首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
南极半岛周边海域水团及水交换的研究   总被引:1,自引:1,他引:0  
利用中国第34次南极考察于2018年1–2月在南极半岛周边海域获得的温盐、海流现场观测数据,分析了调查区域主要水团及水交换特征。结果表明,观测区域内主要存在南极表层水、绕极深层水、暖深层水、南极底层水、布兰斯菲尔德海峡底层水。威德尔海的暖深层水、威德尔海深层水通过南奥克尼海台东侧的奥克尼通道、布鲁斯通道和南奥克尼海台西侧的埃斯佩里兹通道进入斯科舍海,其中奥克尼通道的深层海流最强,流速最大可达0.25 m/s,密度较大的威德尔海深层水可以通过此通道进入斯科舍海;布鲁斯通道海流流速约为0.13 m/s,通过此通道的暖深层水位势温度较高;埃斯佩里兹通道海流流速约为0.10 m/s,通过此通道的暖深层水位势温度最低,威德尔海深层水密度最小。在南奥克尼海台东西两侧均观测到南向和北向的海流,但整体上来看,向北的海流和水交换更强。水体进入斯科舍海后,沿着南斯科舍海岭的北侧向西北方向流动,流速约为0.21 m/s。德雷克海峡中的南极绕极流仅有一部分向东进入斯科舍海南部海域,且受到向西流动的暖深层水、威德尔海深层水的影响,斯科舍海南部海域的绕极深层水明显比德雷克海峡中绕极深层水的高温高盐性质弱;受到南极绕极流的影响,南斯科舍海岭北侧的威德尔海深层水比南侧暖。南斯科舍海岭上的水体可能受到北侧绕极深层水、暖深层水,西侧陆架水,东侧冬季水的影响,因此海岭上水体结构较为复杂。  相似文献   

2.
Antarctic krill, Euphausia superba Dana, has a heterogeneous circumpolar distribution in the Southern Ocean. Krill have a close association with sea ice which provides access to a critical food source and shelter, particularly in the early life stages. Advective modelling of transport pathways of krill have until now been on regional scales and have not taken explicit account of sea ice. Here we present Lagrangian modelling studies at the circumpolar scale that include interaction with sea ice. The advection scheme uses ocean velocity output from the Ocean Circulation and Climate Advanced Modelling (OCCAM) project model together with satellite-derived sea ice motion vectors to examine the potential roles of the ocean and sea ice in maintaining the observed circumpolar krill distribution. We show that the Antarctic Coastal Current is likely to be important in generating the large-scale distribution and that sea ice motion can substantially modify the ocean transport pathways, enhancing retention or dispersal depending upon location. Within the major krill region of the Scotia Sea, the effect of temporal variability in both the ocean and sea ice velocity fields is examined. Variability in sea ice motion increases variability of influx to South Georgia, at times concentrating the influx into pulses of arrival. This variability has implications for the ecosystem around the island. The inclusion of sea ice motion leads to the identification of source regions for the South Georgia krill populations additional to those identified when only ocean motion is considered. This study indicates that the circumpolar oceanic circulation and interaction with sea ice is important in determining the large-scale distribution of krill and its associated variability.  相似文献   

3.
Qualitative and quantitative analyses of the tintinnids retrieved in surface and vertical (down to 1150 m ) samples in the Scotia, Weddell, Bransfield and Bellingshausen areas allow us to define three distinct zones: (A) the Scotia Sea, Bransfield Strait and oceanic waters of the northern-central Weddell Sea, dominated by Codonelopsis gaussi and Cymatocylis affinis/conmllaria; (B) shelf and mostly ice-covered areas of the southernmost Weddell Sea and the Bellingshausen Sea, characterized by Laackmanniella prolongata and Cymatocylis drygalskii; (C) Bransfield-Weddell waters around the tip of the Antarctic Peninsula, where Codonellopsis balechi accounts for 80% of the tintinnids. These areas have (often significantly) different ice regimes, water-column depths, surface salinities, bulk planktonic settling volumes and microplanktonic concentrations. On the other hand, the composition of tintinnid assemblages is very similar on both sides of the Antarctic Peninsula. Causal interpretations for these heterogeneous distribution patterns and probable specific adaptations to the dissimilar environmental settings involved are analyzed.  相似文献   

