a better means of monitoring the seismicity of both short-length transforms and ridge crests along the MAR than does the worldwide seismic network.  相似文献   

18.
On 21 May 1989, a major earthquake swarm on the Reykjanes Ridge at59°44 N, 29°32 W at a water depth of about 1000 m andabout 500 km southwest of Iceland was detected on both the WorldwideStandard Seismic Network (WWSSN) and Icelandic seismic networks. As part ofa multi-institutional response to this swarm, the Naval ResearchLaboratory arranged for a P3 Orion Aircraft to deploy sonobuoys and AXBTs inthe immediate vicinity of the swarm activity. The detection of the swarmmotivated a survey of the region in 1990, using the towed SeaMARC IIside-looking sonar system. In 1990–1991 the Russian ShirshovInstitute of Oceanology offered the use of its MIR deep-divingsubmersibles to investigate the rise axis for recent volcanism. During 1992,a scientific team comprised of five US and ten Russian scientists mobilizedthe twin, deep diving Russian submersibles to study the spreading axis ofthe Reykjanes Ridge. The resulting data analyses allows us to conclude thatthe 1989 seismic swarm event occurred adjacent to and east of the largeaxial high in the center of our survey area. The length, width and depthrange of the earthquakes were very similar to major seismic swarm eventsconfined to fissure systems in the Krafla region of Iceland. It is likelythat the earthquake swarm was located on a fresh, well-defined systemof fissures and faults extending south of the northernmost axial highstudied. The earthquake swarm was probably associated with an emanation oflava creating a region of high backscatter, located just to the east of thecentral axial high. In addition, the region of high-backscatterremains unsampled because it lay underneath the nadir of the processedSeaMARC tracks used to plan the submersible survey. However many sampleswere taken and structural studies of the evolving Reykjanes Ridge werecarried out.  相似文献   

19.
东沙群岛西南海区泥火山的地球物理特征   总被引:1,自引:0,他引:1  
多道反射地震和CHIRP浅地层剖面显示在南海东沙群岛西南陆坡和白云凹陷东部陆坡之间的深水(600~1 000m)陆坡上矗立着一系列高出周围海底50~100m的丘形地质体,其内部地层发生褶皱,反射波呈现杂乱和空白,海底声波屏蔽严重。浅地层剖面还显示丘状构造带有气体羽状构造,从海底进入水体高达50m。海底沉积取样分析表明,这些海丘区的表层分布着生物成因的致密碳酸盐结核。可以推断东沙西南的丘形地质体就是泥火山带,并且可能是一个重要的水合物潜在区。东沙西南海区泥火山表现出构造挤压和带状分布的特点,不同于南海北部神狐和九龙甲烷礁已发现水合物区的非泥火山,也不同于全球其他典型被动大陆边缘的泥火山特征,其构造成因和水合物潜力有待进一步研究。  相似文献   

20.
Tsunami hazard in the Makran Subduction Zone (MSZ), off the southern coasts of Iran and Pakistan, was studied by numerical modeling of historical tsunami in this region. Although the MSZ triggered the second deadliest tsunami in the Indian Ocean, among those known, the tsunami hazard in this region has yet to be analyzed in detail. This paper reports the results of a risk analysis using five scenario events based on the historic records, and identifies a seismic gap area in western Makran off the southern coast of Iran. This is a possible site for a future large earthquake and tsunami. In addition, we performed numerical modeling to explain some ambiguities in the historical reports. Based on the modeling results, we conclude that either the extreme run-up of 12–15 m assigned for the 1945 Makran tsunami in the historical record was produced by a submarine landslide triggered by the parent earthquake, or that these reports are exaggerated. The other possibility could be the generation of the huge run-up heights by large displacements on splay faults. The results of run-up modeling reveal that a large earthquake and tsunami in the MSZ is capable of producing considerable run-up heights in the far field. Therefore, it is possible that the MSZ was the source of the tsunami encountered by a Portuguese fleet in Dabhul in 1524.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号