4.
The quantitative features and circulation of the Antarctic bottom water (AABW) in the Scotia Sea are investigated using an original procedure for the determination of the boundaries between the water masses. It is shown that the AABW is effectively transferred across the Antarctic Circumpolar Current (ACC) from the regions on the south flank of this current where the AABW penetrates into the Scotia Sea. This transfer results in the abyssal water cooling and freshening in the Yaghan Basin of the north Scotia Sea. Some rises and depressions in the bottom relief of the western and northern Scotia Sea are important features that impact the AABW transfer. It is shown that there is an additional path of the AABW transit transport to the North Atlantic passing through the western Scotia Sea. The existence of the semienclosed cyclonic abyssal water circulation in the South Shetland Trench and the westward transport of the Atlantic AABW along the Antarctic slope foot into the Pacific are proved.  相似文献   

5.
An unprecedented high-quality, quasi-synoptic hydrographic data set collected during the ALBATROSS cruise along the rim of the Scotia Sea is examined to describe the pathways of the deep water masses flowing through the region, and to quantify changes in their properties as they cross the sea. Owing to sparse sampling of the northern and southern boundaries of the basin, the modification and pathways of deep water masses in the Scotia Sea had remained poorly documented despite their global significance.Weddell Sea Deep Water (WSDW) of two distinct types is observed spilling over the South Scotia Ridge to the west and east of the western edge of the Orkney Passage. The colder and fresher type in the west, recently ventilated in the northern Antarctic Peninsula, flows westward to Drake Passage along the southern margin of the Scotia Sea while mixing intensely with eastward-flowing Circumpolar Deep Water (CDW) of the antarctic circumpolar current (ACC). Although a small fraction of the other WSDW type also spreads westward to Drake Passage, the greater part escapes the Scotia Sea eastward through the Georgia Passage and flows into the Malvinas Chasm via a deep gap northeast of South Georgia. A more saline WSDW variety from the South Sandwich Trench may leak into the eastern Scotia Sea through Georgia Passage, but mainly flows around the Northeast Georgia Rise to the northern Georgia Basin.In Drake Passage, the inflowing CDW displays a previously unreported bimodal property distribution, with CDW at the Subantarctic Front receiving a contribution of deep water from the subtropical Pacific. This bimodality is eroded away in the Scotia Sea by vigorous mixing with WSDW and CDW from the Weddell Gyre. The extent of ventilation follows a zonation that can be related to the CDW pathways and the frontal anatomy of the ACC. Between the Southern Boundary of the ACC and the Southern ACC Front, CDW cools by 0.15°C and freshens by 0.015 along isopycnals. The body of CDW in the region of the Polar Front splits after overflowing the North Scotia Ridge, with a fraction following the front south of the Falkland Plateau and another spilling over the plateau near 49.5°W. Its cooling (by 0.07°C) and freshening (by 0.008) in crossing the Scotia Sea is counteracted locally by NADW entraining southward near the Maurice Ewing Bank. CDW also overflows the North Scotia Ridge by following the Subantarctic Front through a passage just east of Burdwood Bank, and spills over the Falkland Plateau near 53°W with decreased potential temperature (by 0.03°C) and salinity (by 0.004). As a result of ventilation by Weddell Sea waters, the signature of the Southeast Pacific Deep Water (SPDW) fraction of CDW is largely erased in the Scotia Sea. A modified form of SPDW is detected escaping the sea via two distinct routes only: following the Southern ACC Front through Georgia Passage; and skirting the eastern end of the Falkland Plateau after flowing through Shag Rocks Passage.  相似文献   

6.

The structure of the South Powell Ridge (SPR), separating the Late Cenozoic ocean-floored Powell Basin and the Mesozoic Weddell Sea domain, is revealed by multichannel seismic data. The SPR appears as a basement high, bounded northward by transtensional faults and by normal and major reverse faults to the south. These margin features seem to be linked to the Powell Basin southern strike-slip margin and to the Jane Arc paleotrench, respectively. We suggest the ridge evolved from the Antarctic Peninsula passive margin to become the deformational front of the Scotia/Antarctica Plate boundary, later being welded to the Antarctic Plate.

  相似文献   

7.
Vassly A.  Spiridonov 《Marine Ecology》1996,17(1-3):519-541
Abstract. Oceanographic evidence along with the data on Euphausia superba distribution indicate that the reproductive range of this species is related to the southernmost core of the Antarctic Circumpolar Current (ACC), the Weddell Gyre, the Ross Gyre, and the systems of mesoscale eddies in the Bellingshausen Sea, in the Prydz Bay area. and the D'Urville Sea. During the Last Glaciation Maximum, at ca. 18 ka BP, both the Weddell and the Ross Gyres as well as near-coastal circulations probably lost their importance in the maintenance of Antarctic krill populations due to cooling of the water column and development of multi-year sea ice. Within the ACC at that time, some smaller-scale circulations related to islands and seamounts could have played a major role in controlling krill distribution. If, nevertheless. refugia for self-maintained krill populations remained in the near-coastal zone, particularly in the eastern Indian sector, geographical isolation might have caused divergence between the two species of the gregarine Cephaloidophora commonly infesting krill at present.  相似文献   

8.
The structure of the South Powell Ridge (SPR), separating the Late Cenozoic ocean-floored Powell Basin and the Mesozoic Weddell Sea domain, is revealed by multichannel seismic data. The SPR appears as a basement high, bounded northward by transtensional faults and by normal and major reverse faults to the south. These margin features seem to be linked to the Powell Basin southern strike-slip margin and to the Jane Arc paleotrench, respectively. We suggest the ridge evolved from the Antarctic Peninsula passive margin to become the deformational front of the Scotia/Antarctica Plate boundary, later being welded to the Antarctic Plate. Received: 18 August 1997 / Revision received: 4 May 1998  相似文献   

9.
A one-dimensional, temperature-dependent model is implemented to simulate the descent–ascent cycle of Antarctic krill (Euphausia superba) embryos and larvae. Inputs to the model are monthly mean climatologies of ambient temperature and density fields obtained from the World Ocean Atlas Database for Southern Ocean waters. Simulations are done with a 1° resolution at a circumpolar scale, south of 60°S, and the results are interpolated to a 5′ grid to match the resolution of the bottom bathymetry data. Simulations of the descent–ascent cycle using environmental conditions corresponding to the Antarctic krill spawning season (December–March) resulted in unconstrained success in completion of the cycle in water deeper than 1000 m. Continental shelf regions favorable to successful hatching of Antarctic krill embryos are limited to areas along the west Antarctic Peninsula, large areas in the Bellingshausen and Amundsen Seas, offshore of Wilkes Land, and to the east and west of Prydz Bay. These are regions where the Southern Antarctic Circumpolar Current Front is along the shelf slope, the Antarctic Slope Front is absent, and Circumpolar Deep Water is present. The effect of seasonal variability in temperature on the descent–ascent cycle tends to enhance the probability of success in regions offshore of Wilkes Land, Queen Maud Land, and the eastern shelf of the Antarctic Peninsula later in the spawning season. The simulations show that success of the descent–ascent cycle is sensitive to initial embryo diameter and larval ascent rate. Initial embryo diameter may provide an additional constraint on success of the descent–ascent cycle, especially in continental shelf waters, where small embryos tend to encounter the bottom before hatching. The circumpolar distributions of simulated embryo hatching depth and larval success show that all regions of the Antarctic are not equal in the ability to support successful completion of the Antarctic krill descent–ascent cycle, which has implications for the overall circum-Antarctic krill distribution and for the development of nutrient and material budgets, especially for Antarctic continental shelf areas.  相似文献   

10.
Elephant Island (EI) is uniquely placed to provide southern elephant seals (SES) breeding there with potential access to foraging grounds in the Weddell Sea, the frontal zones of the South Atlantic Ocean, the Patagonian shelf and the Western Antarctic Peninsula (WAP). Quantifying where seals from EI forage therefore provides insights into the types of important habitats available, and which are of particular importance to elephant seals. Twenty nine SES (5 sub-adult males—SAM and 24 adult females—AF) were equipped with SMRU CTD-SLDRs during the post-breeding (PB 2008, 2009) and post-moulting (PM 2007, 2008, 2009, 2010) trips to sea. There were striking intra-annual and inter-sex differences in foraging areas, with most of the PB females remaining within 150 km of EI. One PB AF travelled down the WAP as did 16 out of the 20 PM females and foraged near the winter ice-edge. Most PM sub-adult males remained close to EI, in areas similar to those used by adult females several months earlier, although one SAM spent the early part of the winter foraging on the Patagonian Shelf. The waters of the Northern Antarctic Peninsula (NAP) contain abundant resources to support the majority of the Islands' SES for the summer and early winter, such that the animals from this population have shorter migrations than those from most other populations. Sub-adult males and PB females are certainly taking advantage of these resources. However, PM females did not remain there over the winter months, instead they used the same waters at the ice-edge in the southern WAP that females from both King George Island and South Georgia used. Females made more benthic dives than sub-adult males—again this contrasts with other sites where SAMs do more benthic diving. Unlike most other populations studied to date EI is a relatively southerly breeding colony located on the Antarctic continental shelf. EI seals are using shelf habitats more than other SES populations but some individuals still employ open water foraging strategies. Sea-ice was also very influential for PM females with more foraging occurring in heavier pack-ice. Larger females used areas with heavier ice-concentration than smaller females. The study demonstrates the importance of shelf and slope habitat to elephant seals, but also highlighted the influence of sea-ice and fine-scale bathymetry and local ocean condition in determining foraging habitat.  相似文献   

11.
南极海冰和陆架冰的变化特征   总被引:8,自引:1,他引:8       下载免费PDF全文
利用美国冰中心和雪冰中心提供的海冰资料和我国南极考察现场的海冰观测资料,对南极海冰的长期变化进行了研究.研究表明20世纪70年代后期是多冰期;80年代是少冰期;90年代南极海冰属于上升趋势,后期偏多,区域性变化差别大,东南极海冰偏多,西南极海冰即南极半岛两侧尤其是威德尔海区和别林斯高晋海的冰明显偏少.东南极和西南极海冰的变化趋势总是反相的.90年代后期普里兹湾的海冰明显偏多,南极大陆陆架冰外缘线总体没有明显的收缩,有崩解也有再生的自然变化现象.西南极威德尔海的龙尼冰架和罗斯海冰架东部崩解和收缩趋势明显,东南极的冰架也有崩解和收缩,但没有西南极明显.陆架冰崩解向海洋输送的冰山对全球海平面升高有一定的影响.目前南极冰盖断裂崩解形成的冰山,向海洋输入的水量可使全球海平面上升约14mm.南极海冰没有随着全球气候温暖化而明显减少,而是按照东南极和西南极反相的变化规律进行周期性的变化、调整和制约.  相似文献   

12.
Bottom water formation changes the characteristics of water masses entering the southern part of the Weddell Sea through atmosphere-ice-ocean interaction in which both sea and shelf ice play an important role. Modified water, in particular Weddell Sea Bottom Water, recirculates in the west. By comparing the in- and outflowing water masses we have estimated transformation rates on the basis of a data set obtained during the Winter Weddell Gyre Study from September to October 1989. This consisted of a salinity-temperature-depth (CTD) section carried out by R/V “Polarstern” from the northern tip of the Antarctic Peninsula to Kapp Norvegia and data from three current meter moorings maintained from 1989 to 1990 in the eastern boundary current off Kapp Norvegia. Because of the lack of sufficient direct current measurements in the interior and the western boundary current, it was necessary to derive mass transports on the basis of available data combined with physical and geometrical arguments. At the mooring site barotropic currents were measured. They were extrapolated to the interior under the assumption that wind-driven, baroclinic and barotropic current fields are of similar shape. The location of the gyre centre was determined from drifting buoy tracks and geopoten-tial anomaly. A linear current profile from the eastern boundary current to the centre of the gyre was assumed, and the western outflow was determined according to mass conservation. Different assumptions on the transition from the boundary current to the interior and the location of the centre result in a wide range of transports with most likely values between 20 and 56 Sv. The total mass transport was split into individual water masses. Differences between inflow and outflow result in a transformation rate of 3–4 Sv from Winter and Warm Deep Water to Antarctic and Weddell Sea Bottom Water. The net heat and salt transport across the transect implies heat fluxes from the ocean to the atmosphere of 3–10 W m−2 and ice formation rates of 0.2–0.35 m year−1.  相似文献   

13.
The coupling of physics and biology was examined along a 160 km long transect running out from the north coast of South Georgia Island and crossing the Southern Antarctic Circumpolar Current Front (SACCF) during late December 2000. Surface and near surface potential TS properties indicated the presence of three water types: a near-shore group of stations characterised by water which became progressively warmer and fresher closer to South Georgia, an offshore grouping in which sea surface temperatures and those at the winter water level were relatively warm (1.8°C and 0.5°C, respectively), and a third in which surface and winter water temperatures were cooler and reflected the presence of the SACCF. The transect bisected the SACCF twice, revealing that it was flowing in opposite directions, north-westward closest to South Georgia and south-eastwards at its furthest point from the island. The innermost limb was a narrow intense feature located just off the shelf break in 2000–3500 m of water and in which rapid surface baroclinic velocities (up to 35 cm s−1) were encountered. Offshore in the outermost limb, shown subsequently to be a mesoscale eddy that had meandered south from the retroflected limb of the SACCF, flow was broader and slower with peak velocities around 20 cm s−1. Chlorophyll a biomass was generally low (<1 mg m−3) over much of the transect but increased dramatically in the region of the innermost limb of the SACCF, where a deepening of the surface mixed layer was coincident with a subsurface chlorophyll maximum (7.4 mg m−3) and elevated concentrations down to 100 m. The bloom was coincident with depleted nutrient concentrations, particularly silicate, nitrate and phosphate, and although ammonium concentrations were locally depleted the bloom lay within an elevated band (up to 1.5 mmol m−3) associated with the frontal jet. Increased zooplankton abundance, higher copepod body carbon mass and egg production rates all showed a strong spatial integrity with the front. The population structure of the copepods Calanoides acutus and Rhincalanus gigas at stations within the front suggested that rather than simply resulting from entrainment and concentration within the jet, increased copepod abundance was the result of development in situ. Estimates of bloom duration, based on silicate and carbon budget calculations, set the likely duration between 82 and 122 d, a figure supported by the development schedule of the two copepod species. Given this timescale, model outputs from FRAM and OCCAM indicated that particles that occurred on the north side of South Georgia in December would have been in the central-southern Scotia Sea 2–3 months earlier, probably in sea ice affected regions.  相似文献   

14.
We present the results of biological and oceanographic investigations performed in the Weddell and Scotia Seas within the framework of the first (January–June, 1997) and second (January–June, 1998) Ukrainian Antarctic marine expeditions. We reveal some regularities in the space distribution of the aggregations of krill and salpae depending on the abiotic (hydrophysical) environmental factors and discuss possible mechanisms promoting the formation of aggregations of krill and salpae in the Antarctic waters.  相似文献   

15.
The distribution of seismic units in deposits of the basins near the Antarctic–Scotia plate boundary is described based on the analysis of multichannel seismic reflection profiles. Five main seismic units are identified. The units are bounded by high-amplitude continuous reflectors, named a to d from top to bottom. The two older units are of different age and seismic facies in each basin and were generally deposited during active rifting and seafloor spreading. The three youngest units (3 to 1) exhibit, in contrast, rather similar seismic facies and can be correlated at a regional scale. The deposits are types of contourite drift that resulted from the interplay between the northeastward flow of Weddell Sea Bottom Water (WSBW) and the complex bathymetry in the northern Weddell Sea, and from the influence of the Antarctic Circumpolar Current and the WSBW in the Scotia Sea. A major paleoceanographic event was recorded by Reflector c, during the Middle Miocene, which represents the connection between the Scotia Sea and the Weddell Sea after the opening of Jane Basin. Unit 3 (tentatively dated ∼Middle to Late Miocene) shows the initial incursions of the WSBW into the Scotia Sea, which influenced a northward progradational pattern, in contrast to the underlying deposits. The age attributed to Reflector b is coincident with the end of spreading at the West Scotia Ridge (∼6.4 Ma). Unit 2 (dated ∼Late Miocene to Early Pliocene) includes abundant high-energy, sheeted deposits in the northern Weddell Sea, which may reflect a higher production of WSBW as a result of the advance of the West Antarctic ice-sheet onto the continental shelf. Reflector a represents the last major regional paleoceanographic change. The timing of this event (∼3.5–3.8 Ma) coincides with the end of spreading at the Phoenix–Antarctic Ridge, but may be also correlated with global events such as initiation of the permanent Northern Hemisphere ice-sheet and a major sea level drop. Unit 1 (dated ∼Late Pliocene to Recent) is characterized by abundant chaotic, high-energy sheeted deposits, in addition to a variety of contourites, which suggest intensified deep-water production. Units 1 and 2 show, in addition, a cyclic pattern, more abundant wavy deposits and the development of internal unconformities, all of which attest to alternating periods of increased bottom current energy.  相似文献   

16.
It is shown on the basis of the data of the Russian Academy of Sciences expeditions in 2003–2010, the historical CTD database, the WOCE climatology, and the satellite altimetry that the area of the Scotia Sea and the Drake Passage is even a greater significant orographic barrier for the eastward Antarctic Circumpolar Current (ACC) than was previously thought. It is the current concept that this barrier is the most important for the ACC; it consists of three obstacles: the Hero Ridge with the Phoenix Rift, the Shackleton Ridge, and the North Scotia Ridge with the relatively shallow eastern part of the Scotia Sea. Despite the fact that all three obstacles are permeable for the layer of the Circumpolar Bottom Water (CBW; 28.16 < γ n < 28.26) being considered the lower part of the circumpolar water, the circulation in this layer throughout the Scotia Sea and the Drake Passage quite substantially differs from the transfer by the surface-intensified ACC jets. Herewith, the upper CBW boundary is the lower limit of the circumpolar coverage of the ACC jets. This result is confirmed by the near zero estimate of the total CBW transport according to the three series of the LADCP measurements on the sections across the Drake Passage. It is shown that the transformation (cooling and freshening) of the CBW layer, which occurs owing to the flow of the ACC over the Shackleton Ridge, is associated with the shape and location of the ridge in the Drake Passage. The high southern part of this ridge is a partially permeable screen for the eastward CBW transport behind which the colder and fresher waters of the Weddell Sea and the Bransfield Strait of the same density range as the CBW penetrate into the ACC zone. The partial permeability of the Shackleton Ridge for the CBW layer leads to the salinization of this layer on the eastern side of the ridge and to the CBW’s freshening on the western side of this ridge, which is observed across the entire Drake Passage.  相似文献   

17.
Sedimentary processes and structures across the continental rise in the western Weddell Sea have been investigated using sediment acoustic and multichannel seismic data, integrated with multibeam depth sounding and core investigations. The results show that a network of channels with associated along-channel ridges covers the upper continental slope. The seismic profiles reveal that the channels initially developed as erosive turbidite channels with associated levees on their northern side due to Coriolis force. Later they were partly or fully infilled, probably as a result of decreasing turbidite activity. Now the larger ones exist as erosive turbidite channels of reduced size, whereas the smaller ones are non-erosive channels, their shape being maintained by contour current activity. Drift bodies only developed where slumps caused a distinctive break in slope inclination on the upper continental rise, which served to initiate the growth of a drift body fed by contour currents or by the combined action of turbidites and contourites. The history of sedimentation can be reconstructed tentatively by correlation of seismo-stratigraphic units with the stages of evolution of the drifts on the western side of the Antarctic Peninsula. Three stages can be distinguished in the western Weddell Sea after a pre-drift stage, which is delimited by an erosional unconformity at the top: (1) a growth stage, dominated by turbidites, with occasional occurrence of slumps during its initial phase; (2) during a maintenance stage turbiditiy-current intensity (and presumably sedimentation rate also) decreased, probably as a result of the ice masses retreating from the shelf edge, and sedimentation became increasingly dominated by contour current activity; and (3) a phase of sheeted-sequence formation. A southward decrease in sediment thickness shows that the Larsen Ice Shelf plays an important role in sediment delivery to the western Weddell Sea. This study shows that the western Weddell Sea has some characteristics in common with the southern as well as the northwestern Weddell Sea: contour currents off the Larsen Ice Shelf have been present for a long time, probably since the late Miocene, but during times of high sediment input from the shelves as a result of advancing ice masses a channel-levee system developed and dominated over the contour-current transport of sediment. At times of relatively low sediment input the contour-current transport dominated, leading to the formation of drift deposits on the upper continental rise. Seaward of areas without shelf ice masses the continental rise mainly shows a rough topography with small channels and underdeveloped levees. The results demonstrate that sediment supply is an important, maybe the controlling factor of drift development on the Antarctic continental rise.  相似文献   

18.
The northward outflow of cold, dense water from the Weddell Sea into the world ocean basins plays a key role in balancing the global heat budget. We estimate the geostrophic flow patterns in the northwestern Weddell Sea using box inverse methods applied to quasi-synoptic hydrographic data collected during the Brazilian DOVETAIL 2000 and 2001 austral summer cruises. The analysis is focused on the variations of the deep Weddell Sea outflow into the Scotia Sea within boxes that bound the main deep gaps over the South Scotia Ridge. To determine the geostrophic volume transports in each box, mass, salt, and heat are conserved within neutral density layers that are not in contact with the atmosphere. Implementing the inverse model and using property anomaly equations weighted by the flow estimate uncertainty our results are consistent with those reported in the literature. A bottom triangle extrapolation method is introduced, which improves the estimated property fluxes through hydrographic sections. In the austral summer of 2000 the transports of Weddell Sea Deep Water (WSDW) through the Philip Passage, Orkney Passage, and southwestern Bruce Passage are 0.01±0.01, 1.15±0.33, and 1.03±0.23 Sv (1 Sv=106 m3 s−1, >0 is northward), respectively. After extrapolation within bottom triangles these transports increase to 0.12±0.03, 3.48±1.81, and 1.20±2.16 Sv. Analysis of the hydrographic data reveal distinct oceanographic conditions over the Philip Passage region, with evidence of mesoscale meanders, warmer and saltier Warm Deep Water (WDW) and colder WSDW observed in 2001 than in 2000. Despite these differences the WSDW transport does not present a significant variation between 2000 and 2001. The WSDW transports through the Philip Passage in 2001 are 0.012±0.001 and 0.113±0.001 Sv after extrapolation within bottom triangles. The circulation derived from the inversion in the austral summer of 2001 suggests a sharp weakening of the barotropic cyclonic flow in the Powell Basin, which may be due to northerly and northeasterly winds associated with an atmospheric low-pressure center located west of the Antarctic Peninsula. We suggest that similar variations in atmospheric forcing may explain changes in the intensity of the cyclonic flow observed in the northwestern Weddell Sea and Powell Basin.  相似文献   

19.
南极威德尔海水动力环境的变化及其对全球变化的响应有着重要的意义,近百年来以全球变暖为特征的全球变化已经影响到该地。对南极威德尔海北部ANT28-D5-6短柱沉积物进行了210Pb测年、粒度参数和冰筏碎屑物含量的测试分析。结果显示威德尔海北部在近百年时间内(1922—2011年)水动力环境发生了显著的转变。在1922—1972年间,威德尔海北部处在高能高速动荡的水动力环境,并携带沉积了大量的冰筏碎屑物,对应了全球温度变化相对较低的阶段。但在1930—1936年间和1946—1952年间发生了2次水动力减弱事件。1939年和1950年两次冰筏碎屑物含量的增加可能与太阳活动峰年引起的威德尔环流经向增强有关。1972—2011年威德尔海北部处在较为平静的弱能状态,对应了全球气温持续升温的阶段。1955—1972年威德尔海水动力环境处在从高能动荡的状态向低能静水状态快速过渡的阶段。  相似文献   

20.
Morozov  E. G.  Frey  D. I.  Tarakanov  R. Yu. 《Oceanology》2020,60(5):589-592
Oceanology - Measurements of currents and Antarctic Bottom Water properties overflowing the sill from the Weddell to the Scotia Sea are described. The bottom water overflows the sill of one of the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号